博碩士論文 104226073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:52.15.223.239
姓名 鍾晏齊(Yen-Chi Chung)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 飛秒雷射製作之複合玻璃光熱效應特性研究
(Characteristics of Photothermal Effect in Femtosecond-laser Fabricated Composite Glass)
相關論文
★ 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究★ 以氬離子雷射對玻璃材料加工之研究
★ 以裸光纖激發球共振腔之共振譜研究★ 錐狀平面波導光柵結構與微米小球共振腔之光耦合效率研究
★ 溶膠凝膠法合成以鉭元素為基礎的全固態電致變色元件★ S型彎曲波導與微米小球共振腔之光耦合效率研究
★ 錐狀光纖與微米球共振腔耦合之研究與應用★ 以鎖模鈦藍寶石飛秒雷射雙光子聚合製作光波導微結構之研究
★ 利用光子晶體的能隙邊緣移動達成全光開關之研究★ 利用繞射圖形檢測錐狀光纖的製造與品質
★ 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器★ 光學印刷電路板之製作與特性分析
★ 鈉鉀離子交換波導之製作及其表面消逝波之研究★ 拉伸式長週期光纖光柵的模態色散現象研究
★ 可調式窄頻液晶濾波器★ 基於D形光纖之拉曼感測器模擬與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著對綠能源的需求逐日漸增,熱能的產生與儲存是其中一項熱門的環保議題,所有再生能源中,太陽光是近乎無限的能源,利用太陽能的發電技術已成為主流,不過受限於肖克利-奎伊瑟極限(Shockley–Queisser limit),光電轉換效率始終有無法超越的門檻,而目前在市面上的最高光電轉換效率不超過30%,剩下的70%大多是以熱能的方式散失。因此,在此研究中,我們專注於效率較高的光熱轉換技術。在目前的研究顯示,由奈米材料組成的結構中,其效率可高達到70%,甚至是97%,這是由於奈米材料的局域表面電漿共振(LSPR)的特性,能量得以從光的形式有效且直接地轉換成熱能。在眾多奈米材料之中,含有奈米銀的玻璃則是具有應用以及開發的潛力,尤其當入射光源是表面電漿共振的波長下,效率最高,而目前有許多種方式能夠產生此種材料。

在本研究中,選擇兩階段式離子交換作為製程方法,因為其製程過程簡單且便宜,甚至可以一次大量製作多片樣品。由於鈉-銀離子交換後玻璃的LSPR波長大約位於430 奈米處,市面上的光源較不易取得,因此,這裡使用波長在800奈米以及400奈米的飛秒脈衝進行樣品加工,讓樣品中能夠產生更多色心,使奈米銀從球型沿著雷射偏振方向形變成橢球狀。如此,LSPR波長能夠紅移至目前較容易取得的LED光源波段或是連續波雷射波段。而在雷射加工後的樣品,其LSPR波段確實能由430奈米紅移至綠光波段。在光熱實驗中,以中心波長在515奈米的發光二極體(LED)照射下,驗證了此樣品所產生的溫度的確比一般純玻璃高。在此研究中的光譜結果也與Boundary Element Method (BEM)的模擬相符合。
摘要(英) With the increasing demand for green energy, heat generation and storage turned to be one of the most popular issues, regarding to particularly important environment protection and electric generator exploit. In the utilization of natural energy, sunlight becomes the mainstream for research. However, due to Shockley–Queisser limit, opto-electric conversion efficiency has upper limit. So far, the conversion efficiency of most commercially available solar cell is no greater than 30%, and most of the energy is dissipated in the form of heat. Therefore, in this study, the devices of pthotothermal conversion are focused with the advent of various nanocompsites and nanostructures. The efficiency of photothermal conversion can be raised as higher as 70% in the recent studies. Even in some researches, the efficiency of photothermal conversion can reach to 97%. Because of the relatively high efficiency based on the property of localized surface plasmon resonance (LSPR), the composite of Ag NPs embedded in soda-lime glass has the great potential in storage of energy and heat generation.

In this research, two-step ion exchange method is applied, providing simple and inexpensive fabrication for the desired composites. In order to red-shift the LSPR of the composite to the wavelength of commercially available LED and continuous (CW) laser, dual-wavelength laser processing at 800 nm and 400 nm are carried out, leading to the transformation and re-growth of spherical Ag NPs into ellipsoids by inducing color centers inside the composite. Indeed, the absorption of the composite increases the temperature rise and exhibits much higher temperature than that of a pure glass within only a few minutes. Upon the irradiation by a green LED (= 515 nm), the experimental results in the research are in close agreement with the simulation by Boundary Element Method (BEM).
關鍵字(中) ★ 飛秒雷射
★ 銀奈米粒子
★ 型變
★ 光熱效應
關鍵字(英) ★ fs laser
★ Ag nanoparticles
★ ellipsoids
★ photothermal conversion
★ photothermal effect
論文目次 Contents
摘要 i
Abstract ii

List of Figures vii
List of Table viii
Chapter 1: Introduction 1
1.1 Heat Generation by Localized Surface Plasmon Resonance 1
1.2 Pulsed Laser Reshaping of Ag Nanoparticles 3
1.3 The Method of Color Centers Induced Absorption and Dichroism of Ag Nanoparticles in Glass 7
1.4 Motivation 9
Chapter 2: Theoretical Background 10
2.1 Revolution of Localized Surface Plasmon Resonance 10
2.2 Irradiation of Femtosecond Pulse on Ag Nanoparticles Embedded in Soda-lime Glass 30
Chapter 3: Simulation and Analysis Method 41
3.1 Simulation Method and Geometry-dependent Absorption and Extinction of Ag Nanoparticles 41
3.2 Heat Generation by LSPR of Ag Nanoparticles 56
3.3 Simple Modeling of Photothermal Effect of the Composite 65
Chapter 4: Material and Methodology 69
4.1 Experiment I – Laser Fabrication by fs Laser with High Repetition Rate 70
4.1.1 Material Preparation - Two-steps Ag-Na Ion-exchange in Soda-lime Glass 70
4.1.2 The Analysis of the Original Sample 72
4.1.3 Setup – Laser Fabrication 75
4.1.4 Parameter Design 76
4.2 Experimental Method II – Color Centers Induced Transformation of Ag Nanoparticles by Dual-Wavelength Irradiation 77
4.2.1 Material Preparation - Two-stepped Ag-Na Ion-exchange in Soda-lime Glass 78
4.2.2 Setup – Two-step Laser Modification of Ag Nanoparticles 78
4.2.4 Setup – Photothermal Experiment 80
4.2.5 Parameter Design 80
Chapter 5: Results and Discussions 82
5.1 Experiment I 82
5.1.1 Observation of Transmission Spectra 82
5.1.2 The Phenomena inside the Sample and SEM Images 86
5.2 Experiment II 90
5.2.1 Observation of Transmission Spectra 90
5.2.2 Dichroism in Photothermal Effect Excited by LED light 95
5.2.3 The Phenomena inside the Sample and SEM Images 103
Chapter 6: Conclusions and Applications 109
6.1 Comprehensive Conclusions 109
6.2 Promising Prospects of Applications 110
References 111
參考文獻 References
1. C.-Y. Chang, H.-T. Lin, M.-S. Lai, T.-Y. Shieh, C.-C. Peng, M.-H. Shih, and Y.-C. Tung, ”Flexible Localized Surface Plasmon Resonance Sensor with Metal–Insulator–Metal Nanodisks on PDMS Substrate,” Scientific Reports 8, 11812 (2018).
2. A. Farnood, M. Ranjbar, and H. Salamati, ”Localized surface plasmon resonance (LSPR) detection of hydrogen gas by Pd2+/Au core/shell like colloidal nanoparticles,” International Journal of Hydrogen Energy (2019).
3. B. Sepúlveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz-Marzán, ”LSPR-based nanobiosensors,” Nano Today 4, 244-251 (2009).
4. M. Thiele, A. Knauer, D. Malsch, A. Csáki, T. Henkel, J. M. Köhler, and W. Fritzsche, ”Combination of microfluidic high-throughput production and parameter screening for efficient shaping of gold nanocubes using Dean-flow mixing,” Lab on a Chip 17, 1487-1495 (2017).
5. E. A. Coronado, E. R. Encina, and F. D. Stefani, ”Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale,” Nanoscale 3, 4042-4059 (2011).
6. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, ”Experimental and Theoretical Studies of Light-to-Heat Conversion and Collective Heating Effects in Metal Nanoparticle Solutions,” Nano Letters 9, 1139-1146 (2009).
7. M. Kim, Y. Suh, and J.-M. Nam, ”Plasmonic Photothermal Nanoparticles for Biomedical Applications,” Advanced Science 6, 1900471 (2019).
8. K. Setoura, Y. Okada, and S. Hashimoto, ”CW-laser-induced morphological changes of a single gold nanoparticle on glass: observation of surface evaporation,” Physical Chemistry Chemical Physics 16, 26938-26945 (2014).
9. G. Baffou, R. Quidant, and F. J. García de Abajo, ”Nanoscale Control of Optical Heating in Complex Plasmonic Systems,” ACS Nano 4, 709-716 (2010).
10. A. O. Govorov and H. H. Richardson, ”Generating heat with metal nanoparticles,” Nano Today 2, 30-38 (2007).
11. L. Wei, J. Lu, H. Xu, A. Patel, Z.-S. Chen, and G. Chen, ”Silver nanoparticles: synthesis, properties, and therapeutic applications,” Drug Discovery Today 20, 595-601 (2015).
12. L. Xie, X. Yan, and Y. Du, ”An aptamer based wall-less LSPR array chip for label-free and high throughput detection of biomolecules,” Biosensors and Bioelectronics 53, 58-64 (2014).
13. J. Li, J. Liu, and C. Chen, ”Remote Control and Modulation of Cellular Events by Plasmonic Gold Nanoparticles: Implications and Opportunities for Biomedical Applications,” ACS Nano 11, 2403-2409 (2017).
14. P. Zijlstra, J. W. M. Chon, and M. Gu, ”White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods,” Physical Chemistry Chemical Physics 11, 5915-5921 (2009).
15. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, ”Laser-Induced Shape Changes of Colloidal Gold Nanorods Using Femtosecond and Nanosecond Laser Pulses,” The Journal of Physical Chemistry B 104, 6152-6163 (2000).
16. P. Boyer and M. Meunier, ”Modeling Solvent Influence on Growth Mechanism of Nanoparticles (Au, Co) Synthesized by Surfactant Free Laser Processes,” The Journal of Physical Chemistry C 116, 8014-8019 (2012).
17. A. Simo, J. Polte, N. Pfänder, U. Vainio, F. Emmerling, and K. Rademann, ”Formation Mechanism of Silver Nanoparticles Stabilized in Glassy Matrices,” Journal of the American Chemical Society 134, 18824-18833 (2012).
18. L. A. H. Fleming, G. Tang, S. A. Zolotovskaya, and A. Abdolvand, ”Controlled modification of optical and structural properties of glass with embedded silver nanoparticles by nanosecond pulsed laser irradiation,” Opt. Mater. Express 4, 969-975 (2014).
19. W. Han, L. Jiang, X. Li, Q. Wang, S. Wang, J. Hu, and Y. Lu, ”Controllable Plasmonic Nanostructures induced by Dual-wavelength Femtosecond Laser Irradiation,” Scientific Reports 7, 17333 (2017).
20. D. A. Zuev, S. V. Makarov, I. S. Mukhin, V. A. Milichko, S. V. Starikov, I. A. Morozov, I. I. Shishkin, A. E. Krasnok, and P. A. Belov, ”Fabrication of Hybrid Nanostructures via Nanoscale Laser-Induced Reshaping for Advanced Light Manipulation,” Advanced Materials 28, 3087-3093 (2016).
21. A. Podlipensky, Laser assisted modification of optical and structural properties of composite glass with silver nanoparticles (2005).
22. G. Seifert, M. Kaempfe, K. J. Berg, and H. Graener, ”Femtosecond pump-probe investigation of ultrafast silver nanoparticle deformation in a glass matrix,” Applied Physics B 71, 795-800 (2000).
23. A. V. Podlipensky, V. Grebenev, G. Seifert, and H. Graener, ”Ionization and photomodification of Ag nanoparticles in soda-lime glass by 150 fs laser irradiation: a luminescence study,” Journal of Luminescence 109, 135-142 (2004).
24. A. A. Ünal, A. Stalmashonak, G. Seifert, and H. Graener, ”Femtosecond shape transformation dynamics of silver nanoparticles in glass,” Proc SPIE (2008).
25. S. Papernov, ”Laser-induced damage in optical materials,” (2014), pp. 25-73.
26. S. Avanesyan, S. Orlando, S. Langford, and D. Tom, ”Generation of color centers by femtosecond laser pulses in wide-bandgap materials,” Proceedings of SPIE - The International Society for Optical Engineering 5352(2004).
27. A. Stalmashonak, G. Seifert, and H. Graener, ”Optical three-dimensional shape analysis of metallic nanoparticles after laser-induced deformation,” Optics letters 32, 3215-3217 (2007).
28. A. A. Ünal, A. Stalmashonak, G. Seifert, and H. Graener, ”Ultrafast dynamics of silver nanoparticle shape transformation studied by femtosecond pulse-pair irradiation,” Physical Review B 79, 115411 (2009).
29. D. A. Ignat’ev, A. I. Ignat’ev, N. V. Nikonorov, and M. Silvennoinen, ”Interaction of femtosecond laser radiation with silver nanoparticles in photothermorefractive glasses,” J. Opt. Technol. 82, 734-737 (2015).
30. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, ”Ablation of solids by femtosecond lasers: Ablation mechanism and ablation thresholds for metals and dielectrics,” Physics of Plasmas 9, 949-957 (2002).
31. S. Chin, ”From multiphoton to tunnel ionization,” (2004).
32. S. Maity, L. N. Downen, J. R. Bochinski, and L. I. Clarke, ”Embedded metal nanoparticles as localized heat sources: An alternative processing approach for complex polymeric materials,” Polymer 52, 1674-1685 (2011).
33. V. Semak and M. N. Shneider, ”Invicem Lorentz Oscillator Model (ILOM),” (2017).
34. P. B. Johnson and R. W. Christy, ”Optical Constants of the Noble Metals,” Physical Review B 6, 4370-4379 (1972).
35. L. Benfatto, E. Cappelluti, L. Ortenzi, and L. Boeri, ”Extended Drude model and role of interband transitions in the midinfrared spectra of pnictides,” Physical Review B 83, 224514 (2011).
36. J. Horng, C.-F. Chen, B. Geng, C. Girit, Y. Zhang, Z. Hao, H. A. Bechtel, M. Martin, A. Zettl, M. F. Crommie, Y. R. Shen, and F. Wang, ”Drude conductivity of Dirac fermions in graphene,” Physical Review B 83, 165113 (2011).
37. I. Ahmed, E. H. Khoo, O. Kurniawan, and E. P. Li, ”Modeling and simulation of active plasmonics with the FDTD method by using solid state and Lorentz–Drude dispersive model,” J. Opt. Soc. Am. B 28, 352-359 (2011).
38. J. Stoltenberg and D. Pengra, ”Surface Plasmon Resonance in a Thin Metal Film,” (Master’s thesis, 2008).
39. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (1988), Vol. 111.
40. O. Pluchery, R. Vayron, and K.-M. Van, ”Laboratory experiments for exploring the surface plasmon resonance,” European Journal of Physics 32, 585-599 (2011).
41. A. Trügler, Optical Properties of Metallic Nanoparticles - Basic Principles and Simulation (2016), Vol. 232.
42. X.-C. Ma, Y. Dai, L. Yu, and B.-B. Huang, ”Energy transfer in plasmonic photocatalytic composites,” Light: Science & Applications 5, e16017-e16017 (2016).
43. H. Jia, F. Yang, Y. Zhong, and H. Liu, ”Understanding localized surface plasmon resonance with propagative surface plasmon polaritons in optical nanogap antennas,” Photon. Res. 4, 293-305 (2016).
44. C. Noguez, ”Surface Plasmons on Metal Nanoparticles:  The Influence of Shape and Physical Environment,” The Journal of Physical Chemistry C 111, 3806-3819 (2007).
45. H. B. Jeon, P. V. Tsalu, and J. W. Ha, ”Shape Effect on the Refractive Index Sensitivity at Localized Surface Plasmon Resonance Inflection Points of Single Gold Nanocubes with Vertices,” Scientific Reports 9, 13635 (2019).
46. M. Shabaninezhad and G. Ramakrishna, ”Theoretical investigation of size, shape, and aspect ratio effect on the LSPR sensitivity of hollow-gold nanoshells,” The Journal of Chemical Physics 150, 144116 (2019).
47. A. Dmitriev, Z. Pirzadeh, T. Pakizeh, V. Miljković, and C. Langhammer, ”Plasmon−Interband Coupling in Nickel Nanoantennas,” ACS Photonics 1, 158 (2014).
48. J. S. Yang, S. G. Lee, S.-G. Park, E.-H. Lee, and O. Beom-Hoan, ”Drude model for the optical properties of a nano-scale thin metal film revisted,” Journal of the Korean Physical Society 55, 2552-2555 (2009).
49. S. Verma and J. Sekhon, ”Influence of aspect ratio and surrounding medium on Localized Surface Plasmon Resonance (LSPR) of gold nanorod,” Journal of Optics DOI 10.1007/s12596-012-0068-y(2012).
50. V. Juvé, M. F. Cardinal, A. Lombardi, A. Crut, P. Maioli, J. Pérez-Juste, L. M. Liz-Marzán, N. Del Fatti, and F. Vallée, ”Size-Dependent Surface Plasmon Resonance Broadening in Nonspherical Nanoparticles: Single Gold Nanorods,” Nano Letters 13, 2234-2240 (2013).
51. S. B. Jones and S. P. Friedman, ”Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles,” Water Resources Research 36, 2821-2833 (2000).
52. K. E. Fong and L.-Y. L. Yung, ”Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection,” Nanoscale 5, 12043-12071 (2013).
53. C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, 2008).
54. C. Sönnichsen, ”Plasmons in Metal Nanostructures,” (2001).
55. A. Furube and S. Hashimoto, ”Insight into plasmonic hot-electron transfer and plasmon molecular drive: new dimensions in energy conversion and nanofabrication,” NPG Asia Materials 9, e454-e454 (2017).
56. F. Wooten, ”Chapter 6 - DISPERSION RELATIONS AND SUM RULES,” in Optical Properties of Solids, F. Wooten, ed. (Academic Press, 1972), pp. 173-185.
57. V. Rivera, F. Ferri, and E. Marega Jr, ”Localized surface plasmon resonances: noble metal nanoparticle interaction with rare-earth ions,” in Plasmonics-Principles and Applications (IntechOpen, 2012).
58. C. Noguez and A. L. González, ”Localized Surface Plasmons of Multifaceted Metal Nanoparticles,” Complex‐Shaped Metal Nanoparticles, 361-393 (2012).
59. R. Fuchs and S. H. Liu, ”Sum rule for the polarizability of small particles,” Physical Review B 14, 5521-5522 (1976).
60. R. Fuchs, ”Theory of the optical properties of ionic crystal cubes,” Physical Review B 11, 1732-1740 (1975).
61. G. Seifert, A. Podlipensky, J. Lange, H. Hofmeister, and H. Graener, ”Ultrafast deformation dynamics of silver nanoparticles in glass induced by femtosecond laser pulses - art. no. 61180R,” Proceedings of SPIE - The International Society for Optical Engineering (2006).
62. T. Döppner, S. Teuber, M. Schumacher, J. Tiggesbäumker, and K. H. Meiwes-Broer, ”Charging dynamics of metal clusters in intense laser fields,” Applied Physics B 71, 357-360 (2000).
63. J. Britten, M. Perry, B. Shore, R. Boyd, G. Loomis, and R. Chow, ”Laser-Induced Damage in Optical Materials: 1995,” 511-520 (1996).
64. J. Mater. Chem. C 5, 1569 (2017).
65. R. Annou and V. Tripathi, ”Femtosecond laser pulse induced Coulomb explosion,” 34th EPS Conference on Plasma Physics 2007, EPS 2007 - Europhysics Conference Abstracts 31(2005).
66. Z. Zheng, C. Wu, S. Liu, and X. Yang, ”Analysis of energy occupying ratio of Coulomb explosion and thermal effect in picosecond pulse laser processing,” Optics Communications 424, 190-197 (2018).
67. J. E. Sipe and J. Becher, ”Surface-plasmon-assisted photoemission,” J. Opt. Soc. Am. 71, 1286-1288 (1981).
68. C. Kennerknecht, H. Hövel, M. Merschdorf, S. Voll, and W. Pfeiffer, ”Surface plasmon assisted photoemission from Au nanoparticles on graphite,” Applied Physics B: Lasers and Optics 73, 425-429 (2001).
69. S. Munekuni, T. Yamanaka, Y. Shimogaichi, R. Tohmon, Y. Ohki, K. Nagasawa, and Y. Hama, ”Various types of nonbridging oxygen hole center in high‐purity silica glass,” Journal of Applied Physics 68, 1212-1217 (1990).
70. S. M. Bilankohi, ”Optical scattering and absorption characteristics of silver and silica/silver core/shell nanoparticles,” Oriental Journal of Chemistry 31, 2259-2263 (2015).
71. I. Mayergoyz, Z. Zhang, and G. Miano, ”Analysis of Dynamics of Excitation and Dephasing of Plasmon Resonance Modes in Nanoparticles,” Physical review letters 98, 147401 (2007).
72. U. Hohenester and A. Trügler, ”Interaction of Single Molecules With Metallic Nanoparticles,” Selected Topics in Quantum Electronics, IEEE Journal of 14, 1430-1440 (2009).
73. E. Kapuścik, ”Generalized Helmholtz theorem and gauge invariance of classical field theories,” Lettere al Nuovo Cimento (1971-1985) 42, 263-266 (1985).
74. D. L. Clements, ”Green’s Functions for the Boundary Element Method (Invited contribution),” in Mathematical and Computational Aspects, (Springer Berlin Heidelberg, 1987), 13-20.
75. J. B. Khurgin, ”How to deal with the loss in plasmonics and metamaterials,” Nature Nanotechnology 10, 2-6 (2015).
76. J. Khurgin, ”How to deal with the loss in plasmonics and metamaterials,” Nature nanotechnology 10, 2-6 (2015).
77. J. Khurgin, ”Hot carriers generated by plasmons: where are they are generated and where do they go from there?,” Faraday Discussions (2018).
78. J. B. Khurgin, ”Ultimate limit of field confinement by surface plasmon polaritons,” Faraday Discussions 178, 109-122 (2015).
79. L. V. Besteiro, X.-T. Kong, Z. Wang, G. Hartland, and A. O. Govorov, ”Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms,” ACS Photonics 4, 2759-2781 (2017).
80. G. G. Gu and M. A. Gennert, ”Boundary element methods for solving Poisson equations in computer vision problems,” in Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1991), 546-551.
81. D. Manikandan, S. Mohan, and K. G. M. Nair, ”Absorption and luminescence of silver nanocomposite soda-lime glass formed by Ag+–Na+ ion-exchange,” Materials Research Bulletin 38, 1545-1550 (2003).
82. K. J. Berg, A. Berger, and H. Hofmeister, ”Small silver particles in glass surface layers produced by sodium-silver ion exchange — their concentration and size depth profile,” Zeitschrift für Physik D Atoms, Molecules and Clusters 20, 309-311 (1991).
83. S. Chervinskii, R. Drevinskas, D. V. Karpov, M. Beresna, A. A. Lipovskii, Y. P. Svirko, and P. G. Kazansky, ”Revealing the nanoparticles aspect ratio in the glass-metal nanocomposites irradiated with femtosecond laser,” Scientific Reports 5, 13746 (2015).
84. P. W. Voorhees, ”The theory of Ostwald ripening,” Journal of Statistical Physics 38, 231-252 (1985).
85. A. Heilmann and J. Werner, ”In situ observation of microstructural changes of embedded silver particles,” Thin Solid Films 317, 21-26 (1998).
86. Z. Nie, C.-H. Pai, J. Hua, C. Zhang, Y. Wu, Y. Wan, F. Li, J. Zhang, Z. Cheng, Q. Su, S. Liu, Y. Ma, X. Ning, Y. He, W. Lu, H.-H. Chu, J. Wang, W. B. Mori, and C. Joshi, ”Relativistic single-cycle tunable infrared pulses generated from a tailored plasma density structure,” Nature Photonics 12, 489-494 (2018).
87. D. I. Lee, Y. K. Lee, and H. S. Lee, ”Effects of silver and potassium ions on ion exchange in float glass,” Journal of Materials Science 27, 2908-2913 (1992).
88. V. Kotaidis and A. Plech, ”Cavitation dynamics on the nanoscale,” Applied Physics Letters 87, 213102 (2005).
89. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, and A. Plech, ”Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water,” The Journal of Chemical Physics 124, 184702 (2006).
90. J. Hernandez-Rueda, J. Siegel, M. Garcia-Lechuga, and J. Solis, ”Femtosecond laser-induced refractive index changes at the surface of dielectrics: quantification based on Newton ring analysis,” J. Opt. Soc. Am. B 31, 1676-1683 (2014).
91. E. Ohmura, ”Analyses of Self-Focusing Phenomenon and Temperature Rise in Fused Silica by Ultrashort Pulse Laser Irradiation,” Procedia CIRP 5, 7-12 (2013).
92. L. Shah, J. Tawney, M. Richardson, and K. Richardson, ”Self-Focusing During Femtosecond Micromachining of Silicate Glasses,” Quantum Electronics, IEEE Journal of 40, 57-68 (2004).
93. W. Lewandowski, M. Fruhnert, J. Mieczkowski, C. Rockstuhl, and E. Górecka, ”Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial,” Nature Communications 6, 6590 (2015).
94. Y. Choo, P. W. Majewski, M. Fukuto, C. O. Osuji, and K. G. Yager, ”Pathway-engineering for highly-aligned block copolymer arrays,” Nanoscale 10, 416-427 (2018).
95. X. Zheng, L. Zhu, X. Zeng, L. Meng, L. Zhang, D. Wang, and X. Huang, ”Kinetics-Controlled Amphiphile Self-Assembly Processes,” The Journal of Physical Chemistry Letters 8, 1798-1803 (2017).
96. C. O′Mahony, R. Farrell, T. Goshal, J. Holmes, and M. Morris, ”The Thermodynamics of Defect Formation in Self-Assembled Systems,” (2011).
97. M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marzán, ”Directed Self-Assembly of Nanoparticles,” ACS Nano 4, 3591-3605 (2010).
98. A. Böker, J. He, T. Emrick, and T. P. Russell, ”Self-assembly of nanoparticles at interfaces,” Soft Matter 3, 1231-1248 (2007).
99. A. O. Pinchuk, ”Size-Dependent Hamaker Constant for Silver Nanoparticles,” The Journal of Physical Chemistry C 116, 20099-20102 (2012).
100. S. Kralj and D. Makovec, ”Magnetic Assembly of Superparamagnetic Iron Oxide Nanoparticle Clusters into Nanochains and Nanobundles,” ACS Nano 9, 9700-9707 (2015).
101. D. Andrén, N. Odebo Länk, H. Šípová-Jungová, S. Jones, P. Johansson, and M. Käll, ”Surface Interactions of Gold Nanoparticles Optically Trapped against an Interface,” The Journal of Physical Chemistry C 123, 16406-16414 (2019).
102. R. P. R, V. Thomas, J. George, C. Joseph, B. P. R, and U. N. V, ”Structural and plasmonic studies of Ag nanoparticles in silica glass hosts,” IOP Conference Series: Materials Science and Engineering 43, 012005 (2013).
103. M. Strasser, K. Setoura, U. Langbein, and S. Hashimoto, ”Computational Modeling of Pulsed Laser-Induced Heating and Evaporation of Gold Nanoparticles,” The Journal of Physical Chemistry C 118, 25748-25755 (2014).
指導教授 戴朝義 審核日期 2020-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明