博碩士論文 104386603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.144.107.32
姓名 阮維達(Nguyen Duy Dat)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 金屬冶煉業及都市廢棄物焚化廠排放多氯萘之特性研究
(Characterization of polychlorinated naphthalenes (PCNs) emissions from metallurgical processes and municipal waste incinerators)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 多氯萘於環境無所不在,且因其對環境及人體之危害,斯德哥爾摩公約已將其列為新興持久性有機污染物,因此,多氯萘之環境問題目前備受關注,本研究將調查周界及固定污染源煙道氣排放之多氯萘特性,結果顯示周界多氯萘濃度於工業區高於都市區及鄉村區,此外,夏季濃度高於冬季,而根據多氯萘物種分布指出工業區之多氯萘物種與都會區及鄉村區有顯著性差異,故可推測工業區之多氯萘來源與都會區及鄉村區相異。而根據固定污染源之多氯萘調查結果顯示二次銅冶煉廠排放之多氯萘濃度高於廢棄物焚化爐,且類戴奧辛之多氯萘對煙道氣及飛灰毒性當量濃度分別貢獻1-3%及0.3%,而針對空氣污染防制設備去除多氯萘之結果顯示,活性炭噴注+袋式集塵器及選擇性觸媒還原對煙道氣中多氯萘之去除效率分別可達94.3%及98%。儘管活性碳注入+袋式集塵器及選擇性觸媒還原去除多氯萘之機制不同,兩空氣污染防制設備對多氯萘去除效率皆隨氯數上升而增加,此可推測選擇性還原觸媒對多氯萘之去除機制為脫氯反應且低氯數之多氯萘亦有生成潛勢。本研究了解多氯萘之特性含(1)周界及固定污染源之多氯萘濃度(2)不同空氣污染防制設備對多氯萘之去除效率及排放因子,為典型排放源提供適合之操作參數有效處理煙道氣之多氯萘。
摘要(英) Polychlorinated naphthalenes (PCNs) are ubiquitous in environment and have been receiving much public concern due to the adverse effects on human health and environment. However, study on PCNs has never been conducted in Taiwan in which high potential impacts of these compounds are anticipated. As the first study on PCNs in Taiwan, this study aims to characterize the occurrences of PCNs in ambient air collected from three different sites in northern Taiwan and emissions of PCNs from typical sources including two municipal waste incinerators (MWIs) and two secondary copper smelting (SCS) plants. Results indicate that higher level of PCNs is found at industrial (ID) site compared with those collected from urban (UB) and rural (RR) sites. Concentrations of ambient PCNs are higher in summer compared with those measured in winter for all three sampling sites. Homologue distribution of PCNs measured at ID site is different from two other sites for both gas and particulate phases, suggesting that different sources contribute to PCNs collected at ID site and other sites. Results of the logKp-logPL relationship indicate that both adsorption and absorption govern gas/particle partitioning of atmospheric PCNs. Emission factors of PCNs from SCSs are higher than those observed for MWIs. Minor contributions of dioxin-like PCNs to total TEQ concentration are found for flue gas (1-3%) and fly ash (0.3%). Performances of different air pollution control devices (APCDs) reveal that ACI+BH and SCR are effective for removal of PCNs from flue gas with the removal efficiencies ranging from 94.3 to 98%. Removal efficiency of PCNs achieved with ACI+BH and SCR increases as the chlorination level increases although different mechanisms govern the removal of PCNs in SCR and SDA+ACI+BH. The results suggest that dechlorination in SCR or reformation of low chlorinated homologues might occur within or after SCR, respectively. Increments of PCN concentration and chlorination level of PCNs in flue gas passing through ESP indicate that PCNs are formed in ESP via chlorination mechanism. Significant decrease of temperature in SDA plays an important role in PCN removal due to the transfer of PCNs from gas phase to particulate phase. The diagnostic ratios are firstly proposed and employed in this study for identifying potential sources of PCNs in ambient air. Thermal processes are identified as major sources of PCNs at ID site. PCNs collected at UB and RR sites are mixed sources of thermal emissions and evaporation, however, more influence of thermal sources in winter and more impact of evaporation sources in summer are observed. PCA results indicate that PCNs in some ambient air samples collected are originated from MWIs and SCSs investigated, while PCNs in other samples are emitted from other thermal sources and evaporation from technical mixtures. The results obtained in this study are important for understanding the characteristics of PCNs including (1) level, potential sources and gas/particle partitioning of PCNs in ambient air; (2) emission factors, performances of different APCDs and appropriate operating parameters for effective removal of PCNs in typical sources.
關鍵字(中) ★ 多氯萘去除
★ 都市廢棄焚化爐
★ 二次銅冶煉廠
★ 靜電集塵器
★ 濕式洗滌塔
★ 活性碳注入
★ 半乾式洗滌塔
關鍵字(英) ★ PCN removal
★ Municipal waste incinerator
★ Secondary copper smelting
★ ESP
★ SCR
★ Wet scrubber
★ Activated carbon injection
★ Semi-dry scrubber
論文目次 Table of contents
Chapter 1 Introduction 1
1.1 Background and motivation 1
1.2 Research objectives and scope 5
Chapter 2 Literature Review 7
2.1 Properties of PCNs 7
2.2 Literature on characteristics of PCN in emission sources. 11
2.2.1 Current sources of PCNs 11
2.2.3 Characteristics of PCNs emitted from thermal processes 13
2.3 PCN contamination and potential pollution of PCNs in Taiwan 17
2.4 PCNs in ambient air 18
Chapter 3 Materials and Method 21
3.1 Sampling method 21
3.1.1 Ambient air sampling 21
3.2.2 Flue gas sampling 22
3.2 Sample treatment 27
3.3 Analysis of PCNs 28
3.4 Quality control and quality assurance (QA/QC) 30
3.5 Diagnostic ratios 31
3.6 Gas/particle partitioning 32
3.7 Calculations 34
Chapter 4 Results and Discussion 37
4.1 Characteristics of PCNs in ambient air 37
4.1.1 Atmospheric concentration 37
4.1.2 Homologue distribution and congener profile 42
4.2.3 Potential sources 48
4.2 Characteristics of PCNs emitted from MWIs and SCSs 50
4.2.1 Variation of PCN concentrations before and after APCDs 50
4.2.2 Emission factor 53
4.2.3 Homologues distribution and congener profile 55
4.2.4 Characteristic of dioxin-like PCNs (dl-PCNs) 60
4.2.5 Removal of PCNs achieved with existing APCDs 62
4.2.6 Correlations of homologues and congeners 68
4.2.7 Dominant congeners and chlorination pathway 71
4.3 Characteristics of PCNs in ash and other samples 73
4.4 Diagnostic ratios and principal component analysis 77
4.5 Gas particle partitioning 80
4.5.1 Gas/particle partitioning of ambient PCNs 80
4.5.2 Gas/particle partitioning of PCNs in flue gases 82
Chapter 5 Conclusions and Suggestions 85
5.1 Conclusions 85
5.2 Suggestions 87
References 89
Appendix 102
參考文獻 Abad, E., Caixach, J. and Rivera, J., 1999. Dioxin like compounds from municipal waste incinerator emissions: Assessment of the presence of Polychlorinated naphthalenes. Chemosphere 1, 109-120.
Adrian, M.C. and Paul, T.W., 2009. De-novo formation of dioxins and furans and the memory effect in waste incineration flue gases. Waste Manage. 29, 739–748.
Akyüz, M. and Çabuk, H., 2010. Gas–particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci. Total Environ. 408, 5550-5558.
Ba, T., Zheng, M., Zhang, B., Liu, W., Su, G., Liu, G. and Xiao, K., 2010. Estimation and congener-specific characterization of polychlorinated naphthalene emissions from secondary nonferrous metallurgical facilities in China. Environ. Sci. Technol. 44, 2441-2446.
Baek, S. Y., Choi, S. D., Lee, S. J. and Chang, Y. S., 2008. Assessment of the spatial distribution of coplanar PCBs, PCNs, and PBDEs in a multi-industry region of South Korea using passive air samplers. Environ. Sci. Technol. 42, 7336-7340.
Bai, S.T., Chang, S.H., Duh, J.M., Chang, M.B., 2017. Characterization of PCDD/Fs and dioxin-like PCBs emitted from two woodchip boilers in Taiwan. Chemosphere 189, 284-290.
Bell, W.D., 1953. The relative toxicity of the chlorinated naphthalenes in experimentally produced bovine hyperkeratosis (X-disease). Vet. Med. 48, 135–146.
Bidleman, T.F., Helm, P.A., Braune, B.M. and Gabrielsen, G.W., 2010. Polychlorinated naphthalenes in polar environments - A review. Sci. Total Environ. 408, 2919-2935.
Blankenship, A.L., Kannan, K., Villalobos, S.A., Villeneuve, D.L., Falandysz, J., Imagawa, T., Jakobsson, E., Giesy, J., 2000. Relative potencies of individual polychlorinated naphthalenes and halowax mixtures to induce Ah receptor-mediated responses. Environ. Sci. Technol. 34, 3153−3158.
Chang, M.B., Weng, Y.M., Lee, T.Y., Chi, K.H., 2003. Sampling and analysis of ambient dioxins in northern Taiwan. Chemosphere. 51, 1103-1110.
Chang, M.B., Huang, H.C., Tsai, S.S., Chi, K.H. and Chang-Chien, G.P., 2006. Evaluation of the emission characteristics of PCDD/Fs from electric arc furnaces. Chemosphere 62, 1761-1773.
Chang, M.B.; Lin, J.J.; Chang, S.H., 2002. Characterization of dioxin emissions from two municipal solid waste incinerators in Taiwan. Atmos. Environ. 36, 279–286.
Chen, C.L., Tang, S.T., Zhu, J., 2017. Atmospheric PM2.5 and polychlorinated dibenzo-p-dioxin and dibenzofuran in a coastal area of central Taiwan. Aerosol Air Qual. Res. 17, 2829-2846.
Chi, K.H., Chang, M.B., Chang-Chien, G.P. and Lin, C., 2005. Characteristics of PCDD/F congener distributions in gas/particulate phases and emissions from two municipal solid waste incinerators in Taiwan. Sci. Total Environ. 347, 148-162.
CICAD (Concise International Chemical Assessment Document) No. 34, 2001. Polychlorinated naphthalenes. International programme on chemical safety. 2001 (Available at:) www.who.int/ipcs/publications/cicad/en/cicad34.pdf.
Crookes, MT., Howe, PD., 1993. Halogenated naphthalenes, Department of Environment, London, UK.
Die, Q, Nie, Z., Fang, Y., Yang, Y., Gao, X., Tian, Y., He, J., Liu, F., Huang, Q., Tian, S., 2016. Seasonal and spatial distributions of atmospheric polychlorinated naphthalenes in Shanghai, China. Chemosphere 144, 2134-2141.
Egebäck, AL., Wideqvist, U., Järnberg, U., Asplund, L., 2004. Polychlorinated naphthalenes in Swedish background air. Environ. Sci. Technnol. 38, 4913–4920.
Engwall, M., Brunstrom, B. and Jakobsson, E., 1994. Ethoxyresorufin O-deethylase (EROD) and aryl hydrocarbon hydroxylase (AHH)-inducing potency and lethality of chlorinated naphthalenes in chicken (Gallus domesticus) and eider duck (Somateria mollissima) embryos. Arch. Toxico. 68, 37-42.
Falandysz, J., 1998. Polychlorinated naphthalenes: An environmental update. Environ. Pollut. 101, 77-90.
Falandysz, J., Fernandes, A., Gregoraszczuk, E. and Rose, M., 2014. The toxicological effects of halogenated naphthalenes: a review of aryl hydrocarbon receptor-mediated (dioxin-like) relative potency factors. J. Environ. Sci. Health C 32, 239-272.
Fernandes, A., Rose, M., Falandysz, J., 2017. Polychlorinated naphthalenes (PCNs) in food and humans. Environ. Int. 104, 1–13.
Fernandes, A., Mortimer, D., Gem, M., Smith, F., Rose, M., Panton, S., Carr, M., 2010. Polychlorinated Naphthalenes (PCNs): Congener specific analysis, occurrence in food, and dietary exposure in the UK. Environ. Sci. Technol. 44, 3533–3538.
Fernandes, F. Smith, R Petch, N Brereton, E. Bradley, S. Panton, M. Carr and M.Rose, 2009. Investigation into the levels of environmental contaminants in Scottish marine and freshwater Fin fish and Shellfish. Food Standards Agency Scotland. Scotland.
Finizio, A., Mackay, D., Bidleman, T., Harner, T., 1997. Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmos. Environ. 31, 2289-2296.
Frank, W. and Mackay, D., 1993. Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio 22, 10-18.
Goss, K.U. and Schwarzenbach, R.P., 1998. Gas/solid and gas/liquid partitioning of organic compounds: critical evaluation of the interpretation of equilibrium constants. Environ. Sci. Technol. 32, 2025–2032.
Gregoris, E., Argiriadis, E., Vecchiato, M., Zambon, S., De Pieri, S., Donateo, A., Contini, D., Piazza, R., Barbante, C., Gambaro, A., 2014. Gas-particle distributions, sources and health effects of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in Venice aerosols. Sci. Total Environ. 476–477, 393–405.
Haglund, P., Jakobsson, E., Masuda, Y., 1995. Isomer-specific analysis of polychlorinated naphthalenes in Kanechlor KC 400, Yusho rice oil, and adipose tissue of a Yusho victim. Organohalogen Compd. 26, 405–410.
Hanberg, A., Wærn, F., Asplund, L., Haglund, E. and Safe, S., 1990. Proceedings of the ninth international symposium Swedish dioxin survey: Determination of 2,3,7,8-TCDD toxic equivalent factors for some polychlorinated biphenyls and naphthalenes using biological tests. Chemosphere 20, 1161-1164.
Harner, T. and Bidleman, T. F., 1997. Polychlorinated naphthalenes in urban air. Atmos. Environ. 31, 4009-4016.
Harner, T. and Bidleman, T.F., 1998. Measurement of octanol–air partition coefficients for polycyclic aromatic hydrocarbons and polychlorinated naphthalenes. J. Chem. Eng. Data 43, 40–46.
Herbert, B.M.J., Halsall, C.J., Villa, S., Fitzpatrick, L., Jones, K.C., Lee, R.G.M. and Kallenborn, R., 2005. Polychlorinated naphthalenes in air and snow in the Norwegian Arctic: a local source or an Eastern Arctic phenomenon? Sci. Total Environ. 342, 145-160.
Helm, P.A., Bidleman, T.F., Li, H.H., Fellin, P., 2004. Seasonal and spatial variations of polychlorinated naphthalenes and planar polychlorinated biphenyls in arctic air. Environ. Sci. Technol. 38, 5514–21.
Helm, P.A. and Bidleman, T.F., 2005. Gas–particle partitioning of polychlorinated naphthalenes and non- and mono-ortho-substituted polychlorinated biphenyls in arctic air. Sci. Total Environ. 342, 161–173.
Helm, P. A., Kannan, K., Bidleman, T. F., 2006. Polychlorinated naphthalenes in the Great Lakes. In persistent organic pollutants in the Great Lakes. Handbook of environmental chemistry, Hites, R., Ed.; Springer-Verlag: Berlin Vol. 5.
Helm, P. A., Bidleman, T. F., 2003. Current combustion-related sources contribute to polychlorinated naphthalene and dioxin-like polychlorinated biphenyl levels and profiles in air in Toronto, Ontario. Environ. Sci. Technol. 37, 1075-1082.
Herzberg, J., 1947. Chlorakne nach Genuss von chlorierten Paraffin. Dermatol. Wochenschr. 119, 425–433.
Hogarh, J.N., Seike, N., Kobara, Y., Habib, A., Nam, J.J., Lee, J.S., Li, Q.L., Liu, X., Li, J., Zhang, G., Masunaga, S., 2012a. Passive air monitoring of PCBs and PCNs across East Asia: A comprehensive congener evaluation for source characterization. Chemosphere 86, 718-726.
Hogarh, J.N., Seike, N., Kobara, Y., Masunaga, S., 2012b. Atmospheric polychlorinated naphthalenes in Ghana. Environ. Sci. Technol. 46, 2600-2606.
Hogarh, J.N., Seike, N., Kobara, Y., Masunaga, S., 2013. Seasonal variation of atmospheric polychlorinated biphenyls and polychlorinated naphthalenes in Japan. Atmos. Environ. 80, 275-280.
Hsu, W.T.; Liu, M.C.; Hung, P.C.; Chang, S.H.; Chang, M.B., 2016. PAH emissions from coal combustion and waste incineration. J. Hazard. Mater. 318, 32–40.
Hu, J., Zheng, M., Liu, W., Li, C., Nie, Z., Liu, G., Zhang, B., Xiao, K. and Gao, L., 2013. Characterization of polychlorinated naphthalenes in stack gas emissions from waste incinerators. Environ. Sci. Pollut. R. 20, 2905-2911.
Hung, P.C., Chang, C.C., Chang, S.H. and Chang, M.B., 2015. Characteristics of PCDD/F emissions from secondary copper smelting industry. Chemosphere 118, 148-155.
Iino, F., Imagawa, T., Takeuchi, M., Sadakata, M., 1999. De novo synthesis mechanism of polychlorinated dibenzofurans from polycyclic aromatic hydrocarbons and the characteristic isomers of polychlorinated naphthalenes. Environ. Sci. Technol. 33, 1038–1043.
Iino, F., Tsuchiya, K., Imagawa, T., Gullett, B.K., 2001. An isomer prediction model for PCNs, PCDD/Fs, and PCBs from municipal waste incinerators. Environ. Sci. Technol. 35, 3175-3181.
Jakobsson, E. and Asplund, L., 2008. The Handbook of Environmental Chemistry Vol. 3 Part K: Polychlorinated Naphthalenes (PCNs). Springer-Verlag Berlin Heidelberg 2000.
Jakobsson, E. and Asplund, L., 2000. Polychlorinated naphthalenes (PCNs). Volume 3 anthropogenic compounds part K. O. Hutzinger and J. Paasivirta, Springer Berlin Heidelberg. 3K: 97-126.
Jansson, S., Fick J., Marklund, S., 2008. Formation and chlorination of polychlorinated naphthalenes (PCNs) in the post-combustion zone during MSW combustion. Chemosphere 72, 1138–1144.
Järnberg, U., Asplund, L., de Wit, C., Egebäck, A.L., Wideqvist, U. and Jakobsson, E., 1997. Distribution of polychlorinated naphthalene congeners in environmental and source-related samples. Arch. Environ. Con. Tox. 32, 232-245.
Jiang, X., Liu, G., Wang, M., Liu, W., Tang, C., Li, L., Zheng, M., 2015a. Case study of polychlorinated naphthalene emissions and factors influencing emission variations in secondary aluminum production. J. Hazard. Mater. 286, 545–552.
Jiang, X., Liu, G., Wang, M., Zheng, M., 2015b. Fly ash-mediated formation of polychlorinated naphthalenes during secondary copper smelting and mechanistic aspects. Chemosphere, 119, 1091–1098.
Kaupp, H. and McLachlan, M.S., 1999. Gas/particle partitioning of PCDD/Fs, PCBs, PCNs and PAHs. Chemosphere 38, 3411-3421.
Kim, D.H. and Mulholland, J.A., 2005. Temperature-dependent formation of polychlorinated naphthalenes and dihenzofurans from chlorophenols. Environ. Sci. Technol. 39, 5831–5836.
Kim, S.C.; Jeon, S.H., Jung, I.R.; Kim, K.H; Kwon, M.H.; Kim, J.H., Yi, J.H.; Kim, S.J., 2001. You, J.C.; Jung, D.H. Removal efficiencies of PCDDs/PCDFs by air pollution control devices in municipal solid waste incinerators. Chemosphere 43, 773-776.
Kincannon, D. F. and Lin, Y. S., 1985. Microbial degradation of hazardous wastes by land treatment. Proceedings of the 40th Industrial Waste Conference: 14.
Kreisz, S., Hunsinger, H., Vogg, 1996. H. Wet scrubbers-a potential PCDD/F source? Chemosphere 32, 73-78.
Kuo, J.H., Lin, C.L., Chen, J.C., Tseng, H.H. and Wey, M.Y., 2011. Emission of carbon dioxide in municipal solid waste incineration in Taiwan: A comparison with thermal power plants. Int. J. Greenh. Gas Con. 5, 889-898.
Lee, R.G.M., Coleman, P., Jones, JL., Jones, K.C., Lohmann, R., 2005. Emission factors and importance of PCDD/Fs, PCBs, PCNs, PAHs and PM10 from the domestic burning of coal and wood in the U.K. Environ. Sci. Technol. 39, 1436–1447.
Lee, K.L., Lee, W.J., Mwangi, J.K, Wang, L.C., Giao, X. and Chang-Chien, G.P., 2016. Atmospheric PM2.5 and depositions of polychlorinated dibenzo-p-dioxins and dibenzofurans in Kaohsiung area, Southern Taiwan. Aerosol Air Qual. Res. 16, 1775-1791.
Lee, S.C., Harner, T., Pozo, K., Shoeib, M., Wania, F., Muir, D.C.G., Barrie, L.A., Jones, K.C., 2007. Polychlorinated naphthalenes in the global atmospheric passive sampling (GAPS) study. Environ. Sci. Technol. 41, 2680–2687.
Lei, Y.D., Wania, F. and Shiu, W.Y., 1999. Vapor pressures of the polychlorinated naphthalenes. J. Chem. Eng. Data, 44 577-582.
Li, Y.Q., Zhan, M.X., Chen, T., Zhang, J., Li, X.D., Yan, J.H., Bueken, A., 2016. Formation, reduction and emission behaviors of CBzs and PCDD/Fs from cement plants. Aerosol Air Qual. Res. 16, 1942-1953.
Li, Q., Xu, Y., Li, J., Pan, X., Liu, X. and Zhang, G., 2012. Levels and spatial distribution of gaseous polychlorinated biphenyls and polychlorinated naphthalenes in the air over the northern South China Sea. Atmos. Environ. 56, 228-235.
Liu, G.R., Zheng, M.H., Liu, W.B., Wang, C.Z., Zhang, B., Gao, L.R., Su, G.J., Xiao, K., Lv, P., 2009. Atmospheric emission of PCDD/Fs, PCBs, hexachlorobenzene, and pentachlorobenzene from the coking industry. Environ. Sci. Technol. 43, 9196– 9201.
Liu, G.R., Zheng, M.H., Lv, P., Liu, W.B., Wang, C.Z., Zhang, B., Xiao, K., 2010. Estimation and characterization of polychlorinated naphthalene emission from coking industries. Environ. Sci. Technol. 44, 8156–8161.
Liu, G., Zheng, M., Hu, J., Liu, W., Wang, M., Jiang, X., Gao, L., Nie, Z., 2013. Correlation analysis of unintentional polychlorinated naphthalenes with polychlorinated dibenzo-p-dioxins and dibenzofurans produced during industrial processes. Chin. Sci. Bull. 58.
Liu, G., Cai, Z. and Zheng, M., 2014. Sources of unintentionally produced polychlorinated naphthalenes. Chemosphere, 94 1-12.
Liu, G.R.; Zheng, M.H.; Liu, W.B.; Wang, C.Z.; Zhang, B.; Gao, L.R.; Su, G.J.; Xiao, K.; Lv, P., 2009. Atmospheric emission of PCDD/Fs, PCBs, hexachlorobenzene, and pentachlorobenzene from the coking industry. Environ. Sci. Technol. 43, 9196-9201.
Liu, G., Zhan, J., Zhao, Y., Li, L., Jiang, X., Fu, J., Li, C., Zheng, M., 2016. Distributions, profiles and formation mechanisms of polychlorinated naphthalenes in cement kilns co-processing municipal waste incinerator fly ash. Chemosphere 155, 348-357.
Liu, G., Lv, P., Jiang, X., Nie, Z., Liu, W., Zheng, M., 2015. Identification and preliminary evaluation of polychlorinated naphthalene emissions from hot dip galvanizing plants. Chemosphere 118, 112-116.
Lv, Y., Li, X., Xu, T.T., Cheng, T.T., Yang, X., Chen, J.M., Iinuma, Y., Herrmann, H., 2016. Size distributions of polycyclic aromatic hydrocarbons in urban atmosphere: sorption mechanism and source contributions to respiratory deposition. Atmos. Chem. Phys. 16, 2971–2983.
Mackay, D. and Wania, F., 1995. Transport of contaminants to the Arctic: partitioning, processes and models. Sci. Total Environ. 160–161, 25-38.
Manodori L., Gambaro A., Zangrando R., Turetta C., Cescon P., 2006. Polychlorinated naphthalenes in the gas-phase of the Venice Lagoon atmosphere. Atmos. Environ. 40, 2020–2029.
Mari, M., Schuhmacher, M., Feliubadaló, J. and Domingo, J. L., 2008. Air concentrations of PCDD/Fs, PCBs and PCNs using active and passive air samplers. Chemosphere 70, 1637-1643.
Meijer, S. N., Harner, T., Helm, P. A., Halsall, C. J., Johnston, A. E. and Jones, K. C., 2001. Polychlorinated naphthalenes in U.K. soils:  time trends, markers of source, and equilibrium status. Environ. Sci. Technol. 35, 4205-4213.
Nie, Z., Zheng, M., Liu, W., Zhang, B., Liu, G., Su, G., Lv, P. and Xiao, K., 2011. Characterization and quantification of unintentional POP emissions from primary and secondary copper metallurgical processes in China. Chemosphere 85, 1707-1712.
Noma, Y., Yamamoto, T., Sakai, S.I., 2004. Congener-specific composition of Polychlorinated naphthalenes, coplanar PCBs, dibenzo-p-dioxins, and dibenzofurans in the Halowax series. Environ. Sci. Technol. 38, 1675-1680.
Noma, Y., Yamamoto, T., Giraud, R. and Sakai, S., 2006. Behavior of PCNs, PCDDs, PCDFs, and dioxin-like PCBs in the thermal destruction of wastes containing PCNs. Chemosphere 62, 1183-1195.
Odabasi, M., Bayram, A., Elbir, T., Dumanoglu, Y., Kara, M., Altiok, H., Cetin, B., 2012. Investigation of seasonal variations and sources of atmospheric polychlorinated naphthalenes (PCNs) in an urban area. Atmos. Pollut. Res. 3, 477–484.
Oh, J.E., Gullett, B., Ryan, S. and Touati, A., 2007. Mechanistic relationships among PCDDs/Fs, PCNs, PAHs, ClPhs, and ClBzs in municipal waste incineration. Environ. Sci. Technol. 41, 4705-4710.
Pan, J., Yang, Y., Zhu, X., Yeung, L.W.Y, Taniyasu, S., Miyake, Y., Falandysz J., Yamashita, N., 2013. Altitudinal distributions of PCDD/Fs, dioxin-like PCBs and PCNs in soil and yak samples from Wolong high mountain area, eastern Tibet-Qinghai Plateau, China. Sci. Total Environ. 444, 102–109.
Pankow, J.F., 1987. Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere. Atmos. Environ. 21, 2275–2283.
Pankow, J.F., 1994. An absorption model of gas/particle partitioning of organic compounds in the atmosphere. Atmos. Environ. 28, 185–188.
Phan, D.N.C., Jansson, S., Marklund, S., 2013. Effects of regional differences in waste composition on the thermal formation of polychlorinated aromatics during incineration. Chemosphere 93, 1586–1592.
Plassche, E. and Schwegler, A., 2002. Polychlorinated naphthalenes. Ministry of Housing, Spatial Planning and the Environment, Directorate-General for Environmental Protection. The Netherland.
Puzyn T, Mostrag A, Suzuki N, Falandysz J., 2008. QSPR-based estimation of the atmospheric persistence for chloronaphthalene congeners. Atmos. Environ. 42, 6627–36.
Ryan, J.J., Masuda, Y., 1994. Polychlorinated naphthalenes (PCNs) in the rice oil poisonings. Organohalogen Compd. 21, 251–254.
Ryu, J.Y., Kim, D.H., and Jang, S.H., 2013. Is chlorination one of the major pathways in the formation of polychlorinated naphthalenes (PCNs) in municipal solid waste combustion? Environ. Sci. Technol. 47, 2394−2400.
Sakai, S., Yamamoto, T., Noma, Y. and Giraud, R., 2006. Formation and control of toxic polychlorinated compounds during incineration of wastes containing polychlorinated naphthalenes. Environ. Sci. Technol. 40, 2247-2253.
Schneider, M., Stieglitz, L., Will, R., Zwick, G., 1998. Formation of polychlorinated naphthalenes on fly ash. Chemosphere 9-12, 2055-2070.
Taiwan EPA, 2014. http://www.taiwanwatch.org.tw/sites/default/files/epapers (accessed on January 2019).
Takasuga, T., T., I., E., O. and P., I., 1994. Development of an all congener specific, HRGC/HRMS analytical method for polychlorinated naphthalenes in environmental samples. Organohalogen Compounds 19, 177-182.
Takasuga, T., Inoue, T., Ohi, E. and Kumar, K. S., 2004. Formation of polychlorinated naphthalenes, dibenzo-p-dioxins, dibenzofurans, biphenyls, and organochlorine pesticides in thermal processes and their occurrence in ambient air.
Arch. Environ. Contam. Toxicol. 46, 419-431.
Tian, Z., Li, H., Xie, H., Tang, C., Han, Y., Liu, W., 2014. Concentration and distribution of PCNs in ambient soil of a municipal solid waste incinerator. Sci. Total Environ. 491–492, 75–79.
UNEP, 2001. Final act of the plenipotentiaries on the Stockholm Convention on persistent organic pollutants. Annex D, Information requirements and screening criteria. United Nations environment program chemicals, Geneva, Switzerland
Wang, Y., Li, Q., Xu, Y., Luo, C., Liu, X., Li, J., Zhang, G., 2012. Improved correction method for using passive air samplers to assess the distribution of PCNs in the Dongjiang River basin of the Pearl River Delta, South China. Atmos. Environ. 54, 700-705.
Wang, M.; Liu, W.; Hou, M.; Li, Q.; Han, Y.; Liu, G.; Li, H.; Liao, X.; Chen X.; Zheng, M., 2016. Removal of polychlorinated naphthalenes by desulfurization and emissions of polychlorinated naphthalenes from sintering plant. Sci. Rep. 6, 26444.
Wang, Y., Cheng, Z., Li, J., Luo, C., Xu, Y., Li, Q., Liu, X. and Zhang, G., 2012. Polychlorinated naphthalenes (PCNs) in the surface soils of the Pearl River Delta, South China: Distribution, sources, and air-soil exchange. Environ. Pollut 170, 1-7.
Weber, R., Iino, F., Imagawa, T., Takeuchi, M., Sakurai, T., Sadakata, M., 2001. Formation of PCDF, PCDD, PCB, and PCN in de novo synthesis from PAH: mechanistic aspects and correlation to fluidized bed incinerators. Chemosphere 44, 1429–1438.
WHO, 2001. Chlorinated naphthalenes. Concise international chemical assessment document 34. Geneva, Switzerland.
Xu, Y., Li, J., Chakraborty, P., Syed, J. H., Malik, R. N., Wang, Y., Tian, C., Luo, C., Zhang, G. and Jones, K.C., 2014. Atmospheric polychlorinated naphthalenes (PCNs) in India and Pakistan. Sci. Total Environ. 466-467, 1030-1036.
Xue, L., Zhang, L., Yan, Y., Dong, L., Huang, Y., Li, X., 2016. Concentrations and patterns of polychlorinated naphthalenes in urban air in Beijing, China. Chemosphere 162, 199-207.
Yamashita, N., Kannan, K., Imagawa, T., Miyazaki, A., Giesy, J.P., 2000. Concentrations and profiles of polychlorinated naphthalene congeners in eighteen technical polychlorinated biphenyl preparations. Environ. Sci. Technol. 34, 4236–4241.
Yamamoto, T.; Noma, Y.; Sakai, S., 2006. Thermal destruction of wastes containing polychlorinated naphthalenes in an industrial waste incinerator. Environ Sci Pollut Res. 25, 31819.
Yan, J., Zheng, P, Lu, S.Y., Li., X.D, Cen, K.F., 2006. Removal of PCDDs/Fs from municipal solid waste incineration by entrained-flow adsorption technology. Journal of Zhejiang University-SCIENCE A 7, 1896-1903.
Zhu, Q., Zhang, X., Dong, S., Gao, L., Liu, G., Zheng, M., 2016. Gas and particle size distributions of polychlorinated naphthalenes in the atmosphere of Beijing, China. Environ. Pollut. 212, 128-134.
指導教授 張木彬(Moo Been Chang) 審核日期 2019-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明