參考文獻 |
REFERENCE
1. X. Yin, W. Chen, J. Eomb, L.E. Clarke, S. H. Kim, P.L. Patel, S. Yu, G. P. Kyle. China′s Transportation Energy Consumption and CO2 Emissions from A Global Perspective, Energy Policy, 2015. 82: p. 233-248.
2. Q. Zhang, E. Uchaker, S. L. Candelariaza, G. Cao. Nanomaterials for Energy Conversion and Storage, Chem Soc Rev, 2013. 42 (7): p. 3127-3171.
3. J. R. Miller, P. Simon. Materials Science. Electrochemical Capacitors for Energy, Management. Science, 2008. 321(5889): p. 651-652.
4. K. Kalyanasundaram, M. Gratzel. Themed Issue: Nanomaterials for Energy Conversion and Storage, Journal of Materials Chemistry, 2012. 22 (46): p. 24190-24194.
5. A. B. M. S. Ali. Smart Grid: Opportunities, Developments, and Trends. Springer-Verlag London, 2013:
6. P. Simon , Y. Gogotsi , B. Dunn. Where Do Batteries End and Supercapacitors Begin?, Science., 2014. 343:p 1210-1211.
7. M. Armand. J.-M. Tarascon. Building Better Batteries, Nature., 2008. 451: p. 652-657.
8. J.-M. Tarascon, M. Armand. Issues and Challenges Facing Rechargeable Lithium Batteries, Nature, 2001 (414) 171-179.
9. H. Zhao, Q. Wu, S. Hu, H. Xu, C. N. Rasmussen. Review of Energy Storage System for Wind Power Integration Support, Applied Energy, 2015. 137: p. 545-553.
10. G. Ren, G. Ma, N. Cong. Review of Electrical Energy Storage System for Vehicular Applications, Renewable and Sustainable Energy Reviews, 2015. 41: p. 225-236.
11. M. H. Han, E. Gonzalo, G. Singha, T. Rojo. A Comprehensive Review of Sodium Layered Oxides: Powerful Cathodes for Na-Ion Batteries, Energy & Environmental Science, 2015. 8 (1): p. 81-102.
12. Y. You, A. Manthiram. Progress in High-Voltage Cathode Materials for Rechargeable Sodium-Ion Batteries, Advanced Energy Materials, 2018. 8 (2): p. 1701785.
13. Yinghua Chena, Yanming Zhaoa,∗, Xiaoning Anb, Jianmin Liuc, Youzhong Donga, Ling Chena. Preparation and Electrochemical Performance Studies on Cr-Doped Li3V2(PO4)3 as Cathode Materials for Lithium-Ion Batteries, Electrochimica Acta, 2009. 54 (24): p. 5844-5850.
14. N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba. Research Development on Sodium-Ion Batteries, Chem Rev, 2014. 114 (23): p. 11636-82.
15. Q. Ni, Y. Bai, F. Wu, C. Wu. Polyanion-Type Electrode Materials For Sodium-Ion Batteries, Adv. Sci, 2017. 4 (3): p. 1-24.
16. H. Kim, H. Kim, Z. Ding, M. H. Lee, K. Lim, G. Yoon, K. Kang. Recent Progress in Electrode Materials for Sodium-Ion Batteries, Advanced Energy Materials, 2016. 6 (19): p. 1600943.
17. G. -L Xu, R. Amine, A. Abouimrane, H. Che, M. Dahbi, Z. -F. Ma, I. Saadoune, J. Alami, W. L. Mattis, F. Pan, Z. Chen, K. Amine. Challenges in Developing Electrodes, Electrolytes, and Diagnostics Tools to Understand and Advance Sodium-Ion Batteries., Advanced Energy Materials, 2018. 8 (14): p. 1-63.
18. J. Kim, H. Kim, K. Kang. Conversion-Based Cathode Materials for Rechargeable Sodium Batteries, Advanced Energy Materials, 2018. 8 (17): p. 1-20.
19. F. Wu, C. Zhao, S. Chen, Y. Lu, Y. Hou, Y. -S. Hu, J. Maier, Y. Yu. Multi-Electron Reaction Materials for Sodium-Based Batteries, Materials Today, 2018. 21 (9): p. 960-973.
20. J.W. Choi, D. Aurbach. Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities, Nature Reviews Materials, 2016. 1(4): p. 1-16.
21. Y. You, X. -L, Wu. Y. -X, Yin, Y. -G. Guo. High-Quality Prussian Blue Crystals as Superior Cathode Materials for Room-Temperature Sodium-Ion Batteries, Energy Environ. Sci., 2014, (7): p. 1643–1647.
22. G. Chen, Q. Huang, T. Wu, L. Lu. Polyanion Sodium Vanadium Phosphate for Next Generation of Sodium‐Ion Batteries—A Review, Adv. Funct. Mater, 2020: p. 1-23.
23. S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier, Y. Yu. Challenges and Perspectives for NASICON-Type Electrode Materials for Advanced Sodium-Ion Batteries, Adv. Mater, 2017. 29 (48): p. 1-21.
24. Y. -U Park, D. -H. Seo, H. -S. Kwon, B. Kim, J. Kim, H. Kim, I. Kim, H. -I. Yoo, K. Kang. A New High-Energy Cathode for a Na-Ion Battery with Ultrahigh Stability, J Am Chem Soc, 2013. 135 (37): p. 13870-13878.
25. W. Duan, Z. Zhu, H. Li, Z. Hu, K. Zhang, F. Cheng, J. Chen. Na3V2(PO4)3@C Core–Shell Nanocomposites for Rechargeable Sodium-Ion Batteries,. J. Mater. Chem. A, 2014. 2 (23): p. 8668-8675.
26. Y. Wang, H. Li, P. He, E. Hosono, H. Zhou. Nano Active Materials for Lithium-Ion Batteries, Nanoscale, 2010. 2 (8): p. 1294-1305.
27. Y. Cai, X. Cao, Z. Luo, G. Fang, F. Liu, J. Zhou, A. Pan, S. Liang. Caging Na3V2(PO4)2F3 Microcubes in Cross-Linked Graphene Enabling Ultrafast Sodium Storage and Long-Term Cycling, Adv. Sci, 2018. 5 (9): p. 1-10.
28. L. Zhao, H. Zhao, Z. Du, J. Wang, X. Long, Z. Lia, K. Swierczek. Delicate Lattice Modulation Enables Superior Na Storage Performance of Na3V2(PO4)3 as Both an Anode and Cathode Material for Sodium-Ion Batteries: Understanding The Role of Calcium Substitution for Vanadium, J. Mater. Chem. A, 2019. 7 (16): p. 9807-9814.
29. S. -Y. Chung, J. T. Bloking, Y. -M. Chiang. Electronically Conductive Phospho-Olivines as Lithium Storage Electrodes, Nature Materials, 2002. 1 (2): p. 123-128.
30. C. Liu, Z. G. Neale, G. Cao. Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries, Materials Today, 2016. 19 (2): p. 109-123.
31. J.-K. Park. Principles and Applications of Lithium Secondary Batteries, Wiley-VCH Verlag & Co. KGaA, Boschstr, 12, 69469 Weinheim, Germany, 2012.
32. H. Wu, Y. Cui. Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries. Nano Today, 2012. 7 (5): p. 414-429.
33. M. N. Obrovac, V. L. Chevrier. Alloy Negative Electrodes For Li-Ion Batteries. Chem Rev, 2014. 114 (23): p. 11444-11502.
34. S. Goriparti, E. Miele, F. D. Angelis, E. D. Fabrizio, R. P. Zaccaria, C. Capiglia. Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries, Journal of Power Sources, 2014. 257: p. 421-443.
35. Y. Wang, G. Cao. Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides, Chem. Mater., 2006 (18): p. 2787-2804.
36. M. Winter, J. O. Besenhard, M. E. Spahr, P. Novµk. Insertion Electrode Materials for Rechargeable Lithium Batteries, Advanced Mater, 1998. 10 (10) 725-764.
37. A. S. Aricò1, P. Bruce, B. Scrosati, J. -M. Tarascon, W. V. Schalkwijk. Nanostructured Materials for Advanced Energy Conversion and Storage Devices, Nature Materials, 2005. 4: p. 366-377.
38. E. Antolini. LiCoO2: Formation, Structure, Lithium and Oxygen Nonstoichiometry, Electrochemical Behaviour and Transport Propertie,. Solid State Ionics, 2004. 170 (3-4): p. 159-171.
39. J. Wang, X. Sun. Olivine LiFePO4: The Remaining Challenges for Future Energy Storage, Energy Environ. Sci, 2015, 8 (4): p. 1110–1138.
40. L. -X. Yuan, Z. -H. Wang, W. -X. Zhang, X. -L. Hu, J.-T. Chen, Y. -H. Huang, J. B. Goodenough. Development and Challenges of LiFePO4 Cathode Material for Lithium-Ion Batteries. Energy Environ. Sci., 2011. 4 (2): p. 269-284.
41. R. Koksbang, J. Barker, H. Shi, M.Y. Sa~di. Cathode Materials for Lithium Rocking Chair Batteries, Solid State Ionics, 1996. (84): p. 1-21.
42. M. -C. Lin, M. Gong, B. Lu1, Y. Wu, D. -Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B. -J. Hwang, H. Dai. An Ultrafast Rechargeable Aluminium-Ion Battery. Nature, 2015. 520 (7547): p. 325-358.
43. D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi. Prototype Systems for Rechargeable Magnesium Batteries, Nature, 2000 (407) 724-727.
44. D. Kundu, E. Talaie, V. Duffort, L. F. Nazar. The Emerging Chemistry of Sodium Ion Batteries For Electrochemical Energy Storage, Angew Chem., 2015. 54 (11): p. 3431-3448.
45. M. S. Islam, C. A. J. Fisher. Lithium and Sodium Battery Cathode Materials: Computational Insights Into Voltage, Diffusion and Nanostructural Properties. Chem Soc Rev, 2014. 43 (1): p. 185-204.
46. R. Mukherjee, R. Krishnan, T. -M. Lu, N. Koratkara. Nanostructured Electrodes for High-Power Lithium Ion Batteries, Nano Energy, 2012. 1 (4): p. 518-533.
47. P. Roy, S. K. Srivastava. Nanostructured Anode Materials for Lithium Ion Batteries, Journal of Materials Chemistry A., 2015. 3 (6): p. 2454-2484.
48. I. Lahiri, W. Choi. Carbon Nanostructures In Lithium Ion Batteries: Past, Present, and Futur,. Critical Reviews in Solid State and Materials Sciences, 2013. 38 (2): p. 128-166.
49. A. L. M. Reddy, S. R. Gowda, M. M. Shaijumon, P. M. Ajayan. Hybrid Nanostructures for Energy Storage Applications, Adv. Mater, 2012. 24 (37): p. 5045-5064.
50. M. Srivastava, J. Singh, T. Kuila, R. K. Layek, N. H. Kime, J. H. Lee. Recent Advances In Graphene and Its Metal-Oxide Hybrid Nanostructures for Lithium-Ion Batteries, Nanoscale, 2015. 7 (11): p. 4820-4868.
51. F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A. C. Ferrari, R. S. Ruoff, V. Pellegrin. 2D Materials. Graphene, Related Two-Dimensional Crystals, and Hybrid Systems for Energy Conversion and Storage, Science, 2015. 347 (6217): p. 1-9.
52. M. S. Whittingham. Ultimate Limits to Intercalation Reactions for Lithium Batteries, Chem Rev, 2014. 114 (23): p. 11414-11443.
53. E. Uchaker, G. Cao. Mesocrystals as Electrode Materials for Lithium-Ion Batteries, Nano Today, 2014. 9 (4): p. 499-524.
54. L. Mai, X. Tian, X. Xu, L. Chang, L. Xu. Nanowire Electrodes for Electrochemical Energy Storage Devices, Chem Rev, 2014. 114 (23): p. 11828-11862.
55. J. B Goodenough, K.S. Park. The Li-Ion Rechargeable Battery: A Perspective, J. Am. Chem. Soc, 2013. 135 (4): p. 1167-1176.
56. J. B. Goodenough, Y. Kim. Challenges for Rechargeable Li Batteries, Chem. Mater, 2010. 22 (3): p. 587-603.
57. V.A. Agubra, J.W. Fergus. The Formation And Stability of The Solid Electrolyte Interface on The Graphite Anode, Journal of Power Sources, 2014. 268: p. 153-162.
58. M. Zhi, C. Xiang, J. Li, M. Li, N. Wu. Nanostructured Carbon-Metal Oxide Composite Electrodes for Supercapacitors: A Review, Nanoscale, 2013. 5(1): p. 72-88.
59. M. M. Kalantarian, S. Asgari, P. Mustarelli. A Theoretical Approach to Evaluate The Rate Capability of Li-Ion Battery Cathode Materials, J. Mater. Chem. A, 2014. 2 (1): p. 107-115.
60. P. Adelhelm, P. Hartmann, C. L. Bender, M. Busche, C. Eufinger, J. Janek. From Lithium to Sodium: Cell Chemistry of Room Temperature Sodium-Air and Sodium-Sulfur Batteries. Beilstein J Nanotechnol, 2015. 6: p. 1016-1055.
61. C. Fang, Y. Huang, W. Zhang, J. Han, Z. Deng, Y. Cao, H. Yang. Routes to High Energy Cathodes of Sodium-Ion Batteries, Adv. Energy Mater. 2016. 6: p. 1-18.
62. C. Wang, Y. Xu, Y. Fang, M. Zhou, L. Liang, S. Singh, H. Zhao, A. Schober, Y. Lei. Extended π‑Conjugated System for Fast-Charge and Discharge Sodium-Ion Batteries, J. Am. Chem. Soc. 2015. 137: p. 3124−3130.
63. V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. C. -G. Alezb T. Rojo. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci, 2012. 5 (3): p. 5884-5901.
64. C. Delmas, J. -J. Braconnier, C. Fouassier, P. Hagenmuller. Electrochemical Intercalation of Sodium In NaxCO2 Bronzes, Solid state ionic, 1981 (34): p. 165-169.
65. C. Delmas, C. Fouassier, P. Hagenmullerlma. Structural Classification And Properties Of The Layered Oxidess, Physica, 1980. 99B: p. 81-85.
66. I. Saadoune, A. Maazaz, M. Me´ne´ trier, C. Delmas. On The NaxNi0.6Co0.4O2 System: Physical and Electrochemical Studies, Journal of Solid State Chemistry, 1996. 122: p. 111–117.
67. D. H. Lee, J. Xuz, Y. S. Meng. An Advanced Cathode for Na-Ion Batteries with High Rate and Excellent Structural Stability, Phys. Chem. Chem. Phys., 2013. 15; p. 3304-3312.
68. S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials, Energy Environ. Sci, 2011. 4(9): p. 3680-3688.
69. J. -J. Ding, Y. -N. Zhou, Q. Sun, Z. -W. Fu. Cycle Performance Improvement of NaCrO2 Cathode by Carbon Coating for Sodium Ion Batteries. Electrochemistry Communications, 2012. 22: p. 85-88.
70. Z. Gong, Y. Yang. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries, Energy Environ. Sci, 2011. 4 (9): p. 3223-3243.
71. C. Masquelier, L. Croguennec. Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries, Chem. Rev, 2013. 113 (8): p. 6552-6591.
72. Y. Fang, J. Zhang, L. Xiao, X. Ai, Y. Cao, H. Yang. Phosphate Framework Electrode Materials for Sodium Ion Batteries. Adv. Sci, 2017. 4 (5): p. 1-21.
73. W. Ren, Z. Zheng, C. Xu, C. Niu, Q. Wei, Q. An, K. Zhao, M. Yan, M. Qin, L. Mai. Self-Sacrificed Synthesis of Three-Dimensional Na3V2(PO4)3 Nano Fiber Network for High-Rate Sodium–Ion Full Batteries, Nano Energy, 2016. 25: p. 145-153.
74. H. Li, C. Wu, Y. Bai, F. Wu, M. Wang. Controllable Synthesis of High-Rate and Long Cycle-Life Na3V2(PO4)3 for Sodium-Ion Batteries, Journal of Power Sources, 2016. 326: p. 14-22.
75. Z. Jian, L. Zhao, H. Pan, Y. -S. Hu, H. Li, W. Chen, L. Chen. Carbon Coated Na3V2(PO4)3 as Novel Electrode Material for Sodium Ion Batteries. Electrochemistry Communications, 2012. 14 (1): p. 86-89.
76. W. Song, X. Ji, Z. Wu, Y. Zhu, Y. Yang, J. Chen, M. Jing, F. Lia, C. E. Banks. First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3, J. Mater. Chem. A, 2014. 2: p. 5358–5362.
77. K. Saravanan, C. W. Mason, A. Rudola, K. H. Wong, P. Balaya. The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries, Adv. Energy Mater, 2013. 3 (4): p. 444-450.
78. M. Bianchini, N. Brisset, F. Fauth, F. Weill, E. Elkaim, E.. Suard, C. Masquelier, L. Croguennec. Na3V2(PO4)2F3 Revisited: A High-Resolution Diffraction Study, Chem. Mater, 2014. 26 (14): p. 4238-4247.
79. M. Bianchini, F. Fauth, N. Brisset, F. Weill, E. Suard, C. Masquelier, L. Croguennec. Comprehensive Investigation of the Na3V2(PO4)2F3–NaV2(PO4)2F3 System by Operando High Resolution Synchrotron X-ray Diffraction, Chem. Mater, 2015. 27 (8): p. 3009-3020.
80. R. A. Shakoor, D. -H. Seo, H. Kim, Y. -U. Park, J. Kim, S. -W. Kim, H. Gwon, S. Lee, K. Kang. A Combined First Principles and Experimental Study on Na3V2(PO4)2F3 for Rechargeable Na Batteries, J. Mater. Chem, 2012. 22 (38): p. 20535-20541.
81. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. Phospho olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc, 144: p. 1188-1194.
82. F. Sauvage, E. Quarez, J. -M. Tarascon, E. Baudrin. Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5. Solid State Sciences, 2006. 8 (10): p. 1215-1221.
83. F. Zhou, M. Cococcioni, C. A. Marianetti, D. Morgan, G. Ceder. First-Principles Prediction of Redox Potentials In Transition-Metal Compounds Withlda+U. Physical Review B, 2004. 70 (23): p. 1-8.
84. H. Berg, J. O. Thomas. Neutron Diffraction Study of Electrochemically Delithiated LiMn2O4 spinel, Solid state, 1999 (126): p. 227-234.
85. Qi, L. Mu, J. Zhao, Y. -S. Hu, H. Liu, S. Daid. pH-Regulative Synthesis of Na3(VPO4)2F3 Nanoflowers and Their Improved Na Cycling Stability. J. Mater. Chem. A, 2016. 4 (19): p. 7178-7184.
86. J. Song, L. Wang, Y. Lu, J. Liu, B. Guo, P. Xiao, J. -J. Lee, X. -Q. Yang, G. Henkelman, J. B. Goodenough. Removal of Interstitial H2O in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery, J. Am. Chem. Soc. 2015. 137: p. 2658−2664.
87. L. Wang, Y. Lu, J. Liu, M. Xu, J. Cheng, D. Zhang, J. B. Goodenough. A Superior Low-Cost Cathode for a Na-Ion Battery, Angew. Chem. 2013. 125: p. 2018 –2021.
88. Y. You, X. Yu, Y. Yin, K. -W. Nam. Sodium Iron Hexacyanoferrate with High Na Content as a Na-Rich Cathode Material for Na-Ion Batteries, Nano Research 2015, 8(1): p. 117–128.
89. Y. Lu,z L. Wang, J. Cheng, J. B. Goodenough. Prussian Blue: A New Framework of Electrode Materials for Sodium Batteries, Chem. Commun., 2012. 48: p. 6544–6546.
90. D. Asakura, C. H. Li, Y. Mizuno, M. Okubo, H. Zhou, D. R. Talham. Bimetallic Cyanide-Bridged Coordination Polymers as Lithium Ion Cathode Materials: Core@Shell Nanoparticles with Enhanced Cyclability, J. Am. Chem. Soc. 2013. 135: p. 2793−2799.\r
91. D. Chao, X. Xia, J. Liu, Z. Fan, C. F. Ng, J. Lin, H. Zhang , Z. X. Shen, H. J. Fan. A V2O5/Conductive-Polymer Core/Shell Nanobelt Array on Three-Dimensional Graphite Foam: a High-Rate, Ultrastable, and Freestanding Cathode for Lithium-Ion Batteries. Adv. Mater, 2014. 26 (33): p. 5794-800.
92. S. Deng, H. Zhu, G. Wang, M. Luo, S. Shen, C. Ai, L. Yang, S. Lin, Q. Zhang, L. Gu, B. Liu, Y. Zhang, Q. Liu, G. Pan, Q. Xiong, X. Wang, X. Xia, J. Tu. Boosting Fast Energy Storage by Synergistic Engineering of Carbon and Deficiency, Nat Commun, 2020. 11(1): p. 1-11.
93. Q. Zheng, W. Liu, X. Li, H. Zhang, K. Feng, H. Zhang. Facile Construction of Nanoscale Laminated Na3V2(PO4)3 for A High-Performance Sodium Ion Battery Cathode. J. Mater. Chem. A, 2016. 4 (48): p. 19170-19178.
94. G. S. Bang, K. W. Nam, J. Y. Kim, J. Shin, J. W. Choi, S. -Y. Choi. Effective Liquid-Phase Exfoliation and Sodium Ion Battery Application of MoS2 Nanosheets, ACS Appl. Mater. Interfaces, 2014. 6 (10): p. 7084-7089.
95. M. G. Boebinger, M. Xu, X. M, H. Chen, R. R. Unocic, M. T. McDowell. Distinct Nanoscale Reaction Pathways in a Sulfide Material for Sodium and Lithium Batteries. J. Mater. Chem. A, 2017. 5 (23): p. 11701-11709.
96. M. Chen, X. Xia, J. Yin, Q. Chen. Construction of CO3O4 Nanotubes as High-Performance Anode Material for Lithium Ion Battries. Electrochimica Acta, 2015. 160: p. 15-21.
97. M. Chen, W. Zhou, M. Qi, J. Yin, X. Xia, Q. Chen. Exploring Highly Porous Co2P Nanowire Arrays for Electrochemical Energy Storage, Journal of Power Sources, 2017. 342: p. 964-969.
98. Y. Li, M. Chen, B. Liu, Y. Zhang, X. Liang, X. Xia. Heteroatom Doping: an Effective Way to Boost Sodium Ion Storage. Adv. Energy Mater, 2020: p. 1-36.
99. Z. Li, C. Bommier, Z. S. Chong, Z. Jian, T. W. Surta, X. Wang, Z. Xing, J. C. Neuefeind, W. F. Stickle, M. Dolgos, P. A. Greaney, X. Ji. Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping, Adv. Energy Mater, 2017. 7(18): p. 1-10.
100. D. Xie, J. Zhang, G. Pan, H. Li, S. Xie, S. Wang, H. Fan, F. Cheng, X. Xia.. Functionalized N-Doped Carbon Nanotube Arrays: Novel Binder-Free Anodes for Sodium-Ion Batteries, ACS Appl. Mater. Interfaces, 2019. 11 (20): p. 18662-18670.
101. S. A. Holgate. Unsderstanding Solid State Physics. CRC Press, Taylor & Francis Group, 2010; p. 189-192.
102. F. Xiong, S. Tan, X. Yao, Q. An, L. Mai. Crystal Defect Modulation In Cathode Materials for Non-Lithium Ion Batteries: Progress And Challenges. Materials Today, 2021: p. 1-22.
103. D. Li, L. Zhang, H. Chen, L. -X. Ding, S. Wanga, H. Wang. Nitrogen-Doped Bamboo-Like Carbon Nanotubes: Promising Anode Materials for Sodium-Ion Batteries. Chem. Commun., 2015. 51 (89): p. 16045-16048.
104. L. Fu, K. Tang, K. Song, P. A. V Aken, Y. Yu, J. Maierb. Nitrogen Doped Porous Carbon Fibres As Anode Materials for Sodium Ion Batteries With Excellent Rate Performance, Nanoscale, 2014. 6 (3): p. 1384-1389.
105. S. Liu, Z. Cai, J. Zhou, A. Panab, S. Liang. Nitrogen-Doped TiO2 Nanospheres for Advanced Sodium-Ion Battery and Sodium-Ion Capacitor Applications. J. Mater. Chem. A, 2016. 4 (47): p. 18278-18283.
106. Yu.Wang, X. Wang, X. Li, R. Yu, M. Chen, K. Tang, X. Zhang. The Novel P3-Type Layered Na0.65Mn0.75Ni0.25O2 Oxides Doped by Nonmetallic Elements for High Performance Sodium-Ion Batteries, Chemical Engineering Journal 360 (2019) 139–147.
107. R. J. Cle´ment, J. Billaud, A. R. Armstrong, G. Singh, T. Rojo, P. G. Bruce, C. P. Grey. Structurally Stable Mg-Doped P2-Na2/3Mn1−YMgyO2 Sodium-Ion Battery Cathodes with High Rate Performance: Insights from Electrochemical, NMR and Diffraction Studies. Energy Environ. Sci, 2016. 9 (10): p. 3240-3251.
108. P. -F Wang, Y. You, Y. -X. Yin, Y. -S. Wang, L. -J. Wan, L. Gu, Y. -G. Guo. Suppressing the P2-O2 Phase Transition of Na0.67Mn0.67Ni0.33O2 by Magnesium Substitution for Improved Sodium-Ion Batteries, Angew. Chem, 2016. 55 (26): p. 7445-7449.
109. J. Qu, D. Wang, Z. -G. Yang, Z. -G. Wu, L. Qiu, X. -D. Guo, J. -T. Li, B. -H. Zhong, X. -C. Chen, S. -X. Dou. Ion-Doping-Site-Variation-Induced Composite Cathode Adjustment: A Case Study of Layer-Tunnel Na0.6MnO2 with Mg2+ Doping at Na/Mn Site. ACS Appl. Mater. Interfaces, 2019. 11 (30): p. 26938-26945.
110. Z. -Y. Li, J. Zhang, R. Gao, H. Zhang, Z. Hu, X. Liu. Unveiling the Role of Co in Improving the High-Rate Capability and Cycling Performance of Layered Na0.7Mn0.7Ni0.3-xCoxO2 Cathode Materials for Sodium-Ion Batteries, ACS Appl. Mater. Interfaces, 2016. 8 (24): p. 15439-15448.
111. L. Yang, S. -H. Luo, Y. Wang, Y. Zhana, Q. Wang, Y. Zhang, X. Liu, W. Mu, F. Teng. Cu-Doped Layered P2-Type Na0.67Ni0.33-xCuxMn0.67O2 Cathode Electrode Material with Enhanced Electrochemical Performance for Sodium-Ion Batteries. Chemical Engineering Journal, 2021. 404: p. 1-9.
112. W. Liu, H. Yi, Q. Zheng, X. Li, H. Zhang. Y-Doped Na3V2(PO4)2F3 Compounds for Sodium Ion Battery Cathodes: Electrochemical Performance and Analysis of Kinetic Properties, J. Mater. Chem. A, 2017. 5 (22): p. 10928-10935.
113. Y. Zhang, S. Guo, H. Xu. Synthesis of Uniform Hierarchical Na3V1.95Mn0.05(PO4)2F3@C Hollow Microspheres as a Cathode Material for Sodium-Ion Batteries, J. Mater. Chem. A, 2018. 6 (10): p. 4525-4534.
114. H. Li, X. Yu, Y. Bai, F. Wu, C. Wu, L. -Y. Liu, X. -Q. Yang. Effects of Mg Doping on The Remarkably Enhanced Electrochemical Performance of Na3V2(PO4)3 Cathode Materials for Sodium Ion Batteries, J. Mater. Chem. A, 2015. 3 (18): p. 9578-9586.
115. U. Holzworth, N. Gibran. The Scherrer Equation Versus The "Debye-Scherrer Equation". Nature Nanotechology. 2011 (6): p. 534.
116. J. A. S. Oh, L. He, A. Plewa, M. Morita, Y. Zhao, T. Sakamoto, X. Song, W. Zhai, K. Zeng, L. Lu. Composite NASICON (Na3Zr2Si2PO12) Solid-State Electrolyte with Enhanced Na+ Ionic Conductivity: Effect of Liquid Phase Sintering. ACS Appl. Mater. Interfaces, 2019. 11 (43): p. 40125-40133.
117. L. Bi, X. Li, X. Liu, Q. Zheng, D. Lin. Enhanced Cycling Stability and Rate Capability in a La-Doped Na3V2(PO4)3/C Cathode for High-Performance Sodium Ion Batteries. ACS Sustainable Chem. Eng, 2019. 7 (8): p. 7693-7699.
118. Q. Wang, Y. Zhao, J. Gao, H. Geng, J. Li, H. Jin. Triggering the Reversible Reaction of V3+/V4+/V5+ in Na3V2(PO4)3 by Cr3+ Substitution. ACS Appl. Mater. Interfaces, 2020. 12 (45): p. 50315-50323.
119. R.K.B. Gover, A. Bryan, P Burns, J. Barker. The Electrochemical Insertion Properties of Sodium Vanadium Fluorophosphate, Na3V2(PO4)2F3. Solid State Ionics, 2006. 177(17-18): p. 1495-1500.
120. J. -M. Le Meins, M. -P. Crosnier-Lopez,* A. Hemon-Ribaud, G. Courbion. Phase Transitions in the Na3M2(PO4)2F3 Family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, Thermal, Structural, and Magnetic Studies, Solid state chemistry 1999 (148) 260-277.
121. W. Yuana, J. Yana, Z. Tang, O. Shaa, J. Wang, W. Maoa, L. Mab. Mo-Doped Li3V2(PO4)3/C Cathode Material with High Rate Capability and Long Term Cyclic Stability, Electrochimica Acta, 2012. 72: p. 138-142.
122. H. Zhang, Y. Tang, J. Shen, X. Xin, L. Cui, L. Chen, C. Ouyang, S. Shi, L. Chen. Antisite Defects and Mg Doping In LiFePO4:a First-Principles Investigation. Appll Physics A, 2011. 104 (2): p. 529-537.
123. B. Wang, B. Xu, T. Liu, P. Liu, C. Guo, S. Wang, Q. Wang, Z. Xiong, D. Wang, X. S. Zhao. Mesoporous Carbon-Coated LiFePO4 Nanocrystals Co-Modified With Graphene and Mg2+ Doping as Superior Cathode Materials for Lithium Ion Batteries, Nanoscale, 2014. 6 (2): p. 986-995.
124. A. C. Ferrari, J. Robertson. Interpretation of Raman Spectra of Disordered and Amorphous Carbon, Physical reviewe B 2000 (20): p. 14095-14107.
125. A. Sadezk, H. Muckenhuber, H. Grothe, R. Niessner, U. Po¨ schl. Raman Microspectroscopy of Soot and Related Carbonaceous Materials: Spectral Analysis And Structural Information. Carbon, 2005. 43 (8): p. 1731-1742.
126. NIST X-ray Photoelectron Spectroscopy Database Home Page. https://srdata.nist.gov/xps/EngElmSrchQuery.aspx?EType=PE&CSOpt=Retri_ex_dat&Elm=Mg (accessed April 7, 2021)
127. H. Li, H. Tang, C. Ma, Y. Bai, J. Alvarado, B. Radhakrishnan, S. P. Ong, F. Wua, Y. S. Meng, C. Wu. Understanding the Electrochemical Mechanisms Induced by Gradient Mg2+ Distribution of Na-Rich Na3+xV2–xMgx(PO4)3/C for Sodium Ion Batteries, Chem. Mater, 2018. 30(8): p. 2498-2505.
128. K. Li , J. Shao, D. Xue. Site Selectivity In Doped Polyanion Cathode Materials For Li-Ion Batteries, Functional Materials Letters, 2013. 06 (04): p. 1-3.
129. J. -S. Park, J. Kim, J. H. Jo, S. -T. Myung. Role of The Mn Substituent in Na3V2(PO4)3 for High-Rate Sodium Storage, J. Mater. Chem. A, 2018. 6 (34): p. 16627-16637.
130. E. M. Mkawi, K. Ibrahim, M. K. M. Ali, M. A. Farrukh, A. S. Mohamed. The Effect of Dopant Concentration on Properties of Transparent Conducting Al-Doped ZnO Thin Films for Efficient Cu2ZnSnS4 Thin-Film Solar Cells Prepared By Electro deposition Method,. Appl. Nanosci, 2015. 5 (8): p. 993-1001.
131. W. Song, X. Ji, Z. Wu, Y. Yang, Z. Zhou, F. Li, Q. Chen, C. E. Banks. Exploration of Ion Migration Mechanism and Diffusion Capability for Na3V2(PO4)2F3 Cathode Utilized in Rechargeable Sodium-Ion Batteries, Journal of Power Sources, 2014. 256: p. 258-263.
132. L. Deng, F. -D Yu, Y. Xia, Y. -S. Jiang, X. -L. Sui, L. Zhao, X. -H. Meng, L. -F. Que, Z. -B. Wang. Stabilizing Fluorine to Achieve High-Voltage and Ultra-Stable Na3V2(PO4)2F3 Cathode For Sodium Ion Batteries, Nano Energy, 2021. 82: p.
133. Z. -Y. Gu, J. -Z. Guo, Z. -H. Sun, X. -X Zhao, W. -H. Li, X Yang, H. J. Liang, C. -D. Zhao, X. -L Wu. Carbon-Coating-Increased Working Voltage and Energy Density Towards an Advanced Na3V2(PO4)2F3@C Cathode in Sodium-Ion Batteries, Science Bulletin, 2020. 65 (9): p. 702-710.
134. Y. -U. Park, D. -H. Seo, H. Kim, J. Kim, S. Lee, B. Kim, K. Kang. A Family of High-Performance Cathode Materials for Na-ion Batteries, Na3(VO1−xPO4)2F1+2x(0 ≤x≤ 1): Combined First-Principles and Experimental Study. Adv. Funct. Mater, 2014. 24 (29): p. 4603-4614.
135. Z. Jian, C. Yuan , W. Han, X. Lu, L. Gu , X. Xi, Y. -S. Hu , H. Li , W. Chen , D. Chen, Y. Ikuhara, L. Chen. Atomic Structure and Kinetics of NASICON NaxV2(PO4)3 Cathode for Sodium-Ion Batteries. Adv. Funct. Mater, 2014. 24 (27): p. 4265-4272.
136. Q. Zhang, W. Wang, Y. Wang, P. Feng, K. Wang, S. Cheng, K. Jiang. Controllable Construction of 3D-Skeleton-Carbon Coated Na3V2(PO4)3 for High-Performance Sodium Ion Battery Cathode. Nano Energy, 2016. 20: P. 11-19.
137. W. Shen, H. Li, Z. Guo, C. Wang, Z. Li, Q. Xu, H. Liu, Y. Wang, Y. Xia. Double-Nanocarbon Synergistically Modified Na3V2(PO4)3: An Advanced Cathode for High-Rate and Long-Life Sodium-Ion Batteries. ACS Appl. Mater. Interfaces, 2016. 8 (24): p. 15341-15351.
138. J. -Z. Guo, X. -L. Wu, F. Wan, J. Wang, X. -H. Zhang, R. -S. Wang. A Superior Na3V2(PO4)3-Based Nanocomposite Enhanced by Both N-Doped Coating Carbon and Graphene as the Cathode for Sodium-Ion Batteries, Chem. Eur. J, 2015. 21(48): p. 17371-17378.
139. P. Feng, W. Wang, K. Wang, S. Cheng, K. Jiang. Na3V2(PO4)3/C Synthesized by a Facile Solid-Phase Method Assisted with Agarose as A High-Performance Cathode for Sodium-Ion Batteries, J. Mater. Chem. A, 2017. 5 (21): p. 10261-10268.
140. S. -J. Lim, D. -W. Han, D. -H. Nam, K. -S. Hong, J. -Y. Eom, W. -H. Ryu, H. -S Kwon. Structural Enhancement of Na3V2(PO4)3/C Composite Cathode Materials by Pillar Ion Doping for High Power and Long Cycle Life Sodium-Ion Batteries, J. Mater. Chem. A, 2014. 2 (46): p. 19623-19632.
141. M. W. Borsoum. Fundamentals of Ceramics, Institute of Physics Publishing, Bristol and Philadelphia, 2003: p. 80-84.
142. Z. Yang, G. Li, J. Sun, L. Xie, Y. Jiang, Y. Huang, S. Chen. High Performance Cathode Material Based on Na3V2(PO4)2F3 and Na3V2(PO4)3 for Sodium-Ion Batteries, Energy Storage Materials, 2020. : p. 724–730.
143. X. Ma, H. Chen, G. Ceder. Electrochemical Properties of Monoclinic NaMnO2, Journal of The Electrochemical Society, 2011, 158: p. A1307-A1312.
144. P. Vassilaras, X. Ma, X. Li, G. Ceder. Electrochemical Properties of Monoclinic NaNiO2, Journal of The Electrochemical Society, 2013, 160 (2): p. A207-A211.
145. J. Choi, K.-Ho. Kim, C.-Ho. Jung, S.-H Hong. A P2-type Na0.7(Ni0.6Co0.2Mn0.2)O2 cathode with excellent cyclability and rate capability for sodium ion batteries, Chem. Commun., 2019, 55: p. 11575-11578.
146. J. Xu, S.-L. Chou, J.-Li. Wang, H.-K. Liu, S.-X. Dou, J. Xu, S.-L. Chou, J.-L. Wang, H.-K. Liu, S.-X. Dou. Layered P2-Na0.66Fe0.5Mn0.5O2 Cathode Material for Rechargeable Sodium-Ion Batteries, Chem Electro Chem 2014, 1: p. 371 – 374.
147. Y.-E. Zhu, X. Qi, X.. Chen, X. Zhou, X. Zhang, J. Wei, Y. Hub, Z. Zhou. A P2-Na0.67Co0.5Mn0.5O2 cathode material with excellent rate capability and cycling stability for sodium ion batteries, J. Mater. Chem. A, 2016, 4: p. 11103–11109.
148. Y. Xiao, Y.-F. Zhu, H.-R. Yao, P.-F. Wang, X.-D. Zhang, H. Li, X. Yang, L. Gu, Y.-C. Li, T. Wang, Y.-X. Yin, X.-D. Guo, B.-H. Zhong, Y.-G. Guo. A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery, Adv. Energy Mater. 2019, 1803978.
149. D. A. Puspitasari, J. Patra, I.-M. Hung, D. Bresser, T.-C. Lee, J.-K Chang. Optimizing the Mg Doping Concentration of Na3V2−xMgx(PO4)2F3/C for Enhanced Sodiation/Desodiation Properties, ACS Sustainable Chem. Eng. 2021, 9: p. 6962−6971. |