博碩士論文 104324602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.226.166.121
姓名 馬英莎(Inggit Kresna Maharsih)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氣泡於傾斜超疏水表面之運動行為
(Sliding Motion of Liquid Drops on an Inclined Hysteresis-free Surface: Remobilizing Surfactant)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 奈米液滴在極低接觸角遲滯表面上的移動行為已被廣泛地觀測與研究,並利用其優勢發展出微流道系統和其他科技應用。然而,並非所有的極低接觸角表面都可以用於界面活性劑溶液中,因此本論文著重於不同濃度之界面活性劑溶液對於自製低遲滯油填充表面的影響。
將多孔性PTFE止瀉帶拉伸並包覆於載玻片上,再塗布上潤滑油,即可製作出油填充的低遲滯表面。並利用inflation-deflation method和斜板法來驗證此表面具低遲滯的特性。因為它具有此特殊性質,我們選用三種不同的界面活性劑:SDS、DTAB和Triton X-100溶液,計算此三種溶液的液滴在油填充表面上的滑移速度。另外,我們也將油填充表面置放於三種不同的界面活性劑中,計算氣泡在表面下之滑移速度。結果可以發現:不管是液滴還是氣泡,隨著界面活性劑濃度的提高,滑移速度都會降低,原因是液滴在滑移的過程中會改變形狀;氣泡則是除了形狀改變、前投影面積變大的因素外,還會受到Marangoni stress的影響。然而,當界面活性劑超過臨界微胞濃度後,液滴與氣泡的滑移速都有所提升,稱之為remobilizing surfactant。
在本論文的後段,也探討了含氟之界面活性劑與油填充低遲滯表面的交互作用,因為這兩者之間多了化學親和力,造成在表面上呈現一系列動態接觸角的變化。
摘要(英)
The motions of nanodrops on the hysteresis-free surfaces are widely observed to explore the advantages applied in microfluidic systems and technologies. Since not all hysteresis-free surfaces are resistance upon surfactant solution, in this work, the effect of various concentrations of surfactants upon an oil-infused surface has been studied.
An oil-infused surface is fabricated by stretching porous PTFE tape on glass slide and coated it with fluorinated lubricant. The characteristics of hysteresis-free surface are examined on it, by using inflation-deflation method and tilted plane method. Since it shows hysteresis-free behavior, drops containing each three types of surfactants, SDS, DTAB, and Triton X-100, are deposited on it and the sliding motion is calculated. The bubbles motion is also determined under an oil-infused surface in surfactant solutions. It is shown that in aqueous solution, the sliding velocity of both drops and bubbles are retarded, due to shape deformation for drops, while for bubbles associated with large frontal area and effect of Marangoni stress. However, the sliding velocity of drops and bubbles rising after the concentration reaches CMC. This phenomenon corresponds to remobilizing surfactant, which is making the surface concentration becomes uniform.
And the last is investigation of fluorinated surfactant interaction with an-oil-infused surface. The two components have chemical affinity interaction, since the drop containing surfactant has dynamic contact angle on it.
關鍵字(中) ★ Remobilizing surfactant
★ 注油表面
★ 接觸角遲滯
★ 滑动速度
關鍵字(英) ★ Remobilizing surfactant
★ Oil-infused surface
★ Contact angle hysteresis
★ Sliding velocity
論文目次
摘要 i
ABSTRACT ii
ACKNOWLEDGEMENTS iii
LIST OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES x
CHAPTER 1 INTRODUCTION 1
1-1 Background 1
1-2 Motivation 2
1-3 Wetting phenomena 3
1-3-1 Surface tension 3
1-3-2 Contact angle 6
1-3-3 Contact angle hysteresis 10
1-4 Characteristics of surfactants 12
1-4-1 Classification of surfactants 12
1-4-2 Critical micelle concentration 16
1-4-3 Adsorption behaviors 17
1-5 Literature review 17
1-5-1 Lubricant-infused surfaces 17
1-5-2 Movement of drops on a tilted surface 20
1-5-3 Movement of bubbles on a tilted surface 25
1-5-4 Movement of drops and bubbles in surfactant-contained medium 29
CHAPTER 2 EXPERIMENTAL METHODS 32
2-1 Materials 32
2-2 Apparatuses 33
2-2-1 The drop shape analyzer-DSA25 , Kruss, Germany 33
2-2-2 The drop shape analyzer OCA 15 EC, Data Physics (Germany) 35
2-2-3 Electronic balance, having precision of  0.1 mg, (Quintix 224-1S, Sartorius, Germany), has been used for weighing purpose. 35
2-2-4 Spin coater 36
2-2-5 Hot plate and stirrer 36
2-3 Experimental procedure 36
2-3-1 Preparation of oil-infused surfaces 36
2-3-2 Preparation of surfactant solutions 38
2-3-3 Recording the drop motion on oil-infused surfaces 39
2-3-4 Recording the bubble motion beneath oil-infused surfaces 40
2-3-5 Experiment of drop-defect interaction 40
2-3-6 Experiment of effects of similar compounds between surfactants and solid surfaces 41
2-4 Data analysis 41
2-4-1 Surface tension measurement and CMCs determination 41
2-4-2 Contact angle measurement 45
2-4-3 Terminal velocity calculation 46
CHAPTER 3 CONTACT ANGLE HYSTERESIS-FREE CHARACTERISTICS OF AN OIL-INFUSED SURFACE 47
3-1 Inflation-deflation method 47
3-2 Tilted plane method 49
3-3 Drop-defect interaction on hysteresis-free surfaces 51
CHAPTER 4 EFFECT OF SURFACTANTS ON THE DROP MOTION ALONG OIL-INFUSED SURFACES 55
4-1 Contact angle hysteresis-free characteristics of sessile drop 55
4-2 Effect of surfactant on the drop shape 56
4-3 Sliding velocity sessile drops 59
CHAPTER 5 EFFECT OF SURFACTANTS ON BUBBLES MOTION ALONG OIL-INFUSED SURFACES 64
5-1 Contact angle hysteresis-free characteristics of captive bubbles 64
5-2 Effect of surfactant on the bubble shape 65
5-3 Sliding velocity of captive bubbles 66
CHAPTER 6 INTERACTIONS BETWEEN SURFACTANT AND SURFACES CONTAINING THE SAME COMPOSITION 73
6-1 Fluorinated surfactant and the oil-infused surface 73
6-2 Systems of fluorinated surfactant/PTFE surface and Brij 35/wax surface 75
CONCLUSION 77
REFERENCES 79
參考文獻
[1] Whitesides, G. M. The Origins and The Future of Microfluidics. Nature. 20016, 442, 368-373.
[2] Nguyen, T. P. N.; Brunet, P.; Coffinier, Y.; Boukherroub, R. Quantitative Testing of Robustness on Superomniphobic Surfaces by Drop Impact. Langmuir. 2010, 26, 18369–18373.
[3] Chang, C. C.; Wu, C. J.; Sheng, Y. J.; Tsao, H. K. Anti-smudge Behavior of Facilely Fabricated Liquid-infused Surfaces with Extremely Low Contact Angle Hysteresis Property. RSC. Adv.2016, 6, 19214-19222.
[4] Myers, D. Surfaces, Interfaces, and Colloids Principles and Applications. VCH Publishers: Cordoba, 1992.
[5] Berthier, J.; Brakke, K. A. The Physics of Microdroplets. Scrivener Publishing: USA, 2012
[6] Berg, J. C. An Introduction to Interfaces & Colloids The Bridge to Nanoscience. World Scientific: USA, 2009.
[7] Xin, B.; Hao, J. Reversibly Switchable Wettability. Chem. Soc. Rev. 2010, 39, 769-782.
[8] Chu, Z.; Seeger, S. Superamphiphobic Surfaces. Chem. Soc. Rev. 2014, 43, 2784-2798.
[9] Wenzel, R. N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988-994.
[10] Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546-551.
[11] Chang, C. C.; Wu, C.J.; Sheng, Y. J.; Tsao, H. K. Air Pocket Stability and the Imbibition Pathway in Droplet Wetting. Soft Matter. 2015, 11, 7308-7315.
[12] Young, T. An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. London. 1805, 95, 65-87.
[13] Israelachvili, J. N. Intermolecular and Surface Forces. Academic Press: New York, 1985.
[14] Hong, S. J.; Chang, F. M.; Chou, T. H.; Chan, S. H.; Sheng, Y. J.; Tsao, H. K. Anomalous Contact Angle Hysteresis of a Captive Bubble: Advancing Contact Line Pinning. Langmuir, 2011, 27 (11), 6890–6896.
[15] de Gennes, P. G.; Brochard-Wyart, F.; Quere, D. Capillarity and Wetting Phenomena, Drops, Bubbles, Pears, Waves; Springer: New York, 2004.
[16] Joanny, J. F.; de Gennes,P. G. A Model for Contact Angle Hysteresis. J. Chem. Phys. 1984, 81, 552-562.
[17] Wei, Z.; He, M. F.; Zhao, Y. P. The Effects of Roughness on Adhesion Hysteresis. J. Adhes. Sci. Technol. 2010, 24, 1045-1054.
[18] Karsa, D. R. (2006). What Are Surfactants? In R. J. Farn (Ed.), Chemistry and Technology of Surfatants (pp.1-21). Oxford, England: Blackwell Publishing.
[19] El-Hefian, E. A.; Yahaya, A. H. Investigation on Some Properties of SDS Solutions. Aust. J. Basic & Appl. Sci. 2011, 5(7), 1221-1227.
[20] McGrath, K. M. Phase Behavior of Dodecyltrimethylammonium Bromide/Water Mixtures. Langmuir. 1995, 11, 1835-1839.
[21] Borbely, S. Aggregate Structure in Aqueous Solutions of Brij-35 Nonionic Surfactant Studied by Small-angle Neutron Scattering. Langmuir. 2000, 16, 5540-5545.
[22] Kovalchuk, N. M.; Trybala, A.; Starov, V.; Matar, O.; Ivanova, N. Fluoro- vs Hydrocarbon Surfactants: Why Do They Differ in Wetting Performance. Adv. Colloid Interface Sci. 2014, 210, 65-71.
[23] Myers, D. Surfactant Sciences and Technology, Second Edition.VCH Publishers: Cordoba, 1992.
[24] Merck Products. (2017). Retrieved May 1, 2017, from http://www.sigmaaldrich.com/catalog/product/aldrich/858366?lang=de®ion=DE.
[25] Ghosh, S.; Moulik, S. P. Interfacial and Micellization Behaviors of Binary and Ternary Mixtures of Amphiphiles (Twee-20, Brij-35, and Sodium Dedecyl Sulfate) in Aqueous Medium. . J. Colloid Interface Sci. 1998, 208, 357-366.
[26] Bohn, H. F.; Federle, W. Insect Aquaplaning: Nepenthes Pitcher Plants Capture Prey with the Peristome, a Fully wettable Water-lubricated Anisotropic Surface. Proc. Natl Acad. Sci. 2004, 101, 14138–14143.
[27] Vogel, N. Belisle, R. A.; Hatton, B.; Wong, T. K.; Aizenberg, J. Transparency and Damage Tolerance of Patternable Omniphobic Surfaces Based on Inverse Colloidal Monolayers. Nature. 2013, 4:2167, 1-10.
[28] Wong, T. S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired Self-repairing Slippery Surfaces with Pressure-stable Omniphobicity. Nature. 2009, 477, 443-447.
[29] Extrand, C. W.; Kumagai, Y. Liquid Drops on an Inclined Plane: The Relation between Contact Angles, Drop Shape, and Retentive Force. J. Colloid Interface Sci.1995, 170, 515-521.
[30] Quere, D.; Azzopardi, M. J.; Delattre, L. Drops at Rest on a Tilted Plane. Langmuir. 1998, 14, 2213-2216.
[31] Kim, H. Y.; Lee, H. J.; Kang, B. H. Sliding of Liquid Drops Down an Inclined Solid Surface. J. Colloid Interface Sci. 2002, 247, 372-380.
[32] Perron, A.; Kiss, L. I.; Poncsak, S. An Experimental Investigation of the Motion of Single Bubbles under a Slightly Inclined Surface. Int. J. Multiphase Flow. 2006, 32, 606-622.
[33] Chen, L. H.; Lee, Y. L. Adsorption Behavior of Surfactants and Mass Transfer in Single-Drop Extraction. AlChE J. 2000, 46 (1), 160-168.
[34] Huang, W. S.; Kintner, R. C. Effects of Surfactants on Mass Transfer Inside Drops. AIChE J., 1969, 15, 735-744.
[35] Sadhal, S. S.; Johnson, R. E. Stokes Flow Past Bubbles and Drops Partially Coated with Thin Films. J. Fluid Mech., 1983, 126, 237-250.
[36] Cavanagh, D. P.; Eckmann, D. M. The Effects of a Soluble Surfactant on the Interfacial Dynamics of Stationary Bubbles in Inclined Tubes. J. Fluid Mech. 2002, 469, 369-400.
[37] Frese, Ch.; Ruppert, S.; Sugar, M.; Schmidth-Lewerkuhne, H.; Wittern, K. P.; Fainerman, V. B.; Eggers, R.; Miller, R. Adsorption Kinetics of Surfactant Mixtures from Micellar Solutions as Studied by Maximum Bubble Pressure Technique. J. Colloid Interface Sci. 2003, 267, 475-482.
[38] 3M Advanced Materials Division. (2016). 3M Advanced Materials Division 3M Fluorosurfactant FC-4432 ™. Retrieved January 12, 2017, from http://multimedia.3m.com/mws/media/624422O/3mtm-novectm-fluorosurfactant-fc-4432-prod-info.pdf
[39] Li, M.; Rharbi, Y.; Huang, X. Y.; Winnik, M. A. Small Variations in the Composition and Properties of Triton X-100. J. Colloid Interface Sci. 2000, 230, 135-139.
[40] Chang, C. C.; Wu, C. J.; Sheng, Y. J.; Tsao, H. K. Resisting and Pinning of a Nanodrop by Trenches on a Hysteresis-free Surface. J. Phys. Chem. 2016, 145, 164702.
[41] Chang, F. M.; Hong, S. J.; Sheng, Y. J.; Tsao, H. K. Wetting Invasion and Retreat across a Corner Boundary. J. Phys. Chem. C. 2010, 114, 1615-1621.
[42] Chen, X.; Ma, R.; Zhou, H.; Zhou, X.; Che, L.; Yao, S.; Wang, Z. Activating the Microscale Edge Effect in a Hierarchical Surface for Frosting Suppression and Defrosting Promotion. Sci. Rep. 2013, 3, 02515
[43] Liang, Y. E.; Weng, Y. H.; Hsieh, I. F.; Tsao, H. K.; Sheng, Y. J. Attractive Encounter of a Nanodrop toward a Nanoprotrusion. J. Phys. Chem. C. 2017, 121 (14), 7923–7930.
[44] Stebe, K. J.; Lin, S. Y.; Maldarelli, C. Remobilizing Surfactant Retarded Fluid Particle Interfaces. I. Stress-free Conditions at the Interfaces of Micellar Solutions of Surfactants with Fast Sorption Kinetics. Phys. Fluids A. 1991, 3, 3-20
[45] Stebe, K. J.; Maldarelli, C. Remobilizing Surfactant Retarded Fluid Particle Interfaces. II. Controlling The Surface Mobility at Interfaces of Solutions Containing Surface Active Components. J. Colloid Interface Sci. 1994, 163, 177-189.
[46] Chang, C. C.; Wu, C. J.; Sheng, Y. J.; Tsao, H. K. Extraordinary Rapid Rise of Tiny Bubbles Sliding beneath Superhydrophobic Surfaces. Langmuir. 2017, 33 (5), 1326-1331.
[47] Wang, Y. P.; Papageorgiou, D. T.; Maldarelli, C. Increased Mobility of a Surfactant-retarded Bubble at High Bulk Concentrations. J. Fluid Mech. 1999, 390, 251-270.
[48] Chen, J. N.; Stebe, K. J. Surfactant-induced Retardation of the Thermocapillary Migration of a Droplet. J. Fluid Mech. 1997, 340, 35-59.
指導教授 曹恆光(Dr. Heng-Kwong Tsao) 審核日期 2017-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明