以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:33 、訪客IP:3.129.195.254
姓名 吳昱霈(YU-PEI WU) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 全雙工中繼網路下基於類比網路編碼之動態調變機制
(Analog Network Coding assisted Adaptive Modulation Scheme in Full Duplex Relay)檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 隨著各式行動通訊裝置與應用的技術發展,高速率和低延遲傳輸支援為下世代無線通訊系統一重要設計考量。本論文提出在全雙工中繼網路下,基於類比網路編碼之動態調變(Analog Network Coding assisted Adaptive Modulation, ANCAM)機制以縮短封包傳輸時間並提高網路效能。ANCAM藉由類比網路編碼之訊號加成特性,改善全雙工環境下自我干擾對系統上的影響,並透過類比網路編碼進一步減少封包傳輸的時間。此外,並藉著自我偵測通道環境動態更改調變機制能有效提升系統吞吐量。
本論文使用不會對所傳輸的資料進行額外處理,僅單純將資料放大並傳輸給接收端之放大轉發(Amplify-and-forward)全雙工(Full Duplex)中繼器,不僅可大幅縮短傳輸時間,並減少中繼器的工作量。然而,全雙工傳輸將使接收端收到傳輸端的訊號夾雜著自己所傳輸的訊號,亦即中繼器在全雙工模式傳輸下造成的自我干擾,使得接收端訊號解調困難,並恐減少預期效益。另一方面,類比網路編碼能運用放大轉發中繼器單純放大傳出的特性,將兩兩發送接收端的訊號進行結合同時回傳,進一步減少傳輸時間,但接收端需要額外處理訊號的還原以維持傳輸效能。為了有效運用全雙工與類比網路編碼降低傳輸時間特性並且改善各自帶來的系統效能降低問題,我們設計的ANCAM機制在傳輸的封包前端和後端加入設計過的pilot sequence 偵測訊號是否為干擾,並且將干擾進而消除。另外,我們亦設計reference sequence協助估測目前環境的狀況動態改變調變機制,使得ANCAM應用於動態網路環境中仍能增加系統的吞吐量和減少解調的錯誤。根據模擬的結果,ANCAM在全雙工中繼網路環境下與既有機制相比,既能有效縮短傳輸時間,並且大幅提高系統效能。摘要(英) With the development of modern technologies, high-rate and low-latency transmission becomes important considerations for next-generation wireless communication systems design aiming to support various mobile communication devices and applications. In this thesis, we propose an Analog Network Coding assisted Adaptive Modulation (ANCAM) mechanism to improve network performance in terms of packet transmission time and throughput under full duplex relays formed wireless network. ANCAM not only improves the effect of self-interference suppression in full duplex relay system but also further reduces packet transmission time by exploiting the characteristics of signal-addition via analog network coding. In addition, ANCAM equips with a self-channel detection scheme to actively adjust modulation scheme in react to the channel status so that the system throughput is efficiently enhanced.
To reduce the transmission time, this thesis considers an Amplify-and-Forward Full Duplex relay which simply amplifies and forwards data without additional process. In this way, the relay workload is also reduced. However, full duplex transmission will cause self-interference since its own transmission signal power is larger than the received signal, and thus the receiver might obtain higher bit error rate and lower system performance. Moreover, analog network coding utilizes the characteristics of the amplify-and-forward relay by simply combining the two simultaneously received signals before sends it to the corresponding destinations. Under this condition, receivers need additional process to recover the encoded signal as well as maintain the transmission performance. To overcome the mentioned problem and improve system performance, we propose an ANCAM mechanism by introducing a designed pilot sequence to the transmitted packet to assist signal process during transmission. Furthermore, a reference sequence is also designed to estimate channel condition for modulation scheme adjustment to react to the dynamic change of network environment. Simulation results show that with full duplex relay, ANCAM can effectively shorten the transmission time and greatly improve the system performance compared with existing mechanisms.關鍵字(中) ★ 全雙工
★ 類比網路編碼關鍵字(英) ★ Full duplex
★ Analog networkcodin論文目次 中文摘要 I
英文摘要 II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VII
第一章 緒論 1
1.1研究動機 1
1.2研究方法 1
第二章 背景及相關技術介紹 3
2.1 全雙工傳輸(FULL DUPLEX) 3
2.1.1天線自我干擾消除(Antenna Cancellation) 6
2.1.2類比自我干擾消除(Analog Self-Interference Cancellation) 7
2.1.3數位自我干擾消除(Digital Self-Interference Cancellation) 8
2.2 類比網路編碼(ANALOG NETWORK CODING) 9
第三章 系統模擬架構 12
3.1 中繼網路環境 12
3.2 數位網路編碼環境 14
3.3 類比網路編碼環境 16
3.4 自由空間路境損耗 19
3.5 加成性白高斯雜訊 19
第四章 全雙工中繼網路下基於類比網路編碼之動態調變機制 21
4.1系統架構 21
4.1.1 訊號模型 24
4.1.2 各個時間區塊上所傳輸的訊號 24
4.2 動態調變演算法 29
4.3全雙工中繼網路下基於類比網路編碼之動態調變機制 33
第五章 模擬環境與結果 36
5.1 模擬參數 36
5.2 模擬結果 37
5.2.1 在良好環境下(SNR最高可達20dB)比較各項機制 37
5.2.2 在良好環境下(SNR最高可達20dB)比較各項機制和調變 39
5.2.3 不同的延遲時間對ANCAM在5.2.2環境下所造成的影響 41
5.2.4 在不良好環境下(SNR最高達10dB)比較各項機制和調變 42
5.2.5 不同的延遲時間對ANCAM在5.2.4環境下所造成的影響 46
5.2.6 不同剩餘自我干擾能量對本文機制的影響 49
第六章 結論 50
參考文獻 51參考文獻 [1] F. Boccardi et al., “Five Disruptive Technology Directions for 5G,” IEEE Commun. Mag., vol. 52, no. 2, Feb. 2014.
[2] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, "What will 5G be?" IEEE J. Sel. Areas Commun., vol. 32, pp. 1065-1082, Jun. 2014.
[3] C. Shepard et al., “Argos: Practical Many-Antenna Base Stations,” ACM Int’l. Conf, Mobile Computing and Networking, Istanbul, Turkey, Aug, 2012.
[4] F. Rusek et al., “Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays,” IEEE Sig. Proc. Mag., vol. 30, Jan. 2013, pp. 40–60.
[5] D. Bharadia, E. McMilin, and S. Katti, “Full Duplex Radios,” in Proc. of ACM SIGCOMM 2013, Hong Kong, 2013.
[6] J.Choi et al., “Achieving Single Channel, Full Duplex Wireless Communication,” in Prof. of ACM ACM MOBICOM 2010, Chicago, IL, 2010.
[7] S. Katti, H. Rahul, D. Katabi, W. H. M. Medard, and J. Crowcroft, ”XORs in the Air: Practical Wireless Network Coding,” in Prof. of ACM SIGCOMM, 2006.
[8] Y. Wu, P. A. Chou, and S.-Y. Kung, “Information exchange in wireless networks with network coding and physical-layer broadcast,” in Proc. of CISS 2005, Baltimore, MD.
[9] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference:analog network coding,” SIGCOMM Comput. Commun. Rev., vol. 37,no. 4, pp. 397–408, 2007.
[10] M. Jain, J. Choi, T. M. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, “Practical, real-time full duplex wireless,” in Proc. of ACM MOBICOM, 2011, pp. 301–312.
[11] Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo, “Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection,” IEEE Commun. Mag., vol. 53, no. 5, pp. 128–137, May 2015.
[12] S. Katti, I. Maric, A. Goldsmith, D. Katabi, and M. Medard, “Joint relaying and network coding in wireless networks,” in Information Theory, 2007. ISIT 2007. IEEE International Symposium on, pp. 1101-1105.
[13] M. A. Khojastepour, K. Sundaresan, S. Rangarajan, X. Zhang, and S. Barghi, “The case for antenna cancellation for scalable full-duplex wireless communications,” in Proc. of 10th ACM Workshop HotNets, 2011, p. 17.
[14] N. Li, W. Zhu, and H. Han, “Digital interference cancellation in single channel, full duplex wireless communication,” in Proc. of Int. Conf. Wireless Commun. Netw. Mobile Comput., Sep. 2012, pp. 1–4.
[15] E. Ahmed and A. M. Eltawil, “All-Digital Self-Interference Cancellation Techniques for Full-Duplex Systems,” IEEE Trans. Wireless Commun., vol. 14, no. 7, July 2015, pp. 3519–32.
[16] V. Erceg, et al., “An empirically based path loss model for wireless channels in suburban environments,” IEEE Journal on Selected Areas in Communications, vol. 17, no. 7, pp. 1205–1211, July 1999.
[17] Z. Pi and F. Khan, ‘‘An introduction to millimeter-wave mobile broadband systems,’’ IEEE Commun. Mag., vol. 49, no. 6, pp. 101–107, Jun. 2011.
[18] http://niviuk.free.fr/store_fiveg.php指導教授 黃琴雅 蔡佩芸(Chin-Ya Huang Pei-Yun Tsai) 審核日期 2018-7-12 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare