博碩士論文 104328022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.117.11.13
姓名 郭旭程(Xu-Cheng Guo)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 利用粗糙化PDMS結構與PPy導電薄膜製成高拉伸導電性微流道之研究
(Highly Stretchable Conductive Microchannel based on Polypyrrole Film on 3D porous Polydimethylsiloxane Surface)
相關論文
★ 奈米矽晶片於葡萄糖電化學檢測分析研究與電極應用★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究
★ 多重微流體晶片機械應力刺激細胞培養之研究★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究
★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)★ 複合式物理力的生物反應器自動化與控制設計
★ 外部致動之微流體機電控制平台★ 以微铣削進行高分子微流體裝置之製程整合
★ 奈米矽質譜晶片於質譜檢測之應用研究★ 以自發性化學蝕刻法製備矽奈米結構成長控制之研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 二次金沉積奈米矽晶片對質譜檢測分析研究與應用★ 單晶矽材料電化學放電鑽孔及同軸電度之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要

近年來,彈性導電材相關的研究因為技術不斷的進步而有飛躍性的發展,而擁有高度可拉伸性的導電材料在可撓性電子產品及許多領域中都具有更多的優勢。在本研究中,我們將其分成兩個部分,在第一部分,我們利用簡單且成本低廉的製程轉印出砂紙粗糙的結構在PDMS表面上,再利用UV/Ozone(UVO)對粗糙化的PDMS(p-PDMS)的表面處理,可以讓聚吡咯(PPy)聚合在p-PDMS以達到高拉伸量的導電PPy/p-PDMS薄膜。PPy/p-PDMS薄膜可以達到最高拉伸80%,在本研究中也詳細介紹各項對PPy/p-PDMS薄膜有顯著影響的幾個關鍵參數,包括UVO處理時間、PPy沉積時間及砂紙號數等等。結果顯示了使用最優化的參數製成的PPy/p-PDMS薄膜,電導率最高可達到34.9S/m,也針對其重複性做高達1000次重複性拉伸及彎曲測試,電阻最多增加了5%(彎曲測試)36%(拉伸測試)。在第二部分中,我們使用了一種新的製作方法,使用PPy/p-PDMS製作出具高拉伸導電性的微流道。將砂紙粗糙的結構轉印在PDMS微流道中,再利用氧電漿將PDMS接合。PPy/p-PDMS微流道擁有了良好的拉伸性及導電性,也研究不同形式PPy/p-PDMS微流道像是直線型、彎曲型、角度型及複合圖形的蛇型的機械與電性能。在PPy/p-PDMS微流道內我們也培養小鼠胚胎纖維細胞NIH 3T3以證明其生物相容性。最後,針對其重複性進行1000次重複性拉伸及彎曲測試,證明PPy/p-PDMS微流道的應用穩定性。
摘要(英)
Abstract

Stretchable conductors have been developed in the past decade with new technological advancement. Highly stretchable conductive materials provide unique advantages in flexible electronics as well as in many advanced fields. In this study, it would be divided into two parts. In the first part, we created elastic porous polydimethylsiloxane (p-PDMS) as high stretchable conductive substrate. The p-PDMS surface was fabricated by simple soft lithography process that replicates the 3D corrugated porous microstructures from a low-cost conventional available abrasive paper. Conductive polypyrrole (PPy) was polymerized on the p-PDMS surface by UV/Ozone (UVO) surface treatment to create the high stretchable conductive PPy/p-PDMS film. The PPy/p-PDMS film shows high stretchability maximum upto 80% strain. Effect of PPy/p-PDMS electrical properties to the critical PPy/p-PDMS process parameters such as UVO treatment time, deposition time, and abrasive paper grit size were evaluated in this paper in great detail. Results indicate that highest electrical conductivity of 34.9 S/m was found in the optimized PPy/p-PDMS process condition. And high number of cyclical bending and stretching of PPy/p-PDMS film upto 1,000 cycles were also reported as good PPy/p-PDMS repeatability with maximum 5% (bending) and 36% (20% stain stretching) resistance increment after 1,000 repeating cycles. In the second part, we propose a new fabrication method to create highly stretchable, conductive p-PDMS microchannel base on PPy/p-PDMS process. The p-PDMS microchannel was fabricated by standard soft-lithography process from an abrasive paper imprinted SU-8 micromold. Oxygen plasma treatment was applied to bond the microchannel and the PPy layer was coated into the microchannel to fabricate a stretchable conductive PPy/p-PDMS microfluidic device. The PPy/p-PDMS microchannel showed both good electrical property and stretchability. The electrical properties of different layouts, including straight, curved, angled, and complex serpentine PPy/p-PDMS microchannel under stretching were investigated. Mouse embryonic fibroblasts, NIH/3T3, were also cultured inside the microchannel to demonstrate biocompatibility of PPy/p-PDMS microchannels. Finally, 1,000 times cyclic stretching and bending tests were performed to evaluate the reliability of PPy/p-PDMS microchannel.
關鍵字(中) ★ 彈性導電材
★ 微流道
關鍵字(英) ★ Stretchable conductors
★ microchannel
論文目次
Table of contents
English abstract i
Chinese Abstract iii
Table of contents v
List of figures vi
1 Introduction 1
2 Experimental section 5
2.1 Materials and Reagents 5
2.2 SEM analysis 6
2.3 Contact angle measurement 6
2.4 On-chip 4’,6-diamidino-2-phenylindole (DAPI) and Phalloidin staining 6
3 Results and discussion 8
3.1 Highly stretchable conductive p-PDMS 8
3.1.1 Material and method of PPy/p-PDMS film 8
3.1.2 Electrical behavior of PPy/p-PDMS under stretching 14
3.1.2.1 Effects of UVO treatment for PPy/p-PDMS film 18
3.1.2.2 Effects of deposition time and abrasive paper grit size for PPy/p-PDMS film 18
3.2 Highly stretchable conductive microchannel 29
3.2.1 Polypyrrole porous polydimethylsiloxane microchannel fabrication 32
3.2.2 PPy/p-PDMS stretchability and conductivity tests 34
3.2.3 Electrical behaviors of stretchable PPy/p-PDMS microchannel 41
3.2.4 PPy/p-PDMS microchannel for cell culture 45
3.2.5 PPy/p-PDMS microchannel repeatability test 46
4 Conclusion 48
References 50
參考文獻

References

1. Rogers, J.A., T. Someya, and Y.G. Huang, Materials and mechanics for stretchable electronics. Science, 2010: p. 327, 1603-1607.
2. Park, H., et al., Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars. Acs Nano, 2015. 9(10): p. 9974-9985.
3. Il Han, S., et al., Flexible and stretchable energy harvesting device using three-dimensional poly(dimethylsiloxane). Japanese Journal of Applied Physics, 2014. 53(8).
4. Ruhhammer, J., et al., Highly elastic conductive polymeric MEMS. Science and Technology of Advanced Materials, 2015. 16(1).
5. Rosset, S. and H.R. Shea, Flexible and stretchable electrodes for dielectric elastomer actuators. Applied Physics a-Materials Science & Processing, 2013. 110(2): p. 281-307.
6. Guo, L., et al., A PDMS-Based Integrated Stretchable Microelectrode Array (isMEA) for Neural and Muscular Surface Interfacing. Ieee Transactions on Biomedical Circuits and Systems, 2013. 7(1): p. 1-10.
7. Fujimagari, Y., Y. Fukushi, and Y. Nishioka, Stretchable Biofuel Cells with Silver Nano Wiring on a Polydimethylsiloxane Substrate. Journal of Photopolymer Science and Technology, 2015. 28(3): p. 357-361.
8. Bernardeschi, I., et al., A soft, stretchable and conductive biointerface for cell mechanobiology. Biomedical Microdevices, 2015. 17(2).
9. Adrega, T. and S.P. Lacour, Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. Journal of Micromechanics and Microengineering, 2010. 20(5).
10. Zhou, C., S. Bette, and U. Schnakenberg, Flexible and Stretchable Gold Microstructures on Extra Soft Poly(dimethylsiloxane) Substrates. Advanced Materials, 2015. 27(42): p. 6664-+.
11. Befahy, S., et al., Stretchable gold tracks on flat polydimethylsiloxane (PDMS) rubber substrate. Journal of Adhesion, 2008. 84(3): p. 231-239.
12. Seghir, R. and S. Arscott, Mechanically robust, electrically stable metal arrays on plasma-oxidized polydimethylsiloxane for stretchable technologies. Journal of Applied Physics, 2015. 118(4).
13. Manzoor, M.U., et al., Stretchable conducting gold films prepared with composite MWNT/PDMS substrates. AIP Advances, 2015. 5(10).
14. Chou, N., J. Lee, and S. Kim, Large-sized out-of-plane stretchable electrodes based on poly-dimethylsiloxane substrate. Applied Physics Letters, 2014. 105(24).
15. Li, C.Y. and Y.C. Liao, Adhesive Stretchable Printed Conductive Thin Film Patterns on PDMS Surface with an Atmospheric Plasma Treatment. Acs Applied Materials & Interfaces, 2016. 8(18): p. 11868-11874.
16. Larmagnac, A., et al., Stretchable electronics based on Ag-PDMS composites. Scientific Reports, 2014. 4.
17. Tang, J., et al., Highly Stretchable Electrodes on Wrinkled Polydimethylsiloxane Substrates. Scientific Reports, 2015. 5.
18. Lee, H., et al., Well-Ordered and High Density Coordination-Type Bonding to Strengthen Contact of Silver Nanowires on Highly Stretchable Polydimethylsiloxane. Advanced Functional Materials, 2014. 24(21): p. 3276-3283.
19. Zhou, D.B., et al., Effects of oxygen plasma treatment and e-beam evaporation on AgNWs/PDMS based stretchable electrode. Smart Materials and Structures, 2014. 23(10).
20. Kim, J., et al., Silver nanowire network embedded in polydimethylsiloxane as stretchable, transparent, and conductive substrates. Journal of Applied Polymer Science, 2016. 133(33).
21. Lee, J.B. and D.Y. Khang, Electrical and mechanical characterization of stretchable multi-walled carbon nanotubes/polydimethylsiloxane elastomeric composite conductors. Composites Science and Technology, 2012. 72(11): p. 1257-1263.
22. Chen, M.T., et al., Highly conductive and stretchable polymer composites based on graphene/MWCNT network. Chemical Communications, 2013. 49(16): p. 1612-1614.
23. Chen, M.T., et al., Highly Stretchable Conductors Integrated with a Conductive Carbon Nanotube/Graphene Network and 3D Porous Poly(dimethylsiloxane). Advanced Functional Materials, 2014. 24(47): p. 7548-7556.
24. Duan, S.S., et al., Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network. Acs Applied Materials & Interfaces, 2016. 8(3): p. 2187-2192.
25. Feng, C.F., et al., Shrinkage induced stretchable micro-wrinkled reduced graphene oxide composite with recoverable conductivity. Carbon, 2015. 93: p. 878-886.
26. Noh, J.S., Highly conductive and stretchable poly(dimethylsiloxane):poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) blends for organic interconnects. Rsc Advances, 2014. 4(4): p. 1857-1863.
27. Racles, C., et al., Highly stretchable composites from PDMS and polyazomethine fine particles. Rsc Advances, 2015. 5(124): p. 102599-102609.
28. Park, M., J. Park, and U. Jeong, Design of conductive composite elastomers for stretchable electronics. Nano Today, 2014. 9(2): p. 244-260.
29. Kim, K., et al., Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS). Sensors, 2016. 16(4).
30. Hyun, D.C., et al., Ordered Zigzag Stripes of Polymer Gel/Metal Nanoparticle Composites for Highly Stretchable Conductive Electrodes. Advanced Materials, 2011. 23(26): p. 2946-+.
31. Guo, F.M., et al., High performance of stretchable carbon nanotube-polypyrrole fiber supercapacitors under dynamic deformation and temperature variation. Journal of Materials Chemistry A, 2016. 4(23): p. 9311-9318.
32. G., T., et al., Polypyrrole–MnO2-Coated Textile-Based Flexible-Stretchable Supercapacitor with High Electrochemical and Mechanical Reliability. Acs Applied Materials & Interfaces, 2015. 7: p. 9228-9234.
33. Qin, D., Y.N. Xia, and G.M. Whitesides, Soft lithography for micro- and nanoscale patterning. Nature Protocols, 2010. 5(3): p. 491-502.
34. Hu, W.W., et al., Electrical stimulation to promote osteogenesis using conductive polypyrrole films. Materials Science & Engineering C-Materials for Biological Applications, 2014. 37: p. 28-36.
35. Cheng, M.C., et al., Super-Resolution Imaging of PDMS Nanochannels by Single-Molecule Micelle-Assisted Blink Microscopy. Physical Chemistry B, 2013. 117: p. 4406-4411.
36. Sun, B., et al., Stability and Mechanical Properties of Electrochemically Prepared Conducting Polypyrrole Films. Journal of The Electrochemical Society, 1989. 24: p. 4024-4029.
37. Mitchell, G.R. and A. Geri, Molecular organisation of electrochemically prepared conducting polypyrrole films. Journal of Physics D: Applied Physics, 1987. 20: p. 1346.
38. Garg, S., C. Hurren, and A. Kaynak, Improvement of Adhesion of Conductive Polypyrrole Coating on Wool and Polyester Fabrics Using Atmospheric Plasma Treatment. Synthetic Metals, 2007. 157: p. 41-47.
39. Kenry, J.C. Yeo, and C.T. Lim, Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsystems & Nanoengineering, 2016. 2: p. 16043.
40. Xia, Y.N. and G.M. Whitesides, Soft lithography. Annual Review of Materials Science, 1998. 28: p. 153-184.
41. Wu, C.Y., W.H. Liao, and Y.C. Tung, Integrated ionic liquid-based electrofluidic circuits for pressure sensing within polydimethylsiloxane microfluidic systems. Lab on a Chip, 2011. 11(10): p. 1740-1746.
42. Yeo, J.C., et al., Wearable tactile sensor based on flexible microfluidics. Lab on a Chip, 2016. 16(17): p. 3244-3250.
43. Jung, T. and S. Yang, Highly Stable Liquid Metal-Based Pressure Sensor Integrated with a Microfluidic Channel. Sensors, 2015. 15(5): p. 11823-11835.
44. Ota, H., et al., Highly deformable liquid-state heterojunction sensors. Nature Communications, 2014. 5.
45. Kenry, et al., Highly Flexible Graphene Oxide Nanosuspension Liquid-Based Microfluidic Tactile Sensor. Small, 2016. 12(12): p. 1593-1604.
46. Halldorsson, S., et al., Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosensors and Bioelectronics, 2015. 63: p. 218-231.
47. Bhatia, S.N. and D.E. Ingber, Microfluidic organs-on-chips. Nature Biotechnology, 2014. 32(8): p. 760-772.
48. Pavesi, A., et al., How to embed three-dimensional flexible electrodes in microfluidic devices for cell culture applications. Lab on a Chip, 2011. 11(9): p. 1593-1595.
49. Tsao, C.-W., X.-C. Guo, and W.-W. Hu, Highly stretchable conductive polypyrrole film on a three dimensional porous polydimethylsiloxane surface fabricated by a simple soft lithography process. RSC Advances, 2016. 6(114): p. 113344-113351.
50. Tan, S.H., et al., Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics, 2010. 4(3): p. 032204.
51. Zhang, T. and F.D. Blum, Cationic surfactant blocks radical-inhibiting sites on silica. J Colloid Interface Sci, 2017. 504: p. 111-114.
52. Viratyaporn, W. and R.L. Lehman, Effect of nanoparticles on the thermal stability of PMMA nanocomposites prepared by in situ bulk polymerization. Journal of Thermal Analysis and Calorimetry, 2011. 103(1): p. 267-273.
53. Demir, M.M., et al., PMMA/Zinc Oxide Nanocomposites Prepared by In-Situ Bulk Polymerization. Macromolecular Rapid Communications, 2006. 27(10): p. 763-770.
54. Morra, M., et al., On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. Journal of Colloid and Interface Science, 1990. 137(1): p. 11-24.
55. Fritz, J.L. and M.J. Owen, Hydrophobic recovery of plasma-treated polydimethylsiloxane. Journal of Adhesion, 1995. 54(1-2): p. 33-45.
指導教授 曹嘉文(Cha-Wen Tsao) 審核日期 2017-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明