博碩士論文 104426013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.220.9.180
姓名 宋狄軒(Ti-Hsuan Sung)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 類 Kiva 系統的「Pod 分配之揀貨站挑選」、 「Pod 分配於揀貨站」與「品項分配至訂單」問題之探討
相關論文
★ 佈置變更專案工程的執行研究 -以H公司研發單位為例★ MIL-STD-1916、MIL-STD-105E與結合製程能力指標之抽樣檢驗計畫
★ 建構客戶導向的製造品質資訊系統--以某筆記型電腦專業代工廠商為例★ GMP藥廠設施佈置規劃的探討--以E公司為研究對象
★ 應用Fuzzy c-Means演算法之物流中心位址決策模式研究★ 品質資訊系統之規劃與建構 -- 以某光碟製造公司為研究對象
★ 從製程特性的觀點探討生產過程中SPC管制圖監控運用的適切性 -- 以Wafer Level 封裝公司為例★ 六標準差之應用個案研究-以光學薄膜包裝流程改善為例
★ 利用六標準差管理提昇中小企業之製程品質-以錦絲線添加防銹蠟改善為例★ 專業半導體測試廠MES 系統導入狀況、成果及問題之探討-以A 公司為例
★ 以RFID技術為基礎進行安全管理導入-以A公司為例★ 如何提昇產品品質及降低成本—以光碟壓片廠A公司為例
★ ERP導入專案個案分析—以半導體封裝廠A公司為例★ 石英元件製造業之延遲策略應用— 以T公司為研究對象
★ 十二吋晶圓廠自動化搬運系統規劃與導入—以A公司為例★ 半導體封裝產業之生產革新改善活動-A半導體股份有限公司導入經驗探討-
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 從現今工商業起飛,科技蓬勃發展的時代下,各種事情都講求效率,希望能愈快愈好,以產生更多利潤,從工業的角度來看,許多工廠從傳統的人力慢慢轉變成以機器去替代,再經過不斷的改革以及創新,現在以進入另一個階段,「大數據」的時代,此階段利用網路雲端、物聯網、電子商務系統等與機器做結合,使得工廠的效率提升到了另外一個檔次,不僅加快了運作速度也提高產品的品質,方能更迅速更穩定的提供現今社會的各種需求。
在物流業方面,每家物流公司都希望能利用最短的時間將產品送自顧客手中,以滿足顧客的需求。本研究以 Amazon 收購的 Kiva System 為研究目標,此系統最重要的改革就是從獲取訂單後,將訂單中的物品送往揀貨人員,如此,揀貨人員就不必親自前往揀貨區,降低了揀貨人員到揀貨區所花費的揀貨時間,從上述可看出,這系統的觀念大大顛覆了以往人們對傳統物流的作法,也對往後整個物流業有了更大更深的影響。
本研究欲探討在類 Kiva 系統的「Pod 分配之揀貨站挑選」、「Pod 分配於揀貨站」與「品項分配至訂單」等問題,利用不同的績效指標搭配不同的實驗因子,去比較哪種搭配最合適,並找出哪種情況下,對於 Kiva 系統將有顯著的影響,以期能達到最佳的效能,減少不必要的浪費。
摘要(英)
In the era with prosperous business and booming technology, efficiency has been the most important thing for doing all kinds of matters, hoping to have more profits as soon as possible. From an industrial point of view, many factories using machine to replace traditional manpower. After continuous reform and innovation, another stage, "big data" era, is coming. This stage is combine with the Clouds, IoT( Internet of Things) , E-commerce systems and other machines, so that efficiency gains. Not only accelerate the operating speed but also improve the quality of the product to meet the demand of the needs of today′s society more quickly and stable.
From the logistics point of view, each logistics company hopes to use the shortest time to send products to customers. This study is based on Amazon′s acquisition of Kiva system, the most important reform of this system is to get orders from the order after the items sent to the picking staff. In this way, picking staff do not need to go to the picking area in person, reducing the picking time from picking staff to the picking area. As can be seen from the above, the concept of this system change the way of traditional logistics, but also greatly affected the whole logistics industry.
This study wants to investigate the problem” The selection of picking station of Pod assign”, “Pod assign in picking station” and “ Items assign to the order” in the Similar Kiva system. Using different performance indicators with different experimental factors to compare with what the most appropriate combination, and find out what circumstances will have a significant impact for the Kiva system, so as to achieve the best performance and reduce unnecessary waste.
關鍵字(中) ★ 物流中心
★ Kiva系統
★ 無人搬運車派送
★ 訂單分配
關鍵字(英) ★ Distribution Center
★ Kiva System
★ AGV Dispatching
★ Assignment
論文目次
摘要 I
Abstract II
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究背景 1
1.2 亞馬遜第八代物流中心 2
1.3 研究動機 3
1.4 研究目的 4
1.5 研究環境與假設 4
1.6 研究方法說明 7
1.7 論文架構 8
第二章 文獻探討 10
2.1 物流 11
2.1.1 物流的定義 11
2.1.2 物流的領域 13
2.1.3 物流中心之介紹及其類別 14
2.1.4 物流中心之功能及其重要性 17
2.2 揀貨作業 20
2.2.1 揀貨作業的概念及方式 20
2.2.2 揀貨路徑策略 23
2.3 無人搬運車系統 28
2.3.1 無人搬運車系統之介紹 28
2.3.2 無人搬運車之派送問題 28
2.3.3 AGV的途程(routing)問題 32
2.4 Kiva系統 34
2.4.1 Kiva系統之介紹 35
2.4.2 Kiva之作業流程 40
2.4.3 Kiva 系統之效益 42
第三章 研究方法 45
3.1 符號及變數定義 45
3.2 類 Kiva 系統中作業流程說明 46
3.2.1 類 Kiva 系統中揀貨工作站WS(w)之作業流程 46
3.2.2 類 Kiva 系統中 Pod(p) 之分配流程 49
3.3 各研究議題之方法整理 53
3.4 缺貨時間點計算 55
3.5 Pod 分配之揀貨工作站挑選法則 56
3.5.1 「隨機挑選」法則 56
3.5.2 有「已分配 Pod 數最小之工作站優先」法則 57
3.5.3 有「已分配 Pod 之總剩餘揀貨時間最小之工作站優先」法則
58
3.5.4 「未滿足訂單品項總數最大之工作站優先」法則 59
3.5.5 「未滿足訂單品項總數最小之工作站優先」法則 60
3.5.6 「訂單的總寬放時間最少之工作站優先」法則 61
3.5.7 「訂單的平均寬放時間最少之工作站優先」法則 63
3.5.8 最小(總寬放時間除以尚未完成揀貨的訂單品項數)比值之工作站優先法則 64
3.6 類 Kiva 系統中 Pod 分派法則 66
3.6.1 隨機法則 66
3.6.2 「可滿足最多(訂單)品項總數的 Pod 優先」法則 67
3.6.3 「可滿足最多品項種類數的 Pod 優先」法則 68
3.6.4 「距離揀貨工作站最近的 Pod 優先」法則 69
3.6.5 「有品項種類被 Pod 滿足之訂單的平均出貨時間最近優先」法則 70
3.7 類 Kiva 系統中品項分配法則 72
3.7.1 隨機排序 72
3.7.2 「出貨期最早之訂單愈優先」法則 73
3.7.3 「對該品項種類 IT* 需求量愈大之訂單愈優先」法則 75
3.7.4 「對該品項種類 IT* 需求量愈小之訂單愈優先」法則 76
3.7.5 「寬鬆時間愈小之訂單愈優先」法則 78
3.7.6 「未滿足品項種類數愈多之訂單愈優先」法則 80
3.7.7 「未滿足品項種類數愈少之訂單愈優先」法則 82
3.7.8 「未滿足(訂單)品項總數愈多之訂單愈優先」法則 84
3.7.9 「未滿足(訂單)品項總數愈少之訂單愈優先」法則 86
第四章 實驗結果與分析 89
4.1 實驗設計 89
4.1.1 實驗環境 89
4.1.2 實驗訂單張數與其他設定 91
4.1.3 環境假設 91
4.1.4 模擬實驗因子 92
4.1.5 實驗績效評估指標 94
4.2 統計分析 95
4.2.1 依「總系統執行時間(Total System Time)」為績效評估指標 96
4.2.2 依「訂單流程時間(Flow Time)」為績效評估指標 107
4.2.3 依「訂單延遲時間(Tardiness Time)」為績效評估指標 118
4.2.4 依「總 Pod 行走時間(Total Pod Time)」為績效評估指標
129
4.3 實驗結論 140
第五章 結論與後續建議 142
5.1 研究結論 142
5.2 未來研究建議 143
參考文獻 144
中文文獻 144
英文文獻 146
參考文獻
中文:
1. 王里仁,2005,「應用 RFID 於物流中心即時系統之研究-以 EPC 規範為基礎」,中原大學資訊管理學系碩士班,碩士論文。
2. 付海,2015,「Kiva 和 Extricom 系統使智能倉儲變為現實」,企業技術開發,第34卷第24期。
3. 江偉銘,2010,「具途程彈性之分區揀貨系統的揀貨作業探討」,國立中央大學工業管理研究所,碩士論文。
4. 李宗儒、周宣光、林正章,2009「當代物流管理:理論與實務」,滄海書局,台中,四版。
5. 周士俊,2000,「塔布搜尋法在物流中心人工揀貨區揀貨問題之研究」,元智大學工業工程研究所,碩士論文。
6. 林鴻鈞,2006,「揀貨中心揀貨策略與訂單選取之研究」,國立中央大學工業管理研究所,碩士論文。
7. 陳慧娟,1995,「物流中心作業系統」,經濟部發行;機械工業雜誌總經銷,台北,初版。
8. 陳志賢,1998,「物流供應鏈之整合度研究」,黎明學報,第十一卷,第一期,47~55頁。
9. 郭俊威,(2012),具不同功能 I/O 點之分區揀貨倉庫的揀貨路徑發展與比較. 中央大學工業管理研究所學位論文,1-115.
10. 張簡復中,2010,「物流管理」,新文京開發,台北,二版。
11. 鄒爽心,2013,「倉儲機器人的應用現狀與發展戰略探討」,浙江大學機械工程學系,第35卷第6期。
12. 周曉光、張喜妹、劉玉坤,2015,「一種基於移動機器人的配送中心柔性揀性選系統」,北京郵電大學,北京。
13. 劉浚明(1999)實務教案: 倉儲系統規劃技術.第 1-31 頁。
14. 劉技豐,2004,「物流中心之分區揀貨的研究物流中心之分區揀貨的研究」,中央大學工業管理研究所,碩士論文。
15. 賴杉桂,1984,中華民國商業自動化專案計畫現況及未來展望,發表於商業教育自動化觀摩與研討會。
16. 賴順良 「物流中心之訂單選取與揀貨路徑規劃的研究」,國立中央大學工業管理研究所,碩士論文。
17. 董福慶 & 陳明德(1995)經濟部商業自動化系列叢書。
18. 錢尚璞,2003,「揀貨中心之儲位配置與揀貨策略的研究」,中央大學工業管理研究所,碩士論文。

英文:
1. Angeloudis, P., & Bell, M. G. (2010). An uncertainty-aware AGV assignment algorithm for automated container terminals. Transportation Research Part E: Logistics and Transportation Review, 46(3), 354-366.
2. Bozer, Y. A., & Srinivasan, M. M. (1992). Tandem AGV systems: a partitioning algorithm and performance comparison with conventional AGV systems. European Journal of operational research, 63(2), 173-191.
3. Corréa, A. I., Langevin, A., & Rousseau, L. M. (2007). Scheduling and routing of automated guided vehicles: A hybrid approach. Computers & operations research, 34(6), 1688-1707.
4. Cadwalladr, C. (2013). My week as an Amazon insider. The Observer, 1, 12-13.
5. De Koster, R., Le-Duc, T., & Roodbergen, K. J. (2007). Design and control of warehouse order picking: A literature review. European Journal of Operational Research, 182(2), 481-501.
6. D′Andrea, R., & Wurman, P. (2008). Future challenges of coordinating hundreds of autonomous vehicles in distribution facilities. In Technologies for Practical Robot Applications, 2008. TePRA 2008. IEEE International Conference on 80-83. IEEE.
7. D′Andrea, R. (2012). Guest editorial: A revolution in the warehouse: A retrospective on kiva systems and the grand challenges ahead. IEEE Transactions on Automation Science and Engineering, 9(4), 638-639.
8. Egbelu, P. J., & Tanchoco, J. M. (1984). Characterization of automatic guided vehicle dispatching rules. The International Journal of Production Research, 22(3), 359-374.
9. Enright, J., & Wurman, P. R. (2011). Optimization and Coordinated Autonomy in Mobile Fulfillment Systems. In Automated action planning for autonomous mobile robots ,33-38.
10. Fazlollahtabar, H., & Saidi-Mehrabad, M. (2015). Methodologies to optimize automated guided vehicle scheduling and routing problems: a review study. Journal of Intelligent & Robotic Systems, 77(3-4), 525.
11. Goetschalckx, M., & DONALD RATLDFF, H. (1991). Optimal lane depths for single and multiple products in block stacking storage systems. IIE TRANSACTIONS, 23(3), 245-258.
12. Gourdin, K. N. (2001). Global logistics management: a competitive advantage for the new millennium. Blackwell Publishers.
13. Gilmour, K. (2003). Amazon warehouse, amazon adventure. Internet Magazine
14. Gu, J., Goetschalckx, M., and McGinnis, L. F., 2007, “Research on warehouse operation: A comprehensive review,” European Journal of Operational Research, 1-21
15. Grunow, M., Günther, H. O., & Lehmann, M. (2007). Strategies for dispatching AGVs at automated seaport container terminals. In Container terminals and cargo systems ,155-178. Springer Berlin Heidelberg.
16. Gawrilow, E., Köhler, E., Möhring, R. H., & Stenzel, B. (2008). Dynamic routing of automated guided vehicles in real-time. In Mathematics–Key Technology for the Future , 165-177. Springer Berlin Heidelberg.
17. Guizzo, E. (2008). Three engineers, hundreds of robots, one warehouse. IEEE spectrum, 45(7), 26-34.
18. Grosse, E. H., & Glock, C. H. (2015). The effect of worker learning on manual order picking processes. International Journal of Production Economics, 170, 882-890.
19. Grosse, E. H., Glock, C. H., & Neumann, W. P. (2016). Human factors in order picking: a content analysis of the literature. International Journal of Production Research, 1-17.
20. Hall, R. W. (1993). Distance approximations for routing manual pickers in a warehouse. IIE transactions, 25 (4), 76-87.
21. Hwang, H., Oh, Y. H., & Lee, Y. K. (2004). An evaluation of routing policies for order-picking operations in low-level picker-to-part system. International Journal of Production Research, 42(18), 3873-3889.
22. Ho, Y. C., & Chien, S. H. (2006). A simulation study on the performance of task-determination rules and delivery-dispatching rules for multiple-load AGVs. International journal of production research, 44(20), 4193-4222.
23. Henn, S., Koch, S., Doerner, K. F., Strauss, C., & Wäscher, G. (2010). Metaheuristics for the order batching problem in manual order picking systems. BuR-Business Research, 3(1), 82-105.
24. Hsieh, L. F., & Huang, Y. C. (2011). New batch construction heuristics to optimise the performance of order picking systems. International Journal of Production Economics, 131(2), 618-630.
25. Ho, Y. C., Liu, H. C., & Yih, Y. (2012). A multiple-attribute method for concurrently solving the pickup-dispatching problem and the load-selection problem of multiple-load AGVs. Journal of Manufacturing Systems, 31(3), 288-300.
26. Hermann, M., Pentek, T., & Otto, B. (2016, January). Design principles for industrie 4.0 scenarios. In System Sciences (HICSS), 2016 49th Hawaii International Conference on , 3928-3937.
27. Jang, J., Suh, J., & Ferreira, P. M. (2001). An AGV routing policy reflecting the current and future state of semiconductor and LCD production lines. International Journal of Production Research, 39(17), 3901-3921.
28. Kim, C. W., & Tanchoco, J. M. (1991). Conflict-free shortest-time bidirectional AGV routeing. The International Journal of Production Research, 29(12), 2377-2391.
29. Kagermann, H. (2015). Change through digitization—Value creation in the age of Industry 4.0. In Management of permanent change , 23-45. Springer Fachmedien Wiesbaden.
30. Liu, C. M., and Duh, S. H., 1992, “Study of AGVs design and dispatching rules by analytical and simulation methods,” International Journal of Computer Integrated Manufacturing, vol.5, no.4&5, 290-299.
31. Lee, K. L., & Lin, S. C. (2008). A fuzzy quantified SWOT procedure for environmental evaluation of an international distribution center. Information Sciences, 178(2), 531-549.
32. Lau, H. Y., & Woo, S. O. (2008). An agent-based dynamic routing strategy for automated material handling systems. International Journal of Computer Integrated Manufacturing, 21(3), 269-288.
33. Lin, L., & Gen, M. (2008). A random key-based genetic algorithm for AGV dispatching in FMS. International Journal of Manufacturing Technology and Management, 16(1-2), 58-75.
34. Lu, C. S., & Yang, C. C. (2010). Logistics service capabilities and firm performance of international distribution center operators. The Service Industries Journal, 30(2), 281-298.
35. Liu, S., Chan, F. T., & Chung, S. H. (2011). A study of distribution center location based on the rough sets and interactive multi-objective fuzzy decision theory. Robotics and Computer-Integrated Manufacturing, 27 (2), 426-433.76.
36. Lao, S. I., Choy, K. L., Ho, G. T., Tsim, Y. C., Poon, T. C., & Cheng, C. K. (2012). A real-time food safety management system for receiving operations in distribution centers. Expert Systems with Applications, 39(3), 2532-2548.
37. Malmborg, C. J. (1995). Optimization of cube-per-order index warehouse layouts with zoning constraints. THE INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 33(2), 465-482.
38. Ma, X., Yin, Y., & Liu, T. (2011). The simulation and optimizing of different distribution strategies for the distribution centre based on Flexsim. In Automation and Logistics (ICAL), 2011 IEEE International Conference on , 201-204.
39. Nishi, T., & Maeno, R. (2010). Petri net decomposition approach to optimization of route planning problems for AGV systems. IEEE Transactions on Automation Science and Engineering, 7(3), 523-537.
40. Nishi, T., & Tanaka, Y. (2012). Petri net decomposition approach for dispatching and conflict-free routing of bidirectional automated guided vehicle systems. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 42(5), 1230-1243.
41. Occena, L. G., & Yokota, T. (1993). Analysis of the AGV loading capacity in a JIT environment. Journal of Manufacturing Systems, 12(1), 24-35.
42. Prakash, A., & Chen, M. (1995). A simulation study of flexible manufacturing systems. Computers & industrial engineering, 28(1), 191-199.
43. Petersen, C. G. (1997). An evaluation of order picking routeing policies. International Journal of Operations & Production Management, 17(11), 1098-1111.
44. Petersen II, C. G. (2000). An evaluation of order picking policies for mail order companies. Production and operations management, 9(4), 319.
45. Petersen, C. G., & Aase, G. (2004). A comparison of picking, storage, and routing policies in manual order picking. International Journal of Production Economics, 92(1), 11-19.
46. Petersen, C. G., & Aase, G. (2004). A comparison of picking, storage, and routing policies in manual order picking. International Journal of Production Economics, 92(1), 11-19.
47. Pan, J. C. H., and Wu, M. H. (2009). “A study of storage assignment problem for an order picking line in a pick-and-pass warehousing system,” Computers and Industrial Engineering, (57), 261-268.
48. Ratliff, H. D., & Rosenthal, A. S. (1983). Order-picking in a rectangular warehouse: a solvable case of the traveling salesman problem. Operations Research, 31(3), 507-521.
49. Russell, R., & Tanchoco, J. M. (1984). An evaluation of vehicle dispatching rules and their effect on shop performance. Material Flow, 1(4).
50. Roodbergen, K. J., & Koster, R. (2001). Routing methods for warehouses with multiple cross aisles. International Journal of Production Research, 39(9), 1865-1883.
51. Rao, S. S., & Adil, G. K. (2013). Class-based storage with exact S-shaped traversal routeing in low-level picker-to-part systems. International Journal of Production Research, 51(16), 4979-4996.
52. Robert J. Thomas, Alex Kass and Ladan Davarzani. (2014). “ Recombination at Amazon and Kiva Systems: balancing human and machine capabilities.”, Accenture,1-4.
53. Stock, J. R., & Lambert, D. M. (2001). Strategic logistics management (Vol. 4). Boston, MA: McGraw-Hill/Irwin.
54. Sai-nan, L. (2008). Optimization problem for AGV in automated warehouse system. In Service Operations and Logistics, and Informatics, 2008. IEEE/SOLI 2008. IEEE International Conference on (2), 1640-1642. IEEE.
55. Stahlbock, R., & Voβ, S. (2008). Vehicle routing problems and container terminal operations–an update of research. In The Vehicle Routing Problem: Latest Advances and New Challenges ,551-589. Springer US.
56. Smolic-Rocak, N., Bogdan, S., Kovacic, Z., & Petrovic, T. (2010). Time windows based dynamic routing in multi-agv systems. IEEE Transactions on Automation Science and Engineering, 7(1), 151-155.
57. Singh, N., Sarngadharan, P. V., & Pal, P. K. (2011). AGV scheduling for automated material distribution: a case study. Journal of Intelligent Manufacturing, 22(2), 219-228.
58. Tompkins, J. A., & Smith, J. D. (1998). The warehouse management handbook. Tompkins press.
59. Tompkins, J. A., White, J. A., Bozer, Y. A., & Tanchoco, J. M. A. (2010). Facilities planning. John Wiley & Sons.
60. Thomas, R.J., Kass, A., and Davarzani, L., (2012). “Recombination at amazon and kiva systems : balancing human and machine capabilities”.
61. Wurman, P. R., D′Andrea, R., & Mountz, M. (2008).Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI magazine, 29(1), 9.
62. Xu, J., Yao, L., & Zhao, X. (2011). A multi-objective chance-constrained network optimal model with random fuzzy coefficients and its application to logistics distribution center location problem. Fuzzy Optimization and Decision Making, 10(3), 255-285.
63. Yim, D. S., & Linnt, R. J. (1993). Push and pull rules for dispatching automated guided vehicles in a flexible manufacturing system. The International Journal of Production Research, 31(1), 43-57.
64. Zamiri Marvizadeh, S., & Choobineh, F. F. (2014). Entropy-based dispatching for automatic guided vehicles. International Journal of Production Research, 52(11), 3303-3316.
65. Needleman, S.E. (2010). Kiva expands microlending reach to U.S. businesses. The Wall Stree Journal. http://online.wsj.com/news/articles/SB10001424052702303738504575568032575697328
66. Wulfraat, M.,(2013). 5 ways to improve order picking productivity, Retrieved December 24, 2016, from http://www.supplychain247.com/article/5_ways_to_improve_order_picking_productivity/MWPVL_International.
指導教授 何應欽(Ying-Chin Ho) 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明