博碩士論文 104289601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:61 、訪客IP:18.227.46.54
姓名 畢拉爾(Bilal Ramzan)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 在宇宙射線和磁流波影響下的 電漿流之理論研究
(A Theoretical Study of Outflows in the Presence of Cosmic Rays and Waves)
相關論文
★ 宇宙射線在球形震波的加速★ 重力透鏡效應造成的類星體-星系關聯與星系-星系相關函數
★ 星際物質演化的研究★ 宇宙射線在恆星風的自相似解
★ 分子雲演化的二維模型★ 以2MASS近紅外資料研究太陽附近的疏散星團
★ 以二微米巡天觀測近紅外資料研究本銀河系結構★ 橢圓星系中基礎平面及等效半徑的多波段研究
★ 宇宙射線和磁流動力系統之不穩定性★ 初生星團的生存率
★ 橢圓星系外型與紅移關聯之研究★ 在不同均功參數下星團的擴散及核心的形成
★ 兩微米巡天數星所取得的銀河系資訊★ A numerical simulation survey on the outflow from the Galactic center
★ Galaxy Cluster Dynamics and Modified Newtonian Dynamics★ Strong Gravitational Lensing in Modified Newtonian Dynamics
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文從流體力學的理論觀點探討宇宙射線對在重力位井裡的電漿流或電漿風的影響。宇宙射線與在電漿裡的磁流擾動發生交互作用。在這個過程中,宇宙射線在電漿裡擴散和流動。除了熱電漿是流體外,在我們的模型中宇宙射線和自激性阿耳芬波也作流體處理。我們研究在位能井的基底有明確邊界條件下的「三流體」系統(含一個向前傳播的阿耳芬波)和「四流體」系統(同時含向前和向後傳播的阿耳芬波)中物理上允許的穩定態解。作為一個參照模型,一個沒有宇宙射線擴散也沒有波阻尼的「三流體」模型可以用如同處理經典帕克恆星風問題的方式研究。在考慮有宇宙射線擴散的情況下,我們發現有兩種類別的結果。一種是相似於沒有擴散的「三流體」模型,而另外一種則會發展成類似一般的純熱風,因為這個類別的波會消退繼而宇宙射線與熱電漿解耦不再有影響力。我們同時也探討冷卻效應對電漿流的效應。冷卻會造成亞音速純熱風失速,因此我們聚焦在亞音速─超音速過渡或是穿音速解。在相同的邊界條件下,我們比較有無冷卻效應和有無波阻尼的結果。
摘要(英) The impact of cosmic rays on plasma outflow or wind against a gravitational potential is studied theoretically from the perspective of hydrodynamics in this dissertation.
Cosmic rays interact with hydromagnetic fluctuations embedded in plasma.
In this process, cosmic rays diffuse and advect through the plasma.
In addition to thermal plasma, cosmic rays and self-excited Alfv′en waves are also considered as fluids in our model.
We investigate physically allowable steady-state solutions for three-fluid system (with one forward propagating Alfv′en wave) and four-fluid system (with both forward and backward propagating Alfv′en waves) with certain boundary conditions at the base of the potential well.
As a reference model, a three-fluid model without cosmic-ray diffusion and without wave damping can be studied in the same way as the classic Parker stellar wind problem.
In the presence of cosmic-ray diffusion, we discovered two categories of solutions.
One is similar to the three-fluid model without diffusion, while the other appears to behave like thermal wind when the waves die out and the cosmic rays become decoupled from the thermal plasma.
We also examine the effect of cooling on the outflows.
As cooling causes subsonic pure thermal outflow to stall, we focus on subsonic-supersonic transition or transonic solutions.
We compare cases with/without cooling and with/without wave damping for the same set of boundary conditions.
關鍵字(中) ★ 流體力學
★ 等離子體
★ 宇宙射線
★ 波浪
★ 磁場
★ 風
關鍵字(英) ★ Hydrodynamics
★ Plasma
★ Cosmic rays
★ Waves
★ Magnetic field
★ Winds
論文目次 Contents
電子論文授權書 Authorisation of the Electronic Thesis i
指導教授推薦書 Recommendation Letter from the Thesis Advisor iii
口試委員審定書 Verification from the Oral Examination Committee v
英文摘要 Abstract in English vii
中文摘要 ix
誌謝 Acknowledgements xi
List of Figures xv
1 Introduction 1
1.1 Cosmic rays discovery . . 1
1.2 Composition of cosmic rays . . 3
1.3 Spectrum of cosmic rays . 4
1.4 Cosmic rays interactions . 5
1.5 Hydrodynamical models . 6
1.6 Outline of the thesis 7
2 Hydrodynamical Model for a Cosmic Ray-Plasma System 9
2.1 Derivation of the cosmic ray energy equation . . 9
2.2 Derivation of the wave energy equation . . 11
2.3 Cosmic ray-plasma system 12
2.4 Flux-tube formulation for outflows . 15
2.5 Wind equation for the four-fluid system . . 18
2.6 Integrals of the system . . 19
3 Three-Fluid Systems without Cosmic-Ray Diffusion 21
3.1 Outflow equation . . 21
3.2 Two special cases . . 22
3.2.1 Solution curves . . 24
3.3 Solutions with different wave damping mechanisms . 26
4 Systems with Cosmic Ray Diffusion 31
4.1 Cosmic ray accompanied outflows . . 32
4.2 Quasi-thermal outflows . . 35
4.2.1 Impact of cosmic rays and waves on the outflow . . 41
5 Outflows with Cooling 45
5.1 Pure thermal outflows . . 46
5.2 Three-fluid outflows without diffusion 48
5.3 Three-fluid outflows with diffusion . . 50
5.4 Four-fluid outflows . 53
6 Summary and Discussion 59
Bibliography 63
參考文獻 Abbasi R., et al., 2010, Nuclear Instruments and Methods in Physics Research A, 618,139
Abdo A. A., et al., 2008, Phys. Rev. Lett., 101, 221101
Barros D. A., Lepine J. R. D., Dias W. S., 2016, Astronomy & Astrophysics, 593, A108
Breitschwerdt D., McKenzie J. F., Voelk H. J., 1991, Astronomy & Astrophysics, 245, 79
Breitschwerdt D., McKenzie J. F., Voelk H. J., 1993, Astronomy & Astrophysics, 269, 54
Bustard C., Zweibel E. G., DOnghia E., 2016, The Astrophysical Journal, 819, 29
Chin Y.-C., Wentzel D. G., 1972, Astrophysics and Space Science, 16, 465
Cox D. P., 2005, Annual Review of Astronomy and Astrophysics, 43, 337
Dewar R. L., 1970, Physics of Fluids, 13, 2710
Dorfi E. A., Breitschwerdt D., 2012, Astronomy & Astrophysics, 540, A77
Dor fi E. A., Steiner D., Ragossnig F., Breitschwerdt D., 2019, Astronomy & Astrophysics,
630, A107
Drury L. O., Voelk J. H., 1981, The Astrophysical Journal, 248, 344
Everett J. E., Zweibel E. G., Benjamin R. A., McCammon D., Rocks L., III J. S. G.,
2008, The Astrophysical Journal, 674, 258
Farber R., Ruszkowski M., Yang H.-Y. K., Zweibel E. G., 2018, The Astrophysical Journal,
856, 112
Ferriere K. M., 2001, Rev. Mod. Phys., 73, 1031
Gaisser T. K., 2012, Astroparticle Physics, 35, 801
Ghosh A., Ptuskin V. S., 1983, Astrophysics and Space Science, 92, 37
Girichidis P., et al., 2016, The Astrophysical Journal, 816, L19
Hanasz M., Lesch H., 2000, The Astrophysical Journal, 543, 235
Hanasz M., Lesch H., 2003, Astronomy & Astrophysics, 412, 331
Heintz E., Zweibel E. G., 2018, The Astrophysical Journal, 860, 97
Heintz E., Bustard C., Zweibel E. G., 2020, The Astrophysical Journal, 891, 157
Holguin F., Ruszkowski M., Lazarian A., Farber R., Yang H.-Y. K., 2019, Monthly Notices
of the Royal Astronomical Society, 490, 1271
Icecube Collaboration et al., 2012, Nature, 484, 351
Ipavich F. M., 1975, The Astrophysical Journal, 196, 107
Ko C. M., 1991, Astronomy & Astrophysics, 242, 85
Ko C. M., 1992, Astronomy & Astrophysics, 259, 377
Ko C. M., 2001, Journal of Plasma Physics, 65, 305
Ko C. M., Lo Y., 2009, The Astrophysical Journal, 691, 1587
Ko C. M., Jokipii J., Webb G., 1988, The Astrophysical Journal, 326, 761
Ko C. M., Dougherty M., McKenzie J., 1991, Astronomy & Astrophysics, 241, 62
Ko C. M., Chan K., Webb G., 1997, Journal of Plasma Physics, 57, 677
Ko C. M., Ramzan B., Chernyshov D. O., 2021, Astronomy & Astrophysics
Kulsrud R., Pearce W. P., 1969, ApJ, 156, 445
Kuwabara T., Ko C. M., 2006, The Astrophysical Journal, 636, 290
Kuwabara T., Ko C. M., 2015, The Astrophysical Journal, 798, 79
Kuwabara T., Nakamura K., Ko C. M., 2004, The Astrophysical Journal, 607, 828
Kuznetsov V. D., Ptuskin V. S., 1983, Astrophysics & Space Science, 94, 5
Lerche I., 1967, ApJ, 147, 689
Lo Y., Ko C. M., Wang C., 2011, Comput. Phys. Commun., 182, 177
Longair M. S., 1994, High energy astrophysics. Vol. 2
Mao S. A., Ostriker E. C., 2018, The Astrophysical Journal, 854, 89
McKenzie J. F., Voelk H. J., 1982, Astronomy & Astrophysics, 116, 191
Parker E. N., 1963, Interplanetary dynamical processes (New York: Interscience).
Parker E. N., 1965, Space Sci. Rev., 4, 666
Parker E. N., 1966, The Astrophysical Journal, 145, 811
Ramzan B., Ko C. M., Chernyshov D. O., 2020, The Astrophysical Journal, 905, 117
Recchia S., 2020, International Journal of Modern Physics D, 29, 2030006
Recchia S., Blasi P., Morlino G., 2016, Monthly Notices of the Royal Astronomical Society,
462, 4227
Ruszkowski M., Yang H.-Y. K., Zweibel E., 2017, The Astrophysical Journal, 834, 208
Ryu D., Kang H., Hallman E., Jones T. W., 2003, The Astrophysical Journal, 593, 599
Skilling J., 1975a, MNRAS, 172, 557
Ko C. M., Ramzan B., Chernyshov D. O., 2021, Astronomy & Astrophysics
Kulsrud R., Pearce W. P., 1969, ApJ, 156, 445
Kuwabara T., Ko C. M., 2006, The Astrophysical Journal, 636, 290
Kuwabara T., Ko C. M., 2015, The Astrophysical Journal, 798, 79
Kuwabara T., Nakamura K., Ko C. M., 2004, The Astrophysical Journal, 607, 828
Kuznetsov V. D., Ptuskin V. S., 1983, Astrophysics & Space Science, 94, 5
Lerche I., 1967, ApJ, 147, 689
Lo Y., Ko C. M., Wang C., 2011, Comput. Phys. Commun., 182, 177
Longair M. S., 1994, High energy astrophysics. Vol. 2
Mao S. A., Ostriker E. C., 2018, The Astrophysical Journal, 854, 89
McKenzie J. F., Volk H. J., 1982, Astronomy & Astrophysics, 116, 191
Parker E. N., 1963, Interplanetary dynamical processes (New York: Interscience).
Parker E. N., 1965, Space Sci. Rev., 4, 666
Parker E. N., 1966, The Astrophysical Journal, 145, 811
Ramzan B., Ko C. M., Chernyshov D. O., 2020, The Astrophysical Journal, 905, 117
Recchia S., 2020, International Journal of Modern Physics D, 29, 2030006
Recchia S., Blasi P., Morlino G., 2016, Monthly Notices of the Royal Astronomical Society,
462, 4227
Ruszkowski M., Yang H.-Y. K., Zweibel E., 2017, The Astrophysical Journal, 834, 208
Ryu D., Kang H., Hallman E., Jones T. W., 2003, The Astrophysical Journal, 593, 599
Skilling J., 1975a, MNRAS, 172, 557
指導教授 高仲明(Chung-Ming Ko) 審核日期 2021-10-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明