參考文獻 |
[1] Al-Arifi, A., Short T., Ling P. (2001). Validating the CFD model for air movements and heat transfer in ventilated greenhouse, Paper no. 014056, ASAE Annual Meeting. (doi: 10.13031/2013.4052)
[2] Awbi, H. B. (2003). Ventilation of buildings. Taylor & Francis.
[3] Baptista, F.J., Bailey, B.J., Randall, J.M., Meneses, J.F. (1999). Greenhouse ventilation rate: Theory and measurement with tracer gas techniques, J. Agric. Engng Res. 72, 363-373.
[4] Bournet, P.-E. and Boulard, T. (2010). Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies. Computers and Electronics in Agriculture 74, 195-217.
[5] Cabot, W., Moin, P. (2000). Approximate wall boundary conditions in the large eddy simulation of high Reynolds number flow. Flow Turbulence and Combustion 63, 269-291.
[6] Campen, J. B. (2004). Greenhouse design applying CFD for Indonesian conditions. Acta Hortic. 691, 419-424. doi:10.17660/ActaHortic.2005.691.50.
[7] Chu, C. R., and Chiang, B. F. (2013). Wind-driven cross ventilation with internal obstacles. Energy and Buildings, 67, 201-209.
[8] Chu, C. R., and Wang, Y. W. (2010). The loss factors of building openings for wind-driven ventilation. Building and Environment, 45(10), 2273-2279.
[9] Chu, C. R., Chiu, Y. H., & Wang, Y. W. (2010). An experimental study of wind-driven cross ventilation in partitioned buildings. Energy and Buildings, 42(5), 667-673.
[10] Chu, C. R., Chiu, Y. H., Chen, Y. J., Wang, Y. W., & Chou, C. P. (2009). Turbulence effects on the discharge coefficient and mean flow rate of wind-driven cross-ventilation. Building and Environment, 44(10), 2064-2072.
[11] Etheridge, D. W., & Sandberg, M. (1996). Building ventilation: theory and measurement (Vol. 50). Chichester: John Wiley & Sons.
[12] Fatnassi, H., Boulard, T., Bouirden L., (2003) Simulation of climatic conditions in full-scale greenhouse fitted with insect-proof screens. Agricultural and Forest Meteorology 118, 97-111.
[13] Forchheimer, P. (1901). Wasserbewegung durch boden. Z. Ver. Deutsch. Ing, 45(1782), 1788.
[14] Karava, P., Stathopoulos, T., & Athienitis, A. K. (2011). Airflow assessment in cross-ventilated buildings with operable façade elements. Building and Environment, 46(1), 266-279.
[15] Kittas, C., Boulard, T. Mermier, M., and G. Papadakis. (1996). Wind induced air exchange rates in a greenhouse tunnel with continuous side openings. Journal of Agricultural Engineering Research. 65(1): 37-49.
[16] Kumar, K.S., Tiwari, K.N. Madan K. Jha, (2009). Design and technology for greenhouse cooling in tropical and subtropical regions: A review. Energy and Buildings 41 (2009) 1269–1275.
[17] Lara, J.L., Losada, I.J., Maza, M., Guanche, R., (2011). Breaking solitary wave evolution over a porous underwater step. Coastal Engineering 58 (9), 837–850.
[18] Majdoubi, H. Boulard, T. Fatnassi, H. and Bouirden, L. (2009). Airflow and microclimate patterns in a one-hectare Canary type greenhouse: An experimental and CFD assisted study, Agri. and Forest Meteorology 149: 1050–1062.
[19] Miguel, A. F., Van de Braak, N. J., Silva, A. M., & Bot, G. P. A. (1998). Physical modelling of natural ventilation through screens and windows in greenhouses. Journal of Agricultural Engineering Research, 70(2), 165-176.
[20] Mistriotis, A. and D. Briassoulis. (2002). Numerical estimation of the internal and external aerodynamic coefficients of a tunnel greenhouse structure with openings. Computers and Electronics in Agriculture. 34(1-3): 191-205.
[21] Mistriotis, A. Arcidiacono, C. Picuno, P. Bot, G.P.A., Scarascia-Mugnozza G. (1997). Computational analysis of ventilation in greenhouses at zero- and low-wind-speeds. Agri. Forest Meteorology. 88(1-4): 121-135.
[22] Norton, T., Sun, D.W., Grant, J. Fallon, R., and Dodd, V. (2007). Applications of computational fluid dynamics CFD in the modeling and design of ventilation systems in the agricultural industrial: A review. Bioresource Technology 98, 2386-2414.
[23] Ramponi, R, Blocken, B. (2012). CFD simulation of cross-ventilation for a generic isolated building: Impact of computational parameters. Building and Environment 53, 34-48.
[24] Raupach, M. R., & Thom, A. S. (1981). Turbulence in and above plant canopies. Annual Review of Fluid Mechanics, 13(1), 97-129.
[25] Reichrath, S., Davies, T.W. (2002). Using CFD to model the internal climate of greenhouses: past, present and future. Agronomie, 22, 3-19.
[26] Santamouris, M., & Allard, F. (1998). Natural ventilation in buildings: a design handbook. Earthscan.
[27] Teitel, M. Ziskind, G. Liran, O., Dubovsky, V. Letan, R. (2008). Effect of wind direction on greenhouse ventilation rate, airflow pattern and temperature distributions. Biosystem Engineering. 101 (3), 351-369.
[28] Tominaga, Y. Mochida, A. Yoshie, R. Kataoka, H. Nozu, T. Masaru, Y. Shirasawa, T. (2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. J Wind Eng Ind Aerodyn, 96, 1749-1761.
[29] Van Gent, M.R.A., (1995). Wave Interaction with Permeable Coastal Structures. Ph.D.Thesis of Delft University of Technology.
[30] Von Zabeltitz, C. (2011) Integrated Greenhouse System for Mild Climate: Climate Conditions, Design, Construction, Maintenance, Climate Control. Springer-Verlag, p.363.
[31] Wang, S., Boulard, T., & Haxaire, R. (1999). Air speed profiles in a naturally ventilated greenhouse with a tomato crop. Agricultural and forest Meteorology, 96(4), 181-188.
[32] Wu, Y. T., & Hsiao, S. C. (2013). Propagation of solitary waves over a submerged permeable breakwater. Coastal Engineering, 81, 1-18. |