博碩士論文 104323027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.223.125.236
姓名 邱祺民(Qi-Min Qiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 風力發電機軸承損壞訊號分析
(Bearings fault signal detection used in wind turbines)
相關論文
★ 四弦型非對稱光學讀取頭致動器模態共振分析與抑制★ 網路連接儲存裝置熱分析與設計
★ 小型垂直軸風力發電機之有限元素分析★ 平板受聲源作用之振動與輻射聲場分析
★ 壓電吸振器應用於平板的振動與噪音控制★ 主動式吸振器應用於薄板減振與減噪
★ 離散振動系統之分析軟體製作★ 有洞薄方板之動態分析與激振後之聲場
★ 撓性結構之主動振動控制★ 速度與位移回饋式壓電吸振器之減振研究
★ 以LabVIEW為介面之模態測試軟體製作★ 電壓回饋壓電吸振器對平板之振動控制
★ 可調式消音閥的分析與最佳設計★ 旋轉樑的動態分析與壓電吸振器之減振設計
★ 自感式壓電吸振器之設計與應用於矩形板之減振★ 多孔薄方板之振動與聲場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 風力發電在綠能產業具有潛力,其中風機運轉與健康狀況關係到發電的效能與安全性,為了檢測風力發電機的運轉狀況,先以接觸理論分析軸承損壞下的受力情況,軸承在不同部位損壞下會出現特定頻率的動態訊號,對此訊號使用短時距傅立葉分析(short-time fourier transform)、總體經驗模態分解法(Ensemble Empirical Mode Decomposition)與快速譜峰度法(Fast Kurtogram)做診斷。第一個案例中是已知軸承損壞的機械系統,利用上述訊號處理方法對訊號進行分析,並比較不同方法間之優劣。後再將此分析法運用在第二個分析案例,即分析風力發電機上量得之振動訊號;結果顯示即使分析元件包含齒輪與軸承,但使用快速譜峰度法仍然能找出疑似軸承損壞訊號;當使用短時距傅立葉時,會偵測到齒輪轉速訊號與軸承損壞訊號,判別上較為複雜;而使用總體經驗模態分解法軸承訊號所在之階層並不固定,必須每一階層觀察效率較差。
摘要(英) The goal of the research was to diagnose the bearing faults in rotary machines though examining their dynamic responses or vibration signals. A bearing has specific defect vibration frequencies which can be calculated from bearing design data. Short-time-Fourier transform, ensemble empirical mode decomposition (EEMD) and fast kurtogram were signal processing methods for detecting bearing faults. These signal processing methods were used to analyze the dynamic responses from a rotor system with a damaged bearing and were compared to each other. Then, the methods were applied to vibration signals from a small and medium wind turbine. The signals contain not only bearing signal but also gear mesh signal.
The results show short-time-Fourier method could detect the bearing defect, the gear mesh signal and its harmonics, but the bearing fault signals are too complex to diagnose. Applying the fast kurtogram method which would usually filter out gear mesh signal and its harmonics could detect bearing fault signal more effective due to the transient characteristic of bearing fault signals. Using EEMD to analyze the vibration signals would decompose the original signal to several intrinsic mode functions (IMFs) possibly containing bearing fault signal in some decompositions. However, one still need to check each IMF for effectiveness.
關鍵字(中) ★ 風機
★ 軸承診斷
關鍵字(英) ★ wind turbine
★ bearing diagnosis
論文目次
第一章 緒論-1
1-1研究動機與目的-1
1-2文獻回顧-1
1-3本文架構-4
第二章軸承損壞訊號之理論分析-6
2-1軸承之接觸理論-6
2-2軸承參數與接觸力-7
2-2-1接觸變形量-9
2-2-2軸承力計算-11
2-3外環損壞-12
2-4內環損壞-13
2-5缺陷下軸承損壞特徵-15
第三章 訊號處理方法-19
3-1離散時間訊號的頻域分析-19
3-2數位濾波器-20
3-3時頻分析種類-21
3-4快速峰度譜(Fast Kurtogram)-23
3-5總體經驗模態分解法(Ensemble Empirical Mode Decomposition, EEMD)-26
3-6包絡線頻譜分析-26
第四章 實驗數據分析-28
4-1故障訊號案例分析-28
4-1-1風力發電機軸承與齒輪箱特徵頻率-30
4-1-2使用快速譜峰度法分析-32
4-1-3使用EEMD分析-39
4-1-4小結與討論-46
4-2 核研所風機實測數據分析-47
4-2-1風力發電機規格-47
4-2-2風力發電機特徵頻率-49
4-2-3風力發電機量測數據分析-50
4-2-4快速譜峰度法分析-70
4-2-5小結與討論-78
第五章 結論與未來展望-81
5-1結論-81
5-2未來展望-82
參考文獻-84
參考文獻

[1] McFaddent, P. D. and Smith, J. D., 1984, “Model for the vibration produced by a signal point defect in a rolling element bearing”, Journal of Sound and Vibration, Vol. 96, Issue 1, pp.69-82.
[2] Patil, M. S., Mathew, J., Rajendrakumar, P. K., and Desai, S., 2012, “A theoretical model to predict the effect of localized defect on vibrations associated with ball bearing, ” International Journal of Mechanical Sciences, Vol.52, pp.1193-1201.
[3] Petersen, D., Howard, C., Sawalhi N., Ahmadi A. M., and Singh, S., 2015, “Analysis of bearing stiffness variations, contact forces and vibrations in radially loaded double row rolling element bearings with raceway defects”,Mechanical Systems and Signal Processing, Vol.50-51, pp.139-160.
[4] Ghalamchi, B., Sopanen, J., and Mikkola, A., 2016, “Modeling and dynamic analysis of spherical roller bearing with localized defects: analytical formulation to calculate defect depth and Stiffness”, Hindawi Publishing Corporation Shock and Vibration,Vol. 2016, Article ID 2106810, 11 pages.
[5] Harris, T. A. , and Kotzalas M. N.,2006, Rolling Bearing Analysis-essential concepts of bearing technology, Taylor & Francis, New York.
[6] Harris, T. A., Kotzalas M. N., 2006, Rolling Bearing Analysis-advanced concepts of rolling technology ,Taylor & Francis, 2006, New York.
[7] Rai, A., and Upadhyay, S. H., 2016, “A review on signal processing techniques utilized in the fault diagnosis of rolling element bearings”, Tribology International, Vol.96, pp.289-306.
[8] Randall, R. B. and Antoni, J., 2011, “Rolling element bearing diagnostics-a tutorial”, Mechanical Systems and Signal Processing, Vol.25, pp.485-520.

[9] Antoni, J., 2006, “The spectral kurtosis: a useful tool for characterizing non-stationary signals”, Mechanical Systems and Signal Processing, Vol.20 , pp.282-307.
[10] Randall, R. B. and Antoni J., 2006, “The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines,” Mechanical Systems and Signal Processing, Vol.20 , pp.308-331.
[11] Antoni, J., 2007, “Fast computation of the kurtogram for the detection of transient faults”,Mechanical Systems and Signal Processing, Vol.21, pp.108-124.
[12] Sawalhi, N., Randall, R.B., and Endo, H., 2007, “The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis”, Mechanical Systems and Signal Processing, Vol.21, pp.2616-2633.
[13] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C., Liu, H. H., 1998, “The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis”, Proceeding of the Royal Society London, Vol.454, pp.903-995.
[14] Yu, D., Cheng, J. and Yang, Y., 2003, “Application of EMD method and Hilbert Spectrum to the diagnosis of roller bearing”, Mechanical Systems and Signal Processing, Vol.19, pp.259-270.
[15] Cheng, J., Yu, D., and Yang, Y., 2006, “A fault diagnosis approach for roller bearings based on EMD method and AR model”, Mechanical Systems and Signal Processing, Vol.20, pp.350-362.
[16] Dong, G. and Chen, J., 2012, “Noise resistant time frequency analysis and application in fault diagnosis of rolling element bearings”, Mechanical Systems and Signal Processing, Vol.33, pp. 212-236.
[17] Klein, R., Masad, E., Rudyk, E., and Winkler, I., 2014, “Bearing diagnostics using image processing methods”, Mechanical Systems and Signal Processing, Vol.45, pp.105-113.

[18] Li, C., Sanchez, V., Zurita G., Lozada M. C., and Cabrera, D., 2016, “Rolling element bearing defect detection using the generalized synchrosqueezing transform guided by time-frequency ridge enhancement”, ISA Transactions, Vol.60, pp.274-284.
[19] Li, L., Qu, L., and Liao, X., 2007, “Haar wavelet for machine fault diagnosis Haar wavelet for machine fault diagnosis”, Mechanical Systems and Signal Processing, Vol.21, pp.1773-1786.
[20] Su, W., Wang, F., Zhu, H., Zhang, Z., and Guo, Z., 2010, “Rolling element bearing faults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement”, Mechanical Systems and Signal Processing, Vol. 24, pp.1458-1472.
[21] Li, H., Zhang, Y., and Zheng, H., 2011, “Application of Hermitian wavelet to crack fault detection in gearbox”, Mechanical Systems and Signal Processing, Vol.25, pp.1353-1363.
[22] Borghesani, P., Pennacchi, P., Randall, R. B., Sawalhi, N., and Ricci, R., 2013, “Application of cepstrum pre-whitening for the diagnosis of bearing faults under variable speed conditions”, Mechanical Systems and Signal Processing ,Vol.36 ,pp.370-384.
[23] Barszcz, T. and Jablonski, A.,2011, “novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram”, Mechanical Systems and Signal Processing, Vol.25 , pp.431-451.
[24] Mishra, C., Samantaray, K., and Chakraborty, G., 2016, “Rolling element bearing defect diagnosis under variable speed operation through angle synchronous averaging of wavelet de-noised estimate”, Mechanical Systems and Signal Processing, Vol.72-73, pp.206-222.
[25] Abboud, D., Antoni, J., Eltabach, M., and Zieba, S. S., 2015, “Anglentime cyclostationarity for the analysis of rolling element bearing vibrations”, Measurement , Vol.75, pp. 29-39.
[26] Ming, Y., Chen, J., and Dong, G., 2011, “Weak fault feature extraction of rolling bearing based on cyclic Wiener filter and envelope spectrum”, Mechanical Systems and Signal Processing, Vol.25, pp. 1773-1785.

[27] Singh, S., Howard, C. Q., and Hansen, C. H., 2015, “An extensive review of vibration modelling of rolling element bearings with localised and extended defects”, Journal of Sound and Vibration, Vol.357, pp.300-330.
[28] 王彬,2012,Matlab 數位訊號處理,五南圖書出版社,台北市。
[29] Cooley, J. W. and Tukey, J. W., 1965, “An algorithm for the machine calculation of complex Fourier series”, Mathematics of Computation, Vol.19, No.90, pp.297-301.
[30] Pei, S. C. and Ding, J. J., 2007, “Relations between gabor transforms and fractional Fourier transforms and their applications for signal processing”, IEEE Transactions on Signal Processing, Vol.55, NO.10.
指導教授 黃以玫(Yi-Mei Huang) 審核日期 2017-5-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明