參考文獻 |
[1] Whitesides, G. M. The Origins and The Future of Microfluidics. Nature. 20016, 442, 368-373.
[2] Nguyen, T. P. N.; Brunet, P.; Coffinier, Y.; Boukherroub, R. Quantitative Testing of Robustness on Superomniphobic Surfaces by Drop Impact. Langmuir. 2010, 26, 18369–18373.
[3] Chang, C. C.; Wu, C. J.; Sheng, Y. J.; Tsao, H. K. Anti-smudge Behavior of Facilely Fabricated Liquid-infused Surfaces with Extremely Low Contact Angle Hysteresis Property. RSC. Adv.2016, 6, 19214-19222.
[4] Myers, D. Surfaces, Interfaces, and Colloids Principles and Applications. VCH Publishers: Cordoba, 1992.
[5] Berthier, J.; Brakke, K. A. The Physics of Microdroplets. Scrivener Publishing: USA, 2012
[6] Berg, J. C. An Introduction to Interfaces & Colloids The Bridge to Nanoscience. World Scientific: USA, 2009.
[7] Xin, B.; Hao, J. Reversibly Switchable Wettability. Chem. Soc. Rev. 2010, 39, 769-782.
[8] Chu, Z.; Seeger, S. Superamphiphobic Surfaces. Chem. Soc. Rev. 2014, 43, 2784-2798.
[9] Wenzel, R. N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988-994.
[10] Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546-551.
[11] Chang, C. C.; Wu, C.J.; Sheng, Y. J.; Tsao, H. K. Air Pocket Stability and the Imbibition Pathway in Droplet Wetting. Soft Matter. 2015, 11, 7308-7315.
[12] Young, T. An Essay on the Cohesion of Fluids. Philos. Trans. R. Soc. London. 1805, 95, 65-87.
[13] Israelachvili, J. N. Intermolecular and Surface Forces. Academic Press: New York, 1985.
[14] Hong, S. J.; Chang, F. M.; Chou, T. H.; Chan, S. H.; Sheng, Y. J.; Tsao, H. K. Anomalous Contact Angle Hysteresis of a Captive Bubble: Advancing Contact Line Pinning. Langmuir, 2011, 27 (11), 6890–6896.
[15] de Gennes, P. G.; Brochard-Wyart, F.; Quere, D. Capillarity and Wetting Phenomena, Drops, Bubbles, Pears, Waves; Springer: New York, 2004.
[16] Joanny, J. F.; de Gennes,P. G. A Model for Contact Angle Hysteresis. J. Chem. Phys. 1984, 81, 552-562.
[17] Wei, Z.; He, M. F.; Zhao, Y. P. The Effects of Roughness on Adhesion Hysteresis. J. Adhes. Sci. Technol. 2010, 24, 1045-1054.
[18] Karsa, D. R. (2006). What Are Surfactants? In R. J. Farn (Ed.), Chemistry and Technology of Surfatants (pp.1-21). Oxford, England: Blackwell Publishing.
[19] El-Hefian, E. A.; Yahaya, A. H. Investigation on Some Properties of SDS Solutions. Aust. J. Basic & Appl. Sci. 2011, 5(7), 1221-1227.
[20] McGrath, K. M. Phase Behavior of Dodecyltrimethylammonium Bromide/Water Mixtures. Langmuir. 1995, 11, 1835-1839.
[21] Borbely, S. Aggregate Structure in Aqueous Solutions of Brij-35 Nonionic Surfactant Studied by Small-angle Neutron Scattering. Langmuir. 2000, 16, 5540-5545.
[22] Kovalchuk, N. M.; Trybala, A.; Starov, V.; Matar, O.; Ivanova, N. Fluoro- vs Hydrocarbon Surfactants: Why Do They Differ in Wetting Performance. Adv. Colloid Interface Sci. 2014, 210, 65-71.
[23] Myers, D. Surfactant Sciences and Technology, Second Edition.VCH Publishers: Cordoba, 1992.
[24] Merck Products. (2017). Retrieved May 1, 2017, from http://www.sigmaaldrich.com/catalog/product/aldrich/858366?lang=de®ion=DE.
[25] Ghosh, S.; Moulik, S. P. Interfacial and Micellization Behaviors of Binary and Ternary Mixtures of Amphiphiles (Twee-20, Brij-35, and Sodium Dedecyl Sulfate) in Aqueous Medium. . J. Colloid Interface Sci. 1998, 208, 357-366.
[26] Bohn, H. F.; Federle, W. Insect Aquaplaning: Nepenthes Pitcher Plants Capture Prey with the Peristome, a Fully wettable Water-lubricated Anisotropic Surface. Proc. Natl Acad. Sci. 2004, 101, 14138–14143.
[27] Vogel, N. Belisle, R. A.; Hatton, B.; Wong, T. K.; Aizenberg, J. Transparency and Damage Tolerance of Patternable Omniphobic Surfaces Based on Inverse Colloidal Monolayers. Nature. 2013, 4:2167, 1-10.
[28] Wong, T. S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired Self-repairing Slippery Surfaces with Pressure-stable Omniphobicity. Nature. 2009, 477, 443-447.
[29] Extrand, C. W.; Kumagai, Y. Liquid Drops on an Inclined Plane: The Relation between Contact Angles, Drop Shape, and Retentive Force. J. Colloid Interface Sci.1995, 170, 515-521.
[30] Quere, D.; Azzopardi, M. J.; Delattre, L. Drops at Rest on a Tilted Plane. Langmuir. 1998, 14, 2213-2216.
[31] Kim, H. Y.; Lee, H. J.; Kang, B. H. Sliding of Liquid Drops Down an Inclined Solid Surface. J. Colloid Interface Sci. 2002, 247, 372-380.
[32] Perron, A.; Kiss, L. I.; Poncsak, S. An Experimental Investigation of the Motion of Single Bubbles under a Slightly Inclined Surface. Int. J. Multiphase Flow. 2006, 32, 606-622.
[33] Chen, L. H.; Lee, Y. L. Adsorption Behavior of Surfactants and Mass Transfer in Single-Drop Extraction. AlChE J. 2000, 46 (1), 160-168.
[34] Huang, W. S.; Kintner, R. C. Effects of Surfactants on Mass Transfer Inside Drops. AIChE J., 1969, 15, 735-744.
[35] Sadhal, S. S.; Johnson, R. E. Stokes Flow Past Bubbles and Drops Partially Coated with Thin Films. J. Fluid Mech., 1983, 126, 237-250.
[36] Cavanagh, D. P.; Eckmann, D. M. The Effects of a Soluble Surfactant on the Interfacial Dynamics of Stationary Bubbles in Inclined Tubes. J. Fluid Mech. 2002, 469, 369-400.
[37] Frese, Ch.; Ruppert, S.; Sugar, M.; Schmidth-Lewerkuhne, H.; Wittern, K. P.; Fainerman, V. B.; Eggers, R.; Miller, R. Adsorption Kinetics of Surfactant Mixtures from Micellar Solutions as Studied by Maximum Bubble Pressure Technique. J. Colloid Interface Sci. 2003, 267, 475-482.
[38] 3M Advanced Materials Division. (2016). 3M Advanced Materials Division 3M Fluorosurfactant FC-4432 ™. Retrieved January 12, 2017, from http://multimedia.3m.com/mws/media/624422O/3mtm-novectm-fluorosurfactant-fc-4432-prod-info.pdf
[39] Li, M.; Rharbi, Y.; Huang, X. Y.; Winnik, M. A. Small Variations in the Composition and Properties of Triton X-100. J. Colloid Interface Sci. 2000, 230, 135-139.
[40] Chang, C. C.; Wu, C. J.; Sheng, Y. J.; Tsao, H. K. Resisting and Pinning of a Nanodrop by Trenches on a Hysteresis-free Surface. J. Phys. Chem. 2016, 145, 164702.
[41] Chang, F. M.; Hong, S. J.; Sheng, Y. J.; Tsao, H. K. Wetting Invasion and Retreat across a Corner Boundary. J. Phys. Chem. C. 2010, 114, 1615-1621.
[42] Chen, X.; Ma, R.; Zhou, H.; Zhou, X.; Che, L.; Yao, S.; Wang, Z. Activating the Microscale Edge Effect in a Hierarchical Surface for Frosting Suppression and Defrosting Promotion. Sci. Rep. 2013, 3, 02515
[43] Liang, Y. E.; Weng, Y. H.; Hsieh, I. F.; Tsao, H. K.; Sheng, Y. J. Attractive Encounter of a Nanodrop toward a Nanoprotrusion. J. Phys. Chem. C. 2017, 121 (14), 7923–7930.
[44] Stebe, K. J.; Lin, S. Y.; Maldarelli, C. Remobilizing Surfactant Retarded Fluid Particle Interfaces. I. Stress-free Conditions at the Interfaces of Micellar Solutions of Surfactants with Fast Sorption Kinetics. Phys. Fluids A. 1991, 3, 3-20
[45] Stebe, K. J.; Maldarelli, C. Remobilizing Surfactant Retarded Fluid Particle Interfaces. II. Controlling The Surface Mobility at Interfaces of Solutions Containing Surface Active Components. J. Colloid Interface Sci. 1994, 163, 177-189.
[46] Chang, C. C.; Wu, C. J.; Sheng, Y. J.; Tsao, H. K. Extraordinary Rapid Rise of Tiny Bubbles Sliding beneath Superhydrophobic Surfaces. Langmuir. 2017, 33 (5), 1326-1331.
[47] Wang, Y. P.; Papageorgiou, D. T.; Maldarelli, C. Increased Mobility of a Surfactant-retarded Bubble at High Bulk Concentrations. J. Fluid Mech. 1999, 390, 251-270.
[48] Chen, J. N.; Stebe, K. J. Surfactant-induced Retardation of the Thermocapillary Migration of a Droplet. J. Fluid Mech. 1997, 340, 35-59. |