博碩士論文 104324011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:13.59.217.1
姓名 賴瑋崡(Wei-Han Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 藍寶石基板表面形貌影響發光二極體光型之研究
(Morphological Effect of Patterned Sapphire Substrate on Light Radiation Pattern of Light Emitting Diode)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討圖案化的藍寶石基板表面形貌對LED的光型的影響。通過濕式蝕刻工藝製造了三個圖案化藍寶石基板。使用MOCVD在三個圖案化藍寶石基板上製造GaN-LED(NPSS I,NPSS II和NPSS III LED)。LED與YAG螢光粉一起封裝為白光LED。LED光型的測量顯示出藍寶石基板表面形貌對光型具有依賴性。NPSS I,NPSS II和NPSS III LED的發散角估計分別為42.5º,38º,32º。在NPSS I LED的白光封裝中,封裝了1.5 mm,1.7 mm,2.0 mm螢光粉半球的白光LED的平均色溫分別為6732 K,6283 K和6971K。同時其空間色偏分別為710 K,2131 K和4222K。螢光粉層中的光路徑長度和LED光形是影響白光LED空間色偏的關鍵。在二維分析中,建立了入射角變化模型以預測光從任何方向入射的入射角的變化,並預測將發生全內反射的入射角的範圍。同時還構建了光穿透圖案化藍寶石基板的特性模型,以描述入射到藍角區域的光的入射角變化,該藍色區域將光導回到GaN層並傳播到GaN/air界面。通過此模型當光線抵達GaN/air界面的入射角是可預測的,並且還表明,進入藍角區域的光既不能透射LED上表面,也不能透射進入藍寶石層。這導致側壁出光的減少。通過蒙地卡羅光追跡法,可以模擬光型。模擬結果表明,隨著圖案斜面角和圖案覆蓋率的增加,光型的高強度區域變得更加集中。另外,也模擬了LED在上表面發射和側壁發射中的輸出功率。側壁發射功率比隨著圖案斜面角和圖案覆蓋率的增加而減小。隨著側壁發射功率減小,光型變得更加集中並且使光形的發散角減小。三維模擬結果可與對應二維分析和實驗結果。
摘要(英) The morphological effect of the patterned sapphire substrate on the light radiation pattern of LED is investigated. Three patterned sapphire substrates are fabricated by the wet-etching process. The GaN-LEDs were processed on the three-patterned sapphire wafers (NPSS I, NPSS II, and NPSS III) by using MOCVD. The LED chips were packaged as white-light LEDs with YAG phosphors. The light radiation pattern of LEDs is measured and shows a dependence on patterned sapphire morphology. The divergence angle of the NPSS I, NPSS II, and NPSS III LED are estimated to be 42.5º, 38º, 32º, respectively. In the white-light package of NPSS I LED, the average CCT of white-light LED with 1.5 mm, 1.7 mm, 2.0 mm phosphor dome is 6732 K, 6283 K, and 6971 K, respectively. The ACCTD of white-light LED with 1.5 mm, 1.7 mm, 2.0 mm phosphor dome is 710 K, 2131 K, and 4222 K, respectively. The light path length in the phosphor layer and the light radiation pattern are the keys to affect the local CCT of the white-light LED.
In the 2-D analysis, an incident angle change model is built to predict the change of incident angle of light from any direction, and also the range of incident angle in which the total internal reflection will happen. The model of the characteristic of light transmitting the patterned sapphire is also built to describe the incident angle change of the light which travels into the blue angle region which guides the light back into the GaN layer and travels to the GaN/air interface. The incident angle to the GaN/air interface is predictable, and also shows that the light travel into the blue angle region can neither transmit the LED top surface nor transmit into the sapphire cavity. This results in a decrease of the sidewall emission.
By the Monte Carlo ray-tracing method, the light radiation pattern can be simulated. The simulation result shows that the high-intensity region of the light radiation pattern becomes more centralized as the dihedral angle and pattern coverage increases. The output power of the LED chip in top surface emission and sidewall emission are also simulated. The sidewall emission power ratio decreases as the pattern dihedral angle and the pattern coverage increases. As the sidewall emission power decreases, the light radiation pattern becomes more centralized and makes the divergence of the light radiation pattern decrease. The simulation result can correspond to the 2-D analysis and the experiment results.
關鍵字(中) ★ 發光二極體
★ 圖案化藍寶石基板
★ 光型
★ 濕式蝕刻
關鍵字(英)
論文目次 中文摘要……………………………………………………………………………….I
Abstract.........................................................................................................................II
Table of contents……………………………………………………………………..IV
List of figures………………………………………………………………………...VI
List of table………………………………………………………………………..X
Chapter 1: Introduction………………………………………………………………..1
1.1 GaN Light-emitting diode……………………………………………………1
1.2 White-light LED……………………………………………………………..5
1.3 The performance of LED…………………………………………………….7
1.4 Increasing IQE by improving thin-film quality……………………………....8
1.5 Inhibition of LEE in LED film……………………………………………….9
1.6 Patterned sapphire substrate (PSS)…………………………………………..11
Chapter 2: Motivation………………………………………………………………...15
Chapter 3: Experiment and Result……………………………………………………17
3.1 Fabrication of patterned sapphire substrate…………………………………17
3.2 The MOCVD epitaxy process………………………………………………19
3.3 The LED package and measurement………………………………………..19
3.4 The light radiation pattern and the white-light package……………………20
Chapter 4: The 2D analysis and modeling of pattern dihedral angle effect on light radiation pattern…………………………………………………………24
4.1 The incident angle change model……………………………………………24
4.2 The model of the characteristic of light transmitting the patterned sapphire...28
Chapter 5: The simulation of morphological effect on light radiation pattern……….36
5.1 The simulation method of LED light radiation pattern……………………36
5.2 The 3D model reconstruction of LED………………………………………37
5.3 The simulation result of LED light radiation pattern………………………..38
Chapter 6: Summary………………………………………………………………….53
References……………………………………………………………………………55
參考文獻 [1] M. H. Crawford, “LEDs for solid-state lighting: performance challenges and recent advances.” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, May 2009, pp. 1028-1040.
[2] S. Pimputkar, J. S. Speck, S. P. DenBaars, S. Nakamura, “Prospects for LED lighting.” Nature photonics, Vol. 3, April 2009, pp. 180-182.
[3] D. Singh, C. Basu, M. Meinhardt-Wollweber, B. Roth, “LEDs for energy efficient greenhouse lighting.” Renewable and Sustainable Energy Reviews, Vol 49, September 2015, pp. 139-147.
[4] J. Cho, J. H. Park, J. K. Kim, E. F. Schubert, “White light‐emitting diodes: History, progress, and future.” Laser & photonics reviews, Vol. 11, March 2017, 1600147.
[5] T. Wu, C. W. Sher, Y. Lin, C. F. Lee, S. Liang, Y. Lu, S. W. Huang Chen, W. Guo, H. C. Kuo, Z. Chen, “Mini-LED and micro-LED: promising candidates for the next generation display technology.” Applied Sciences, Vol. 8, September 2018, 1557.
[6] S. Y. Hui, S. N. Li, X. H. Tao, W. Chen, W. M. Ng, “A novel passive offline LED driver with long lifetime.” IEEE Transactions on Power Electronics, Vol. 25, April 2010, pp. 2665-2672.
[7] M. Y. Tsai, C. H. Chen, W. L. Tsai, “Thermal resistance and reliability of high-power LED packages under WHTOL and thermal shock tests.” IEEE Transactions on Components and Packaging Technologies, Vol. 33, November 2010, pp. 738-746.
[8] S. M. Pawson, M. F. Bader, “LED lighting increases the ecological impact of light pollution irrespective of color temperature.” Ecological Applications, Vol. 24, October 2014, pp. 1561-1568.
[9] I. Akasaki, H. Amano, M. Kito, K. Hiramatsu, “Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN pn junction LED.” Journal of luminescence, Vol. 48-49, January-February 1991, pp. 666-670.
[10] R. N. Ghosh, B. Griffing, J. M. Ballantyne, “Monolithic integration of GaAs light‐emitting diodes and Si metal‐oxide‐semiconductor field‐effect transistors.” Applied physics letters, Vol. 48, February 1986, pp. 370-371.
[11] J. H. Kang, M. Ebaid, D. K. Jeong, J. K. Lee, and S. W. Ryu, “Efficient energy harvesting of a GaN p–n junction piezoelectric generator through suppressed internal field screening.” Journal of Materials Chemistry C, Vol. 4, March 2016, pp. 3337-3341.
[12] M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek Jr, “Time-resolved photoluminescence measurements of InGaN light-emitting diodes.” Applied Physics Letters, Vol. 73, December 1998, pp. 3550-3552.
[13] S. H. Chao, L. H. Yeh, R. T. Wu, K. Kawagishi, S. C. Hsu, “Novel patterned sapphire substrates for enhancing the efficiency of GaN-based light-emitting diodes.” RSC Advances, Vol. 10, April 2020, pp. 16284-16290.
[14] W. A. Melton, J. I. Pankove, “GaN growth on sapphire.” Journal of crystal growth, Vol. 178, June 1997, pp. 168-173.
[15] R. H. Horng, C. C. Chiang, H. Y. Hsiao, X. Zheng, D. S. Wuu, H. I. Lin, “Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders.” Applied Physics Letters, Vol. 93, September 2008, 111907.
[16] T. Kawabata, T. Matsuda, and S. Koike, “GaN blue light emitting diodes prepared by metalorganic chemical vapor deposition.” Journal of applied physics, Vol. 56, October 1984, pp. 2367-2368.
[17] S. Kamiyama, M. Iwaya, N. Hayashi, T. Takeuchi, H. Amano, I. Akasaki, Y. Watanabe, S. Kaneko, N. Yamada, “Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure.” Journal of crystal growth, Vol. 223, February 2001, pp. 83-91.
[18] H. T. Lin, C. H. Tien, C. P. Hsu, R. H. Horng, “White thin-film flip-chip LEDs with uniform color temperature using laser lift-off and conformal phosphor coating technologies.” Optics express, Vol. 22, December 2014, pp. 31646-31653.
[19] Cree achieves 186 lm/W LED, 98.3 lm/W LED streetlight, December 3rd, 2009, https://www.ledsmagazine.com/specialty-ssl/backlighting-signs-displays/article/16698876/cree-achieves-186-lmw-led-983-lmw-led-streetlight.
[20] Cree reports R&D result of 231 lm/W efficacy for white LED, May 10th, 2011, https://www.ledsmagazine.com/manufacturing-services-testing/substrates-wafers/article/16697682/cree-reports-rd-result-of-231-lmw-efficacy-for-white-led.
[21] L. Chen, C. C. Lin, C. W. Yeh, R. S. Liu, “Light Converting Inorganic Phosphors for White Light-Emitting Diodes.” Materials, Vol. 3, March 2010, pp. 2172-2195.
[22] Y. Muramoto, M. Kimura, S. Nouda, “Development and future of ultraviolet light-emitting diodes: UV-LED will replace the UV lamp.” Semiconductor Science and Technology, Vol. 29, June 2014, pp. 084004.
[23] S. Muthu, F. J. P. Schuurmans, M.D. Pashley, “Red, green, and blue LEDs for white light illumination.” IEEE Journal of selected topics in quantum electronics, Vol. 8, August 2002, pp. 333-338.
[24] K. S. Yoshinori Shimizu, Yasunobu Noguchi, Toshio Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material” U.S. Patent No. 5,998,925, December 1999.
[25] J. H. Lin, S. J. Huang, Y. K. Su, K. W. Huang, “The improvement of GaN-based LED grown on concave nano-pattern sapphire substrate with SiO2 blocking layer.” Applied Surface Science, Vol. 354, November 2015, pp. 168-172.
[26] T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, S. Sakai, “Direct evidence that dislocations are non-radiative recombination centers in GaN.” Japanese Journal of Applied Physics, Vol. 37, April 1998, L398.
[27] E. Matioli, C. Weisbuch, “Active Region Part A. Internal Quantum Efficiency in LEDs.” III-Nitride Based Light Emitting Diodes and Applications, Topics in Applied Physics, Vol. 126, Springer, Dordrecht, 2013, pp. 121-152.
[28] H. J. Queisser, “Recombination at deep traps.” Solid-State Electronics, Vol. 21, November-December 1978, pp. 1495-1503.
[29] A. Y. Kim, W. Götz, D. A. Steigerwald, J. J. Wierer, N. F. Gardner, J. Sun, S.A. Stockman, P.S. Martin, M.R. Krames, R.S. Kern, F. M. Steranka, “Performance of High‐Power AlInGaN Light Emitting Diodes.” Physica Status Solidi (a), Vol. 188, November 2001, pp. 15-21.
[30] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, R. H. Horng, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template.” Applied Physics Letters, Vol. 89, October 2006, 161105.
[31] C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. C. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, S. J. Cheng, “Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template.” Applied Physics Letters, Vol. 93, August 2008, 081108.
[32] N. Okada, Y. Inomata, H. Ikeuchi, S. Fujimoto, H. Itakura, S. Nakashima, R. Kawamura, K. Tadatomo, “Characterization of high-quality relaxed flat InGaN template fabricated by combination of epitaxial lateral overgrowth and chemical mechanical polishing.” Journal of Crystal Growth, Vol. 512, April 2019, pp. 147-151.
[33] P. Mao, F. Sun, H. Yao, J. Chen, B. Zhao, B. Xie, M. Han, G. Wang, “Extraction of light trapped due to total internal reflection using porous high refractive index nanoparticle films.” Nanoscale, Vol. 6, April 2014, pp. 8177-8184.
[34] M. Ma, F. W. Mont, X. Yan, J. Cho, E. F. Schubert, G. B. Kim, C. Sone, “Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes.” Optics Express, Vol. 19, September 2011, pp. A1135-A1140.
[35] M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, T. D. Moustakas, “Thermal expansion of gallium nitride.” Journal of Applied Physics, Vol. 76, October 1994, pp. 4909-4911.
[36] A. D. Bykhovski, B. L. Gelmont, M. S. Shur, “Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices.” Journal of Applied Physics, Vol. 81, May 1997, pp. 6332-6338.
[37] T. Sano, T. Doi1, S. A. Inada, T. Sugiyama, Y. Honda, H. Amano, T. Yoshino, “High internal quantum efficiency blue-green light-emitting diode with small efficiency droop fabricated on low dislocation density GaN substrate.” Japanese Journal of Applied Physics, Vol. 52, August 2013, 08JK09.
[38] C. He, W. Zhao, K. Zhang, L. He, H. Wu, N. Liu, S. Zhang, X. Liu, Z. Chen, “High-quality GaN epilayers achieved by facet-controlled epitaxial lateral overgrowth on sputtered AlN/PSS templates.” ACS Applied Materials & Interfaces, Vol. 9, November 2017, pp. 43386-43392.
[39] J. Y. Cho, J. S. Kim, Y. D. Kim, H. J. Cha, H. Lee, “Fabrication of oxide-based nano-patterned sapphire substrate to improve the efficiency of GaN-based of LED.” Japanese Journal of Applied Physics, Vol. 54, February 2015, 02BA04.
[40] H. Liu, Y. Li, S. Wang, L. Feng, H. Xiong, X. Su, F. Yun, “Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates.” AIP Advances, Vol. 6, July 2016, 075016.
[41] S. Zhou, Z. Lin, H. Wang, T. Qiao, L. Zhong, Y. Lin, W. Wang, W. Yang, G. Li, “Nucleation mechanism for epitaxial growth of GaN on patterned sapphire substrates.” Journal of alloys and compounds, Vol. 610, October 2014, pp. 498-505.
[42] D. S. Kim, W. S. Jeong, H. Ko, J. S. Lee, D. Byun, “Pretreatment by selective ion-implantation for epitaxial lateral overgrowth of GaN on patterned sapphire substrate.” Thin Solid Films, Vol. 641, November 2017, pp. 2-7.
[43] T. Jiang, S. Xu, J. Zhang, P. Li, J. Huang, Z. Ren, M. Fu, J. Zhu, H. Shan, Y. Zhao, Y. Hao, “Spatial distribution of crystalline quality in N-type GaN grown on patterned sapphire substrate.” Optical Materials Express, Vol. 6, June 2016, pp. 1817-1826.
[44] Y. Zhang, J. Zhang, Y. Zheng, C. Sun, K. Tian, C. Chu, Z. Zhang, J. Liu, W. Bi, “The Effect of Sapphire Substrates on Omni-Directional Reflector Design for Flip-Chip Near-Ultraviolet Light-Emitting Diodes.” IEEE Photonics Journal, Vol. 11, January 2019, pp. 1-9.
[45] C. C. Sun, Y. Y. Chang, C. Y. Lu, H. Y. Lin, Z. Y. Ting, T. H. Yang, T. Y. Chung, Y. W. Yu, “Spatial-coded phosphor coating for high-efficiency white LEDs.” IEEE Photonics Journal, Vol. 9, May 2017, pp. 1-9.
[46] C. F. Lai, J. S. Li, C. W. Shen, “High-efficiency robust free-standing composited phosphor films with 2D and 3D nanostructures for high-power remote white LEDs.” ACS Applied Materials & Interfaces, Vol. 9, January 2017, pp. 4851-4859.
[47] N. D. Quoc Anh, M. F. Lai, H. Y. Ma, H. Y. Lee, “Enhancing of correlated color temperature uniformity for multi-chip white-light LEDs by adding SiO2 in phosphor layer.” Journal of the Chinese Institute of Engineers, Vol. 38, 2015, pp. 297-303.
[48] X. Mou, N. Narendran, Y. Zhu, J. P. Freyssinier, “Evaluation of OLED and edge-lit LED lighting panels.” Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems, Vol. 9954, International Society for Optics and Photonics, September 2016, 995403.
[49] S. W. Huang, C. C. Chang, H. Y. Lin, X. F. Li, Y. C. Lin, C. Y. Liu, “Fabrication of nano-cavity patterned sapphire substrate using self-assembly meshed Pt thin film on c-plane sapphire substrate.” Thin Solid Films, Vol. 628, April 2017, pp. 127-131.
[50] L. Zhang, F. Xu, J. Wang, C. He, W. Guo, M. Wang, B. Sheng, L. Lu, Z. Qin, X. Wang, B. Shen, “High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography.” Scientific reports, Vol. 6, November 2016, 35934.
[51] S. X. Jiang, Z. Z. Chen, X. Z. Jiang, X. X. Fu, S. Jiang, Q. Q. Jiao, T. J. Yu, G. Y. Zhang, “Study on the morphology and shape control of volcano-shaped patterned sapphire substrates fabricated by imprinting and wet etching.” CrystEngComm, Vol. 17, February 2015, pp. 3070-3075.
[52] S. W. Huang, Y. J. Wu, H. Y. Lin, S. F. Li, Y. J. Chen, C. Y. Liu, “Etching Three-Dimensional Pattern on Sapphire Substrate by Dynamic Self-Masking Alunogen Compound.” ECS Solid State Letters, Vol. 4, January 2015, pp. R35-R38.
[53] F. Dwikusuma, D. Saulys, T. F. Kuech, “Study on Sapphire Surface Preparation for III-Nitride Heteroepitaxial Growth by Chemical Treatments.” Journal of The Electrochemical Society, Vol. 149, February 2002, pp. G603-G608.
[54] H. Y. Lin, Y. J. Chen, C. C. Chang, X. F. Li, S. C. Hsu, C. Y. Liu, “Pattern-coverage effect on light extraction efficiency of GaN LED on patterned-sapphire substrate.” Electrochemical and Solid-State Letters, Vol. 15, December 2011, pp. H72-H74.
[55] X. F. Li, S. W. Huang, H. Y. Lin, C. Y. Lu, S. F. Yang, C. C. Sun, C. Y. Liu, “Fabrication of patterned sapphire substrate and effect of light emission pattern on package efficiency.” Optical Materials Express, Vol. 5, August 2015, pp. 1784-1791.
[56] C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai, C. Y. Liu, “Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy.” Journal of Solid State Lighting, Vol. 1, November 2014, 19.
[57] T. X. Lee, K. F. Gao, W. T. Chien, C. C. Sun, “Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate.” Optics Express, Vol. 15, May 2007, pp. 6670-6676.
[58] C. C. Sun, S. Y. Tsai, T. X. Lee, “Enhancement of angular flux utilization based on implanted micro pyramid array and lens encapsulation in GaN LEDs.” Journal of Display Technology, Vol. 7, April 2011, pp. 289-294.
[59] T. X. Lee, C. Y. Lin, S. H. Ma, C. C. Sun, “Analysis of position-dependent light extraction of GaN-based LEDs.” Optics Express, Vol. 13, May 2005, pp. 4175-4179.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明