參考文獻 |
1. Houghton, J.T., Climate change 1995: The science of climate change: contribution of working group I to the second assessment report of the Intergovernmental Panel on Climate Change. Vol. 2. 1996: Cambridge University Press.
2. Haywood, J. and O. Boucher, Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of geophysics, 2000. 38(4): p. 513-543.
3. Jaenicke, R., Atmospheric aerosols and global climate, in Climatic variations and variability: Facts and theories. 1981, Springer. p. 577-597.
4. Waggoner, A.P., et al., Optical characteristics of atmospheric aerosols. Atmospheric Environment (1967), 1981. 15(10-11): p. 1891-1909.
5. Rastak, N., et al., Seasonal variation of aerosol water uptake and its impact on the direct radiative effect at Ny-Ålesund, Svalbard. Atmospheric Chemistry and Physics, 2014. 14(14): p. 7445-7460.
6. Tang, I.N., Deliquescence properties and particle size change of hygroscopic aerosols. 1979, Brookhaven National Lab., Upton, NY (USA).
7. Mikhailov, E., et al., Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmospheric Chemistry and Physics, 2009. 9(24): p. 9491-9522.
8. Mikhailov, E., et al., Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmos. Chem. Phys., 2009. 9(24): p. 9491-9522.
9. Weis, D.D. and G.E. Ewing, Water content and morphology of sodium chloride aerosol particles. Journal of Geophysical Research: Atmospheres, 1999. 104(D17): p. 21275-21285.
10. Leong, K., Morphology of aerosol particles generated from the evaporation of solution drops. Journal of Aerosol Science, 1981. 12(5): p. 417-435.
11. Baldelli, A., et al., Effect of crystallization kinetics on the properties of spray dried microparticles. Aerosol Science and Technology, 2016. 50(7): p. 693-704.
12. Wang, Z., et al., The dynamic shape factor of sodium chloride nanoparticles as regulated by drying rate. Aerosol Science and Technology, 2010. 44(11): p. 939-953.
13. Champion, J.A., Y.K. Katare, and S. Mitragotri, Particle shape: a new design parameter for micro-and nanoscale drug delivery carriers. Journal of Controlled Release, 2007. 121(1): p. 3-9.
14. DeCarlo, P.F., et al., Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Science and Technology, 2004. 38(12): p. 1185-1205.
15. Gysel, M., et al., Hygroscopic properties of water-soluble matter and humic-like organics in atmospheric fine aerosol. Atmospheric Chemistry and Physics Discussions, 2003. 3(5): p. 4879-4925.
16. Mikhailov, E., et al., Interaction of aerosol particles composed of protein and saltswith water vapor: hygroscopic growth and microstructural rearrangement. Atmos. Chem. Phys., 2004. 4(2): p. 323-350.
17. Nandiyanto, A.B.D. and K. Okuyama, Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges. Advanced Powder Technology, 2011. 22(1): p. 1-19.
18. Courrier, H., N. Butz, and T.F. Vandamme, Pulmonary drug delivery systems: recent developments and prospects. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2002. 19(4-5).
19. Heyder, J., et al., Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. Journal of Aerosol Science, 1986. 17(5): p. 811-825.
20. Beck-Broichsitter, M., O.M. Merkel, and T. Kissel, Controlled pulmonary drug and gene delivery using polymeric nano-carriers. Journal of controlled release, 2012. 161(2): p. 214-224.
21. Park, C.-W., et al., Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols. International journal of pharmaceutics, 2013. 455(1): p. 374-392.
22. Zhu, B., et al., The solid-state and morphological characteristics of particles generated from solution-based metered dose inhalers: Influence of ethanol concentration and intrinsic drug properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014. 443: p. 345-355.
23. Edwards, D.A., et al., Large porous particles for pulmonary drug delivery. Science, 1997. 276(5320): p. 1868-1872.
24. Tsapis, N., et al., Trojan particles: large porous carriers of nanoparticles for drug delivery. Proceedings of the National Academy of Sciences, 2002. 99(19): p. 12001-12005.
25. Hadinoto, K., et al., Dry powder aerosol delivery of large hollow nanoparticulate aggregates as prospective carriers of nanoparticulate drugs: effects of phospholipids. International journal of pharmaceutics, 2007. 333(1): p. 187-198.
26. Balashazy, I., T.B. Martonen, and W. Hofmann, Fiber Deposition in Airway Bifurcations. Journal of Aerosol Medicine-Deposition Clearance and Effects in the Lung, 1990. 3(4): p. 243-260.
27. Sung, J.C., B.L. Pulliam, and D.A. Edwards, Nanoparticles for drug delivery to the lungs. Trends in biotechnology, 2007. 25(12): p. 563-570.
28. Elkordy, A.A., R.T. Forbes, and B.W. Barry, Stability of crystallised and spray-dried lysozyme. International journal of pharmaceutics, 2004. 278(2): p. 209-219.
29. Kulmala, M., et al., A new feedback mechanism linking forests, aerosols, and climate. Atmospheric Chemistry and Physics, 2004. 4(2): p. 557-562.
30. Kerminen, V.M., et al., Direct observational evidence linking atmospheric aerosol formation and cloud droplet activation. Geophysical research letters, 2005. 32(14).
31. Park, K., J.S. Kim, and A.L. Miller, A study on effects of size and structure on hygroscopicity of nanoparticles using a tandem differential mobility analyzer and TEM. Journal of Nanoparticle Research, 2009. 11(1): p. 175-183.
32. Tritscher, T., et al., Changes of hygroscopicity and morphology during ageing of diesel soot. Environmental Research Letters, 2011. 6(3).
33. Kittelson, D.B., Engines and nanoparticles: A review. Journal of Aerosol Science, 1998. 29(5-6): p. 575-588.
34. Park, K., D.B. Kittelson, and P.H. McMurry, Structural properties of diesel exhaust particles measured by transmission electron microscopy (TEM): Relationships to particle mass and mobility. Aerosol Science and Technology, 2004. 38(9): p. 881-889.
35. Slowik, J.G., et al., Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 2: Application to combustion-generated soot aerosols as a function of fuel equivalence ratio. Aerosol Science and Technology, 2004. 38(12): p. 1206-1222.
36. Ku, B.K. and A.D. Maynard, Generation and investigation of airborne silver nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. Journal of Aerosol Science, 2006. 37(4): p. 452-470.
37. Vehring, R., W.R. Foss, and D. Lechuga-Ballesteros, Particle formation in spray drying. Journal of Aerosol Science, 2007. 38(7): p. 728-746.
38. Vehring, R., Pharmaceutical particle engineering via spray drying. Pharmaceutical research, 2008. 25(5): p. 999-1022.
39. Maury, M., et al., Spray-drying of proteins: effects of sorbitol and trehalose on aggregation and FT-IR amide I spectrum of an immunoglobulin G. European journal of pharmaceutics and biopharmaceutics, 2005. 59(2): p. 251-261.
40. Chew, N.Y. and H.-K. Chan, Use of solid corrugated particles to enhance powder aerosol performance. Pharmaceutical Research, 2001. 18(11): p. 1570-1577.
41. Maa, Y.F., P.A.T. Nguyen, and S.W. Hsu, Spray‐drying of air–liquid interface sensitive recombinant human growth hormone. Journal of pharmaceutical sciences, 1998. 87(2): p. 152-159.
42. Ting, T.-Y., I. Gonda, and E.M. Gipps, Microparticles of polyvinyl alcohol for nasal delivery. I. Generation by spray-drying and spray-desolvation. Pharmaceutical research, 1992. 9(10): p. 1330-1335.
43. Baras, B., M.-A. Benoit, and J. Gillard, Parameters influencing the antigen release from spray-dried poly (DL-lactide) microparticles. International journal of pharmaceutics, 2000. 200(1): p. 133-145.
44. Leong, K., Morphological control of particles generated from the evaporation of solution droplets: theoretical considerations. Journal of aerosol science, 1987. 18(5): p. 511-524.
45. Walton, A.G., et al., The formation and properties of precipitates. Vol. 23. 1967: Interscience Publishers New York.
46. Lenggoro, I.W., et al., An experimental and modeling investigation of particle production by spray pyrolysis using a laminar flow aerosol reactor. Journal of Materials Research, 2000. 15(3): p. 733-743.
47. Protheroe, M.D. and A.M. Al-Jumaily, Evaporation characteristics in nebuliser based humidification and drug delivery devices. Journal of Aerosol Science, 2017. 109: p. 13-27.
48. Lewis, E.R., The effect of surface tension (Kelvin effect) on the equilibrium radius of a hygroscopic aqueous aerosol particle. Journal of aerosol science, 2006. 37(11): p. 1605-1617.
49. Chen, C., et al., Effect of precursor characteristics on zirconia and ceria particle morphology in spray pyrolysis. Ceramics International, 2008. 34(2): p. 409-416.
50. Elversson, J., et al., Droplet and particle size relationship and shell thickness of inhalable lactose particles during spray drying. Journal of pharmaceutical sciences, 2003. 92(4): p. 900-910.
51. Iskandar, F., L. Gradon, and K. Okuyama, Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. Journal of Colloid and Interface Science, 2003. 265(2): p. 296-303.
52. Shinde, U., et al., Surface Tension as a Function of Temperature and Concentration of Liquids. 2015, IJCPS.
53. Hu, H. and R.G. Larson, Marangoni effect reverses coffee-ring depositions. The Journal of Physical Chemistry B, 2006. 110(14): p. 7090-7094.
54. El-Sayed, T.M., D.A. Wallack, and C.J. King, Changes in particle morphology during drying of drops of carbohydrate solutions and food liquids. 1. Effect of composition and drying conditions. Industrial & Engineering Chemistry Research, 1990. 29(12): p. 2346-2354.
55. Bezantakos, S., et al., Relative humidity non-uniformities in Hygroscopic Tandem Differential Mobility Analyzer measurements. Journal of Aerosol Science, 2016. 101: p. 1-9.
56. Ehara, K., C. Hagwood, and K.J. Coakley, Novel method to classify aerosol particles according to their mass-to-charge ratio—aerosol particle mass analyser. Journal of Aerosol Science, 1996. 27(2): p. 217-234.
57. Liao, B.-X., N.-C. Tseng, and C.-J. Tsai, The accuracy of the aerosol particle mass analyzer for nanoparticle classification. Aerosol Science and Technology, 2017: p. 1-11.
58. Cussler, E.L., Diffusion: mass transfer in fluid systems. 2009: Cambridge university press.
59. Petters, M.D. and S.M. Kreidenweis, A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 2007. 7(8): p. 1961-1971.
60. Clegg, S.L., P. Brimblecombe, and A.S. Wexler, Thermodynamic model of the system H+− NH4+− SO42-− NO3-− H2O at tropospheric temperatures. The Journal of Physical Chemistry A, 1998. 102(12): p. 2137-2154.
61. Mikhailov, E., et al., Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake. Atmospheric Chemistry and Physics, 2013. 13(2): p. 717-740.
62. Al-Khattawi, A., et al., The design and scale-up of spray dried particle delivery systems. Expert Opin Drug Deliv, 2017: p. 1-17.
63. Power, R., et al., The transition from liquid to solid-like behaviour in ultrahigh viscosity aerosol particles. Chemical Science, 2013. 4(6): p. 2597-2604.
64. Wang, S. and T. Langrish, A review of process simulations and the use of additives in spray drying. Food Research International, 2009. 42(1): p. 13-25.
65. Vand, V., Viscosity of solutions and suspensions. I. Theory. The Journal of Physical Chemistry, 1948. 52(2): p. 277-299.
66. Breslau, B.R. and I.F. Miller, On the viscosity of concentrated aqueous electrolyte solution. The Journal of Physical Chemistry, 1970. 74(5): p. 1056-1061.
67. Rose, D., et al., Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmospheric Chemistry and Physics, 2008. 8(5): p. 1153-1179.
68. Gysel, M., E. Weingartner, and U. Baltensperger, Hygroscopicity of aerosol particles at low temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols. Environmental Science & Technology, 2002. 36(1): p. 63-68.
69. Oakley, D.E., Produce uniform particles by spray-drying. Chemical Engineering Progress, 1997. 93(10): p. 48-54.
70. Alamilla-Beltran, L., et al., Description of morphological changes of particles along spray drying. Journal of Food Engineering, 2005. 67(1-2): p. 179-184.
71. Kim, S., B. Liu, and M. Zachariah, Synthesis of nanoporous metal oxide particles by a new inorganic matrix spray pyrolysis method. Chemistry of materials, 2002. 14(7): p. 2889-2899.
72. Maas, S.G., et al., The impact of spray drying outlet temperature on the particle morphology of mannitol. Powder technology, 2011. 213(1): p. 27-35.
73. Gao, Y., S.B. Chen, and E.Y. Liya, Efflorescence relative humidity of airborne sodium chloride particles: A theoretical investigation. Atmospheric Environment, 2007. 41(9): p. 2019-2023.
74. Gao, Y., L.E. Yu, and S.B. Chen, Efflorescence relative humidity of mixed sodium chloride and sodium sulfate particles. J Phys Chem A, 2007. 111(42): p. 10660-6.
75. Gao, Y., S.B. Chen, and L.E. Yu, Efflorescence relative humidity for ammonium sulfate particles. J Phys Chem A, 2006. 110(24): p. 7602-8.
76. Kuwata, M. and Y. Kondo, Measurements of particle masses of inorganic salt particles for calibration of cloud condensation nuclei counters. Atmospheric Chemistry and Physics, 2009. 9(16): p. 5921-5932.
77. Vlasenko, S.S., et al., Tandem configuration of differential mobility and centrifugal particle mass analysers for investigating aerosol hygroscopic properties. Atmospheric Measurement Techniques, 2017. 10(3): p. 1269.
78. Badger, C., et al., Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate. Atmospheric Chemistry and Physics, 2006. 6(3): p. 755-768.
79. Pöschl, U., Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition, 2005. 44(46): p. 7520-7540.
|