博碩士論文 104521025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.129.22.34
姓名 謝宗甫(Tsung-Fu Thsieh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於深度神經網路系統內動態隨機存取記憶體之錯誤糾正碼式刷新功耗降低技術
(ECC-Based Refresh Power Reduction Technique for DRAMs of Deep Neural Network Systems)
相關論文
★ 應用於三元內容定址記憶體之低功率設計與測試技術★ 用於隨機存取記憶體的接線驗證演算法
★ 用於降低系統晶片內測試資料之基礎矽智產★ 內容定址記憶體之鄰近區域樣型敏感瑕疵測試演算法
★ 內嵌式記憶體中位址及資料匯流排之串音瑕疵測試★ 用於系統晶片中單埠與多埠記憶體之自我修復技術
★ 用於修復嵌入式記憶體之基礎矽智產★ 自我修復記憶體之備份分析評估與驗證平台
★ 使用雙倍疊乘累加命中線之低功率三元內容定址記憶體設計★ 可自我測試且具成本效益之記憶體式快速傅利葉轉換處理器設計
★ 低功率與可自我修復之三元內容定址記憶體設計★ 多核心系統晶片之診斷方法
★ 應用於網路晶片上隨機存取記憶體測試及修復之基礎矽智產★ 應用於貪睡靜態記憶體之有效診斷與修復技術
★ 應用於內嵌式記憶體之高效率診斷性資料壓縮與可測性方案★ 應用於隨機存取記憶體之有效良率及可靠度提升技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 深度神經網路(DNN)被視為一個十分有應用價值的人工智慧技術。DNN系統通常需要以動態隨機記憶體(DRAM)來儲存數據。然而DRAM是一種十分耗電的元件,因此需要有針對DNN系統中用於降低DRAM功耗的技術。
本論文提出了一種混和投票機制與錯誤更正碼(Voting and error-correction code, VECC)的資料保護技術,通過延長DRAM的刷新週期來降低功耗。VECC以投票的方法保護在DNN中數值趨近於零的權重資料,並以錯誤糾正碼保護剩餘資料。以此種混合式的保護機制來糾正受到DRAM刷新周期延長而出現的資料失效(retention fault)。為了實現VECC的技術於DNN系統中,本論文提出了一個軟硬體結合的自我測試技術(Software-Hardware-Cooperated built-in self test, SHC-BIST),用以蒐集在不同DRAM刷新周期下的資料錯誤資訊。此外也提出了相應的解碼以及重組硬體設計。
模擬結果顯示,在四個著名的DNN模組中,VECC可以節省至少93.7%的DRAM刷新功耗,且精準度損耗(accuracy loss)小於0.5%,而額外所需付出的錯誤檢驗碼位元數均小於原始資料的1%。
摘要(英) Deep neural network (DNN) is considered as a practical and effective artificial intelligence technique.
A DNN system typically needs a dynamic random access memory (DRAM) for the storing
of data. However, DRAM is a power-hungry component. Effective techniques for reducing the
power consumption of the DRAM in a DNN system thus are needed.
In this thesis, a hybrid voting and error-correction code (VECC) technique is proposed to reduce
the refresh power of DRAMs in DNN systems by extending the DRAM refresh period. The
VECC technique takes advantage of the characteristics of wights of DNN model to reduce the cost
of check bits. Most of weights of a DNN model are close to zero. Therefore, the VECC technique
extends the refresh period of DRAMs by using the voting mechanism to protect weights being
close to zero from retention faults and using the error correction code (ECC) to protect weights
being not close to zero from retention faults. To realize the VECC technique, a software-hardwarecooperated
built-in self-test (SHC-BIST) scheme is proposed to test the cells with data retention
faults of the DRAM with respect to different refresh periods. Also, a decoding and remapping unit
is proposed to decode and remap the encoded weights.
Simulation results show that the proposed VECC technique can achieve up to 93.7% refresh
power saving for four typical DNN models with the adverse effect of inference accuracy loss less
than 0.5%, and the check bit overhead is less than 1%.
i
關鍵字(中) ★ 深度神經網路
★ 動態隨機記憶體
★ 刷新功耗
★ 資料壓縮
★ 自我測試
關鍵字(英) ★ Deep Neural Network
★ DRAM
★ redresh power
★ data compression
★ BIST
論文目次 1 Introduction 1
1.1 Deep Neural Network System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Deep Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Neural Network Acceleration System . . . . . . . . . . . . . . . . . . . . 4
1.2 Dynamic Random Access Memory . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Organization of DRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 DRAM Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Block-Based Multiperiod Refresh Power Reduction . . . . . . . . . . . . . 8
1.3.2 ECC-Based Refresh Period Extending . . . . . . . . . . . . . . . . . . . . 11
1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2 Proposed VECC Technique for DRAM Refresh Period Extension 14
2.1 Characteristic of Weights in DNN Systems . . . . . . . . . . . . . . . . . . . . . . 14
2.2 VECC Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 En/Decoding & Refresh Period Extending Process . . . . . . . . . . . . . . . . . . 18
2.3.1 Overall Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Encoding Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Decoding Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.4 Refresh Period Selection Flow . . . . . . . . . . . . . . . . . . . . . . . . 34
3 Hardware Design 42
3.1 VECC Decoder and Read Address Controller . . . . . . . . . . . . . . . . . . . . 42
3.2 Programmable BIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4 Simulation Result 56
4.1 Accuracy Loss Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Power Saving Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Bits Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Read Latency Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.5 Area Overhead Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5 Conclusion 68
參考文獻 [1] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv 1409.1556, 9 2014.
[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE
Computer Vision and Pattern Recognition (CVPR), June 2016, pp. 770–778.
[3] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional, long short-term memory,
fully connected deep neural networks,” in Proc. International Conference on Acoustics,
Speech and Signal Processing (ICASSP), April 2015, pp. 4580–4584.
[4] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadarrama, K. Saenko, and
T. Darrell, “Long-term recurrent convolutional networks for visual recognition and description,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 4, pp.
677–691, April 2017.
[5] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz,
L. Kaiser, M. Kudlur, J. Levenberg, D. Man´e, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Vi´egas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “TensorFlow: Large-scale machine learning on heterogeneous systems,” 2015,
software available from tensorflow.org.
[6] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and
T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Proc. ACM
International Conference on Multimedia, New York, NY, USA, 2014, pp. 675–678.
[7] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov 1998.
[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” in Proc. Adv. Neural Information Processing Systems, ser. NIPS,
vol. 25. USA: Curran Associates Inc., 2012, pp. 1097–1105.
[9] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture
for computer vision,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 2818–2826.
[10] V. S. J. Emer and Y.-H. Chen, “Tutorial on hardware architectures for deep neural networks,”
http://eyeriss.mit.edu/tutorial.html, 2017.
[11] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks,” IEEE Journal of Solid-State Circuits,
vol. 52, no. 1, pp. 127–138, Jan 2017.
[12] T. Luo, S. Liu, L. Li, Y. Wang, S. Zhang, T. Chen, Z. Xu, O. Temam, and Y. Chen, “Dadiannao:
A neural network supercomputer,” IEEE Transactions on Computers, vol. 66, no. 1, pp.
73–88, Jan 2017.
[13] J. Sim, J. S. Park, M. Kim, D. Bae, Y. Choi, and L. S. Kim, “14.6 A 1.42TOPS/W deep
convolutional neural network recognition processor for intelligent ioe systems,” in IEEE International
Solid-State Circuits Conference (ISSCC), Jan 2016, pp. 264–265.
[14] D. Shin, J. Lee, J. Lee, and H. J. Yoo, “14.2 DNPU: An 8.1TOPS/W reconfigurable cnnrnn
processor for general-purpose deep neural networks,” in IEEE International Solid-State
Circuits Conference (ISSCC), Feb 2017, pp. 240–241.
[15] S. Yin, P. Ouyang, S. Tang, F. Tu, X. Li, S. Zheng, T. Lu, J. Gu, L. Liu, and S. Wei, “A high
energy efficient reconfigurable hybrid neural network processor for deep learning applications,”
IEEE Journal of Solid-State Circuits, vol. 53, no. 4, pp. 968–982, April 2018.
[16] J. Kim and M. C. Papaefthymiou, “Block-based multiperiod dynamic memory design for low
data-retention power,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 11, no. 6, pp. 1006–1018, Dec 2003.
[17] T. Hamamoto, S. Sugiura, and S. Sawada, “On the retention time distribution of dynamic
random access memory (DRAM),” IEEE Transactions on Electron Devices, vol. 45, no. 6,
pp. 1300–1309, Jun 1998.
[18] J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-aware intelligent DRAM refresh,”
in International Symposium on Computer Architecture (ISCA), June 2012, pp. 1–12.
[19] L. C. Hsia, T. Chang, S. J. Chang, D. Fan, H. Y.Wei, and J. Jan, “Effects of hydrogen annealing
on data retention time for high density Drams,” in Proc. of Technical Papers. International
Symposium on VLSI Technology, Systems, and Applications, June 1997, pp. 142–147.
[20] H. Yamauchi, T. Iwata, A. Uno, M. Fukumoto, and T. Fujita, “A circuit technology for a selfrefresh
16 Mb DRAM with less than 0.5/mu/A/MB data-retention current,” IEEE Journal of
Solid-State Circuits, vol. 30, no. 11, pp. 1174–1182, Nov 1995.
[21] Y. Kagenishi, H. Hirano, A. Shibayama, H. Kotani, N. Moriwaki, M. Kojima, and T. Sumi,
“Low power self refresh mode DRAM with temperature detecting circuit,” in Symposium on
VLSI Circuits, May 1993, pp. 43–44.
[22] J. Nyathi and J. G. Delgado-Frias, “Self-timed refreshing approach for dynamic memories,”
in Proc. IEEE International ASIC Conference, Sep 1998, pp. 169–173.
[23] T. Ohsawa, K. Kai, and K. Murakami, “Optimizing the DRAM refresh count for merged
DRAM/logic LSIs,” in International Symposium on Low Power Electronics and Design, Aug
1998, pp. 82–87.
[24] S. K. Lu and H. K. Huang, “Adaptive block-based refresh techniques for mitigation of data
retention faults and reduction of refresh power,” in Proc. International Test Conference in
Asia (ITC-Asia), Sept 2017, pp. 101–106.
[25] Y. C. Yu, C. S. Hou, L. J. Chang, J. F. Li, C. Y. Lo, D. M. Kwai, Y. F. Chou, and C. W. Wu,
“A hybrid ECC and redundancy technique for reducing refresh power of DRAMs,” in IEEE
VLSI Test Symposium (VTS), April 2013, pp. 1–6.
[26] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep neural networks: A
tutorial and survey,” Proc. of the IEEE, vol. 105, no. 12, pp. 2295–2329, Dec 2017.
[27] “Keras documentation,” http://keras.io/applications/.
[28] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual Recognition
Challenge,” International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.
[29] B. Parhami, “Voting networks,” IEEE Transactions on Reliability, vol. 40, no. 3, pp. 380–394,
Aug 1991.
[30] C. Yang, J. Li, Y. Yu, K.Wu, C. Lo, C. Chen, J. Lai, D. Kwai, and Y. Chou, “A hybrid built-in
self-test scheme for DRAMs,” in VLSI Design, Automation and Test(VLSI-DAT), April 2015,
pp. 1–4.
[31] K. Kim and J. Lee, “A new investigation of data retention time in truly nanoscaled DRAMs,”
IEEE Electron Device Letters, vol. 30, no. 8, pp. 846–848, Aug 2009.
指導教授 李進福(Jin-Fu Li) 審核日期 2018-12-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明