博碩士論文 104323038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.133.109.58
姓名 鄭偉諒(Wei-Liang Cheng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 A4032與鑄/鍛Al-1.2Mg-1Si-1Cu合金的機械性質與磨耗特性研究
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究應用鑄造/鍛造成型法生產Al-Mg-Si-Cu合金,並對該合金取代商用渦卷材料A4032的可能性做出初步評估。渦卷的成型受到外型限制難以適用多數的加工法,過去的研究指出,擠型材搭配鍛造成型渦卷的方法得以商用化,而擠型材的尺寸穩定性不佳及高生產成本,使該製程存在改善空間。鑄/鍛件可以彌補上述的缺點,根據過去的成果,鑄造/鍛造成型的Al-1.2Mg-1.0Si-1.0Cu合金可得到媲美擠型材的機械性質,因此本研究將對鑄造/鍛造成型的Al-1.2Mg-1.0Si-1.0Cu合金與商用的渦卷材料A4032合金進行各項性質的比較,並探討該合金成為渦卷材料的適用性。
本研究共採用三組材料進行測試,分別為自行調配成份之Al-1.2Mg-1.0Si-1.0Cu合金、商用A4032 Billet及A4032擠型材,三組材料經過常溫鍛造成型及T6處理後,車製成拉伸試棒,確認材料的常溫拉伸性質達規範要求,才進行後續測試。後續的材料性質測試包括:(1)高溫(200C、350C)拉伸性質、硬度測試;(2)熱膨脹係數測試;(3)磨耗測試。測試結果顯示,鑄造/鍛造成型之Al-1.2Mg-1.0Si-1.0Cu合金在各測試溫度下,皆能得到接近或是優於A4032合金的機械性質,且耐磨耗能力優於A4032擠型材。
摘要(英) Cast/Forging process was used to produce the Al-Mg-Si-Cu alloy in this study. The experimental results were assessed for replacing the commercial alloy AA4032, which was extensively used for making scroll. Though the extruded bar had been widely used in industry, it still has some disadvantages; including cost issue and dimensional stability due to elongated grains. The topic of searching for better material/processes is still open for researchers because the scroll possesses complex shape that is difficult to be fabricated by machining and/or by other processes. The cast/forged Al-1.2Mg-1.0Si-1.0Cu alloy was studied to understand that this alloy can produce adequate mechanical properties to approach AA4032 alloy. This study intends to evaluate the mechanical properties at different temperatures and wear behavior between the extruded A4032 and cast/forge Al-1.2Mg-1.0Si-1.0Cu alloy.
The base materials used in this study including Al-1.2Mg-1.0Si-1.0Cu alloy, A4032 Billet and extruded A4032 bar. The material cubes or bars were prepare to run one pass cold forging by open die with 30-60 % reduction. The samples were removed for running T6 heat treatment. The heat treated samples then machined to be tensile test bars and then tested by tensile testing machine. Tensile properties at RT, 200C and 350C were obtained and analyses. Parts of samples were also prepared for running thermal expansion coefficient test and wear test. Experimental results indicated that the cast/Forged Al-1.2Mg-1.0Si-1.0Cu alloy produced superior tensile strength to other AA4032 sample and yielded appropriate wear resistance comparing with AA4032 alloy.
關鍵字(中) ★ 鑄造/鍛造成型法
★ 高溫機械性質
★ 磨耗
關鍵字(英) ★ Cast/Forging process
★ High temperature tensile properties
★ Wear
論文目次 摘要..........................................................I
Abstract.....................................................II
目錄........................................................III
圖目錄.......................................................VI
表目錄.......................................................XI
第一章 前言..................................................1
第二章 文獻回顧..............................................3
2-1 Al-Si合金之共晶矽與初晶矽簡介.............................3
2-1-1 A4032共晶Al-Si合金......................................4
2-1-2初晶矽及其細化處理(Refinement)...........................5
2-1-3共晶矽及其調質處理(Modification).........................6
2-2 Al-Mg-Si-Cu合金簡介.......................................7
2-2-1 Al-Mg-Si合金............................................7
2-2-2 Al-Mg-Si-Cu合金........................................12
2-3鋁合金渦卷簡介............................................15
2-4鑄造/鍛造製程簡介.........................................16
2-4-1鑄造/鍛造強化機制.......................................18
2-5磨耗簡介..................................................21
2-5-1磨耗概論................................................21
2-5-2磨耗機制................................................21
2-5-3影響鋁合金磨耗行為參數..................................23
2-5-4鋁合金磨耗行為..........................................24
2-6 常溫、高溫拉伸性質簡介...................................30
2-6-1低溫、高溫變形機制......................................30
2-6-2高溫下微結構變化........................................33
2-6-2-1晶粒成長..............................................33
2-6-2-2 Zener Pinning........................................33
2-6-2-3析出物粗化............................................33
2-6-2-4高溫孔穴(Cavitation)形成..............................34
2-6-3鋁合金高溫行為..........................................34
2-6-4真應力-真應變曲線.......................................37
2-6-5氫致破裂(Hydrogen Induced Cracking).....................37
第三章 實驗步驟.............................................39
3-1 實驗材料.................................................39
3-2 實驗設備.................................................40
3-3 實驗步驟.................................................42
3-3-1 材料準備...............................................42
3-3-2 實驗流程...............................................45
第四章 結果與討論...........................................51
4-1常溫、高溫機械性質........................................51
4-1-1拉伸性質及硬度..........................................51
4-1-2金相分析................................................54
4-1-3氫含量分析..............................................61
4-1-4真應力-真應變分析.......................................63
4-1-5 XRD分析................................................66
4-1-6斷面觀察................................................69
4-2 熱膨脹係數...............................................71
4-3 磨耗性質.................................................72
4-3-1材料損失率..............................................72
4-3-2磨耗表面分析............................................72
4-3-3縱剖面分析..............................................76
第五章 綜論.................................................81
第六章 結論.................................................83
參考文獻.....................................................85
附錄.........................................................93
I. 鑄造參數測試.........................................93
II. 熱間閉模鍛造及機械性質...............................98
III. 均質化處理..........................................101
IV. 常溫開模鍛造及機械性質..............................102
參考文獻 1. H. Kamio, T. Yamada, S. Katsumata, H. Hosono, M. Suzuki, “Manufacturing technology of aluminum scrolls by hot forging”, 日本輕金屬協會, Vol.47, No.2, pp. 114-122, (1997).
2. M. Warmuzek, “Aluminum-Silicon casting alloys: Atlas of microfractographs”, ASM International, pp. 1-9, (2004).
3. H. Torabian, J.P. Pathak, S. N. Tiwari, “Wear characteristics of Al-Si alloys”, Wear, Vol.172, pp. 49-58, (1994).
4. 潘永寧,賴易辰,”離心加壓力及熔液處理對於A390過共晶鋁矽合金之顯微組織及耐磨耗性之影響”,碩士論文,(2016)。
5. M. Zamani, “Al-Si cast alloys – microstructure and mechanical properties at ambient and elevated temperature”, Thesis, (2015).
6. J. Piatkowski, R. Wieszala, “Microstructure of AlSi17Cu5 alloy after overheating over liquidus temperature”, Metalurgija 54, Vol.1, pp. 131-134, (2015).
7. C.R. Ho, B. Cantor, “Heterogeneous nucleation of solidification of Si in Al-Si and Al-Si-P alloys”, Acta Metallurgica et Materialia, Vol.43, pp. 3231, (1995).
8. S.G. Shabestari, F. Shahri, “Influence of modification, solidification conditions and heat treatment on the microstructure and mechanical properties of A356 aluminum alloy”, Journal of Materials Science, Vol.39, pp. 2023-2032, (2004).
9. J. Gruzleski, B. Closset, “The Treatment of Liquid Aluminum-Silicon Alloys”, The American Foundrymen’s Society, (1990).
10. 邱弘興,”A390鋁合金之矽型態控制及其與機械性質之關係”,國科會85年研究計劃報告。
11. 日本輕金屬協會,”鋁合金之組織與性質”,pp. 278-279,(1991).
12. L. Zhen, W.D. Fei, S.B. Kang, H.W. Kim, “Precipitation behavior of Al-Mg-Si alloys with high silicon content”, Journal of Materials Science, pp. 1895-1902, (1997).
13. M. Takeda, F. Ohkubo, T. Shirai, K. Fukui, “Precipitation behavior of Al-Mg-Si ternary alloys”, Materials Science Forum, Vol.217-222, pp. 815-820, (1996).
14. D.J. Chakrabarti, D.E. Laughlin, “Phase relations and precipitation in Al-Mg-Si alloys with Cu additions”, Progress in Materials Science, Vol.49, pp. 389-410, (2004).
15. C. Ravi, C. Wolverton, “First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates”, Acta Materialia, Vol.52, pp. 4213-4227 , (2004).
16. G.A. Edwards, K. Stiller, G.L. Dunlop, M.J. Couper, “The precipitation sequence in Al-Mg-Si alloys”, Acta Materialia, Vol.46, pp. 3893-3904, (1998).
17. A.M.A. Mohamed, A.M. Samuel, F.H. Samuel, H.W. Doty, “Influence of additives on the microstructure and tensile properties of near-eutectic Al–10.8% Si cast alloy”, Materials and Design 30, pp. 3943-3957, (2009).
18. B. Ihsan, “Thermochemical data of pure substances”, Weinheim, (1995).
19. T. Yabe, M. Enoki, H. Ohtani, “Thermodynamic analysis of phase separation in the Al-Cu binary fcc phase”, J. Japan Inst. Met. Mater., Vol.80, pp. 370-378, (2016).
20. K. Matsuda, S. Ikeno, Y. Uetani, T. Sato, “Metastable phases in an Al-Mg-Si alloy containing copper”, Metallurgical and Materials Transactions A, Vol.32, pp. 1293-1299, (2001).
21. K. Matsuda, D. Teguri, Y. Uetani, T. Sato, S. Ikeno, “Cu-segregation at the Q’/α-Al interface in Al-Mg-Si-Cu alloy”, Scripta Materialia 47, pp. 833-837, (2002).
22. Carrier Corporation, “High efficiency compression for commercial and industrial applications”, (2004).
23. K. Nakamura, Y. Ohshima, H. Kamio, “Scroll made of aluminum alloy”, US 4908077 A, (1990).
24. Y. Tang, C. Yang, Y. Chang, “study of designing 35RT aluminum alloy scroll compressor”, International compressor engineering conference at Purdue, (2006).
25. I.M. Park, I. Choi, Y. Park, “Development of light weight Al scroll compressor for car air conditioner”, Materials Science Forum, pp. 149-152, (2004).
26. Y.Y. Zong, L. Chen, Z.G. Zhao, D.B. Shan, “Flow Lines, microstructure, and mechanical properties of flow control formed 4032 Aluminum alloy”, Materials and Manufacturing Processes, pp. 466-471, (2014).
27. S. Fujikawa, Y. Kitamura, S. Shimamura, “Application of numerical methods for the aluminum casting/forging process”, Journal of Materials processing Technology, Vol.27, pp. 93-110, (1991).
28. S. Dedov, G. Lehmann, R. Kawalla, “Application of Combined Casting-Forging Process for Production of Durable Lightweight Aluminum Parts”, Key Engineering Materials, Vol. 554-557, pp. 264-273, (2013).
29. T. Nishimura, “Cast and forge process”, 日本輕金屬協會, Vol. 47, pp. 587-590, (1997).
30. Y.Y. Zong, D.B. Shan, Z. Shi, “Study on hot deformation behavior and constitutive equation of 4032 Al alloy”, Materials Research Innovations, Vol. 15, pp. 470-474, (2010).
31. D.K. Dwivedi, “Adhesive wear behavior of cast aluminum-silicon alloys: Overview”, Materials and Design 31, pp. 2517-2531, (2010).
32. M. Elmadagli, T. Perry, A.T. Alpas, “A parametric study of the relationship between microstructure and wear resistance of Al-Si alloys”, Wear 262, pp. 79-92, (2007).
33. J.M. Lee, S.B. Kang, S.C. Yoon, “Role of the primary silicon particle on the dry sliding wear of hypereutectic aluminum-silicon alloy A390”, Metals and Materials, Vol. 5, pp. 357-362, (1999).
34. M. Dienwiebel, K. Pohlmann, M. Scherge, “Origins of the wear resistance of AlSi cylinder bore surfaces studies by surface analytical tools”, Tribology International, Vol. 40, pp. 1597-1602, (2007).
35. J.F. Su, ”Characterization of fracture and debonding of silicon particles in aluminum silicon alloys”, Thesis, (2009).
36. M. Chen, X.M. Burany, T.A. Perry, A.T. Aplas, ”Micromechanisms and mechanics of ultra-mild wear in Al-Si alloys”, Acta Materialia, Vol. 56, pp. 5605-5616, (2008).
37. B.S. Shabel, D.A. Granger, W.G. Truckner, “Friction and wear of aluminum-silicon alloys”, ASM International, Vol. 18, pp. 785-794, (1992).
38. L. Lasa, J.M. Rodriguex-Ibabe, “Wear behavior of eutectic and hypereutectic Al-Si-Cu-Mg casting alloys tested against a composite brake pad”, Materials Science and Engineering A363, pp. 193-202, (2003).
39. A.H. Ardakan, X. Liu, F. Ajersch, X.G. Chen, ”Wear behavior of hypereutectic Al-Si-Cu-Mg casting alloys with variable Mg contents”, Wear 269, pp. 684-692, (2010).
40. K. Varalakshmi, V. Jayaram, S.K. Biswas, ”Ultra mild wear in lubricated tribology of aluminum alloy”, Journal of Tribology, Vol. 129, pp. 942-951, (2007).
41. H.J. Frost, M.F. Ashby, “Deformation-mechanism maps: the plasticity and creep of metal and ceramics”, Pergamon Pr, (1982).
42. O.D. Sherby, P.M. Burke, “Mechanical behavior of crystalline solids at elevated temperature”, Progress in Materials Science, Vol. 13, pp. 323-390, (1968).
43. D. Asheland, “The science and engineering of materials”, Boston, MA: PWS, (1994).
44. F.R.N. Nabarro, “Dislocation in solids”, North Holland, (1979).
45. T.H. Courtney, “Mechanical behavior of materials”, McGraw-Hill Science/Engineering/Math, (1999).
46. M. Cabibbo, “Microstructure strengthening mechanisms in different equal channel angular pressed aluminum alloys”, Materials Science & Engineering A, pp. 413-432, (2013).
47. D. Li, A. Ghosh, “Tensile deformation behavior of aluminum at warm forming temperature”, Materials Science and Engineering A, Vol.352, pp. 279-286, (2003).
48. R. Kaibyshev, F. Musin, D. Gromov, T.G. Nieh, D.R. Lesuer, “Grain refinement and superplastic behaviour of a modified 6061 aluminium alloy”, Materials Science and Technology, Vol. 19, pp. 483-490, (2003).
49. M. Brosnam, S. Shivkumar, “Elevated temperature tensile properties and fracture behavior of A356 castings”, American Foundary Society Transactions, Vol. 13, pp. 727-737, (1996).
50. J.A. Lee, “High strength and wear resistant Aluminum alloys for high temperature applications”, NASA-Marshall Space Flight Center.
51. P. Seperband, R. Mahmudi, F. Khomamizadeh, “Effect of Zr addition on the aging behavior of A319 aluminum cast alloy”, Scripta Materials, Vol. 52, pp. 253-257, (2005).
52. J.G. Kaufman, “Properties of aluminum alloy: Tensile creep, and fatigue data a high and low temperatures”, ASM International, pp. 714-724, (1999).
53. Zamani, Mohammadreza, “High temperature tensile deformation behavior and failure mechanisms of an Al-Si-Cu-Mg cast alloy – The microstructural scale effect”, Journal & Design, Vol. 86C, pp. 361-370, (2015).
54. C. Ravi, C. Wolverton, “Comparison of thermodynamic databases for 3xx and 6xxx aluminum alloys”, Metallurgical and Materials Transactions A, Vol. 36, pp. 2013-2023, (2005).
55. 劉永輝,張佩芬,”金屬腐蝕學原理”,航空工業出版社,pp. 124-150, (1993).
56. D. Nguyen, A.W. Thompson, I.M. Bernstein, “Microstructure effects on hydrogen embrittlement in high purity 7075 aluminum alloys”, Acta Metall., Vol. 35, pp. 2417-2425, (1987).
57. D.A. Hardwick, A.W. Thompson, I.M. Bernstein, “The effect of copper content and microstructure on the hydrogen embrittlement of Al-6Zn-2Mg alloys”, Metall. Trans., Vol. 14, pp. 2517-2526, (1983).
58. G.M. Scamans, R. Alani, P.R. Swann, “Pre-exposure embrittlement and stress corrosion failure in Al-Zn-Mg alloys”, Corr. Sci., Vol.16, pp. 443-459, (1976).
59. G. Rajaram, S. Kumaran, T.S. Rao, “High temperature tensile and wear behavior of aluminum silicon alloy”, Materials Science and Engineering A, pp. 247-253, (2010).
60. 施登士,魏千竣,”鑄/鍛鋁合金的微結構對機械性質的影響”,碩士論文,(2016).
61. T.S. Shih, Z.B. Liu, “Thermally-formed oxide on aluminum and magnesium”, Materials Transactions, Vol. 47, pp. 1347-1353, (2006).
62. A.J.C. Wilson, “The thermal expansion of aluminum from 0C to 650C”, IOP Science, pp. 235-244, (1940).
63. Virginia Semiconductor, Inc, “Basic mechanical and thermal properties of silicon”.
64. M. Imai, Y. Isoda, H. Udono, “Thermal expansion of semiconducting silicides β-FeSi2 and Mg2Si”, Intermetalics, pp. 75-80, (2015).
65. J.B. Ferguson, H.F. Lopez, K. Cho, C.S. Kim, “Temperature effects on the tensile properties of precipitation-hardened Al-Mg-Cu-Si alloys”, Metals, Vol.6, (2016).
66. T.S. Shih, H.S. Yong, W.N. Hsu, “Effects of cryogenic forging and anodization on the mechanical properties and corrosion resistance of AA6066-T6 aluminum alloys”, Metals, (2016).
67. L. Hong, Z. Gang, L.C. Ming, Z. Liang, “Effects of magnesium content on phase constituents of Al-Mg-Si-Cu alloys”, Transactions of Nonferrous Metals Society of China, Vol. 16, pp. 376-381, (2006).
68. S.K. Panigrahi, R. Jayaganthan, V. Pancholi, “Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy”, Materials and Design, Vol. 30, pp. 194-1901, (2009).
69. G.M. Nowotnik, “Intermetallic phase examination in cast AlSi5Cu1Mg and AlCu4Ni2Mg2 aluminum alloys in as-cast and T6 condition”, Recent Trends in Processing and Degradation of Aluminum Alloys, p. 516, (2011).
70. M. Yildirm, D. Ozyurek, “The effect of Mg amount on the microstructure and mechanical properties of Al-Si-Mg alloys”, Materials and Design, Vol. 51, pp. 767-774, (2013).
71. L.P. Troeger, E.A. Starke Jr, “Particle-stimulated nucleation of recrystallization for grain-size control and super-plasticity in an Al-Mg-Si-Cu alloy”, Materials Science and Engineering A, Vol. 293, pp. 19-29, (2000).
72. H.M.M. Prieto, C.G.G. Reyes, C.D.G. Esparza, J.A. Santillan, M.C.M. Orozco, R.M. Sanchez, “Evolution of microstructure in Al-Si-Cu system modified with a transition element addition and its effect on hardness”, Materials Research, Vol. 19, pp. 59-66, (2016).
73. J.G. Jung, S.H. Lee, J.M. Lee, Y.H. Cho, S.H. Kim, W.H. Yoon, “Improved mechanical properties of near-eutectic Al-Si piston alloy through ultrasonic melt treatment”, Materials Science & Engineering A 669, pp. 187-195, (2016).
74. A. Dhal, S. Panigrahi, M.S. Shunmugam, “Precipitation phenomena, thermal stability and grain growth kinetics in an ultra-fine grained Al 2014 alloy after annealing treatment”, Journal of Alloys and Compounds 649, pp. 229-238, (2015).
75. Y. Li, Y. Wu, X. Liu, “Supportive strengthening role of Cr-rich phase on Al-Si multicomponent piston alloy at elevated temperature”, Materials Science and Engineering A 528, pp. 4427-4430, (2011).
76. G.H.G. Elizondo, S.A. Alkahtani, A.M. Samuel, F.H. Samuel, “Role of Ni and Zr in preserving the strength of A354 aluminum alloy at high temperature”, The Minerals, Metals & Society, pp. 305-314, (2014).
77. G.E. Dieter, “Fractography”, Mechanical Metallurgy, SI Metric Edition, pp. 254-256, (1988).
78. ASM International, “ASM Ready Reference: Thermal properties of Metals – Thermal Expansion”, pp. 10-16.
79. N.P. Suh, “The delamination theory of wear”, Wear 25, pp. 111-124, (1973).
指導教授 施登士(Teng-Shih Shih) 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明