博碩士論文 104522065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.119.213.36
姓名 張翔珳(Hsiang-Wen Chang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 超解析度方法與系統設計比較研究
(Comparative Study for Super-Resolution Methods and System Design)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在視訊監控、視覺檢測領域,傳統攝影機因為解析度不足,造成監控品質、檢測率降低,而超解析度方法能夠超越攝影機物理極限,將原低解析度影像插補轉換為高解析度影像,增加系統應用的效能。本論文以三種基於不同原理的超解析度方法Bicubic spline、APNN、SRCNN作為比較的對象,以人臉辨識,條碼辨識來評估和量化監控品質、檢測率的改善程度,以及針對演算法實作後成本進行全面評估,比較每個演算法在人眼視覺品質、記憶體使用量、即時性、適合硬體化、相對耗電量、硬體資源的成本,以提供嵌入式系統開發在選擇超解析度方法時,能夠有量化數據做為參考。從實驗結果得知效果方面,超解析度方法能夠改善系統的辨識率,其中以SRCNN改善幅度最大,超解析度方法也進一步降低資料傳輸頻寬,在成本方面,Bicubic spline有少量資源和計算速度快的特性,適合實作於嵌入式軟硬體,APNN需要相對較多的資源,適合實作於嵌入式硬體,SRCNN需要龐大的硬體資源,故目前僅適合實作於GPU平台,其中,本論文對SRCNN硬體部分做硬體最佳化,在邏輯閘數量和精準度做取捨,達到演算法近似計算,本論文找到兩組解,將SRCNN常數權重乘法器硬體化簡,一組為降低0.79%的邏輯閘,平均特徵差增加0.000120,一組為降低12.2%的邏輯閘,平均特徵差增加0.264911。
摘要(英) In the field of video surveillance and vision detection, traditional cameras have low video quality and detection rates, owing to their low resolution. To increase the effectiveness of system applications, the super-resolution method was developed to convert low-resolution images into high-resolution images. In this paper, three super-resolution methods (Bicubic spline, APNN, and SRCNN) are compared and evaluated through two experiments to assess their performance in areas such as face and barcode recognition. The properties of each algorithm, including human vision quality, memory usage, execution time, hardware complexity, relative power consumption, and hardware resources, are also discussed. According to the experimental results, system analyzers can choose the appropriate super-resolution method for embedded system development. Our results show that SRCNN has the greatest improvement of recognition rate among the super-resolution methods. In terms of cost, the Bicubic spline method is suitable for embedded software and hardware applications due to its low cost and high speed. APNN can be applied in embedded hardware applications because of its low resource usage. Due to the high resource usage of SRCNN, it is only suitable for certain GPUs. Therefore, we use a genetic algorithm to obtain a trade-off between hardware cost and accuracy to compute an approximation for the SRCNN hardware. We found two approximated results for SRCNN: a 0.79% decrease in hardware cost and an increase of 0.000120 in average feature difference or a 12.2% decrease in hardware cost and an increase of 0.264011 in average feature difference.
關鍵字(中) ★ 超解析度
★ SRCNN
★ APNN
★ Bicubic spline
★ 比較研究
關鍵字(英) ★ Super resolution
★ SRCNN
★ APNN
★ Bicubic spline
★ Comparison Study
論文目次 目錄
摘 要 I
Abstract II
謝誌 III
目錄 V
圖目錄 IX
表目錄 XIII
第一章、緒論 1
1.1 研究背景 1
1.2 研究目標 5
1.3 論文架構 5
第二章、文獻回顧 6
2.1 傳統超解析度方法 6
2.1.1 最近鄰近插補法 6
2.1.2 雙線性插補法 7
2.1.3 雙立方插補法 8
2.2 雙立方樣板插補法 9
2.3 非等向性機率神經網路 13
2.3.1 機率神經網路 13
2.3.2 機率神經網路應用在插補 16
2.3.3 非等向性機率神經網路 17
2.4 超解析度卷積神經網路 19
2.5 評估影像超解析度方法 22
2.5.1 均方差 24
2.5.2 峰值訊噪比 24
2.5.3 雜訊品質測量 25
2.5.4 資訊保真度標準 26
2.5.5 權重峰值訊號雜訊比 27
2.5.6 結構相似性 28
2.5.7 多尺度結構相似性 29
2.6 方法介紹總結 30
第三章、超解析度軟硬體架構設計 31
3.1 嵌入式軟硬體設計與合成方法論 31
3.1.1 IDEF0階層式模組化設計 32
3.1.2 GRAFCET離散事件建模 34
3.2 硬體系統架構 35
3.3 各演算法的GRAFCET 38
3.3.1 Bicubic spline軟體版本 38
3.3.2 Bicubic spline硬體版本 39
3.3.3 APNN軟體版本 42
3.3.4 APNN硬體版本 44
3.3.5 SRCNN軟體版本 46
3.3.6 SRCNN硬體版本 49
第四章、實驗結果 57
4.1 實驗軟硬體介紹 57
4.2 條碼辨識實驗 58
4.2.1 條碼實驗流程 59
4.2.2 條碼影像資料集 59
4.2.3 條碼辨識結果 61
4.3 人臉辨識實驗 65
4.3.1 人臉辨識實驗流程 65
4.3.2 人臉辨識資料集 66
4.3.3 人臉辨識結果 67
4.4 人眼視覺品質評估 71
4.4.1 人眼視覺評估流程 71
4.4.2 人眼視覺評估資料集 72
4.4.3 品質評估結果 74
4.5 嵌入式性能評估 86
4.5.1 演算法性質 86
4.5.2 記憶體使用量 88
4.5.3 即時性 89
4.5.4 適合硬體化 90
4.5.5 耗電量 93
4.5.6 性能評估結果 94
4.6 硬體資源 95
4.6.1 硬體合成和驗證 95
4.6.2 Latency 105
4.6.3 硬體資源 106
4.7 SRCNN硬體最佳化 108
4.7.1 常數乘法器 108
4.7.2 基因演算法 110
4.7.3 近似計算 113
4.7.4 硬體最佳化 115
4.7.5 實驗總結 117
4.8 綜合比較結果 118
第五章、結論與未來發展 120
5.1 結論 120
5.2 未來展望 122
參考文獻 123
參考文獻 參考文獻
[1] S. Shirmohammadi and A. Ferrero, "Camera as the instrument: the rising trend of vision based measurement," IEEE Instrumentation & Measurement Magazine, vol. 17, no. 3, pp. 41-47, Jun. 2014.
[2] S. Dabral, S. Kamath, V. Appia, M. Mody, B. Zhang, and U. Batur, "Trends in camera based Automotive Driver Assistance Systems (ADAS)," in 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS), College Station, TX, USA, 2014, pp. 1110-1115.
[3] T. Uiboupin, P. Rasti, G. Anbarjafari, and H. Demirel, "Facial image super resolution using sparse representation for improving face recognition in surveillance monitoring," in 2016 24th Signal Processing and Communication Application Conference (SIU), Zonguldak, Turkey, 2016, pp. 437-440.
[4] D. G. Bailey, "Super-resolution of bar codes," Journal of Electronic Imaging, vol. 10, no. 1, pp. 213-220, Jan. 2001.
[5] G. Yang, N. Liu, and Y. Gao, "Two-Dimensional Barcode Image Super-Resolution Reconstruction Via Sparse Representation," A A, vol. 7, p. 3, Oct. 2013.
[6] Z. Wang, H. Yang, W. Li, and Z. Yin, "Super-Resolving IC Images With an Edge-Preserving Bayesian Framework," IEEE Transactions on Semiconductor Manufacturing, vol. 27, no. 1, pp. 118-130, Dec. 2014.
[7] M.-S. Deng, "Blur License Plate Character Prediction Using Super-Resolution Based Image Reconstruction Technique," NCU.
[8] Y. Yamada and D. Sasagawa, "Super-resolution processing of the partial pictorial image of the single pictorial image which eliminated artificiality," in 2012 IEEE International Carnahan Conference on Security Technology (ICCST), Boston, MA, USA, 2012, pp. 338-344.
[9] X. Yang, S. Zhant, C. Hu, Z. Liang, and D. Xie, "Super-resolution of medical image using representation learning," in 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), Yangzhou, China, 2016, pp. 1-6.
[10] M.-H. Hung, "Fast Super Resolution Image Reconstruction from Multiple Differently Exposed Images Using Multilevel Interpolation," Computer Science, 中興大學, 2009年, 2009.
[11] C. De Boor, "Bicubic spline interpolation," Studies in Applied Mathematics, vol. 41, no. 1-4, pp. 212-218, Apr. 1962.
[12] C. Dong, C. C. Loy, K. He, and X. Tang, "Image super-resolution using deep convolutional networks," IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 2, pp. 295-307, Jun. 2016.
[13] C.-H. Chen, C.-M. Kuo, T.-K. Yao, and S.-H. Hsieh, "Anisotropic Probabilistic Neural Network for Image Interpolation," Journal of Mathematical Imaging and Vision, journal article vol. 48, no. 3, pp. 488-498, Feb. 2014.
[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
[15] B. Sahiner et al., "Classification of mass and normal breast tissue: a convolution neural network classifier with spatial domain and texture images," IEEE Transactions on Medical Imaging, vol. 15, no. 5, pp. 598-610, Nov. 1996.
[16] S. Azam, A. Rafique, and M. Jeon, "Vehicle pose detection using region based convolutional neural network," in 2016 International Conference on Control, Automation and Information Sciences (ICCAIS), Ansan, South Korea, 2016, pp. 194-198.
[17] J. Amoh and K. Odame, "Deep Neural Networks for Identifying Cough Sounds," IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 5, pp. 1003-1011, Sep. 2016.
[18] D. H. Hubel and T. N. Wiesel, "Receptive fields, binocular interaction and functional architecture in the cat′s visual cortex," The Journal of Physiology, vol. 160, no. 1, pp. 106-154.2, Jan. 1962.
[19] S. Hijazi, R. Kumar, and C. Rowen, "Using convolutional neural networks for image recognition," Tech. Rep.2015.
[20] K. Fukushima, "Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position," Biological Cybernetics, journal article vol. 36, no. 4, pp. 193-202, Apr. 1980.
[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal representations by error propagation," California Univ San Diego La Jolla Inst for Cognitive Science1985.
[22] Y. LeCun et al., "Backpropagation applied to handwritten zip code recognition," Neural computation, vol. 1, no. 4, pp. 541-551, Dec. 1989.
[23] A. Canziani, A. Paszke, and E. Culurciello, "An analysis of deep neural network models for practical applications," arXiv preprint arXiv:1605.07678, May. 2016.
[24] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting," Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929-1958, Jun. 2014.
[25] Z. Zhao, L. Song, R. Xie, and X. Yang, "GPU accelerated high-quality video/image super-resolution," in 2016 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Nara, Japan, 2016, pp. 1-4.
[26] T. Gong, T. Fan, J. Guo, and Z. Cai, "Gpu-based parallel optimization and embedded system application of immune convolutional neural network," in 2015 International Workshop on Artificial Immune Systems (AIS), Taormina, Italy, 2015, pp. 1-8.
[27] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and L. Benini, "Origami: A convolutional network accelerator," in Proceedings of the 25th edition on Great Lakes Symposium on VLSI, PA, USA, 2015, pp. 199-204: ACM.
[28] D. F. Specht, "Probabilistic neural networks for classification, mapping, or associative memory," in IEEE international conference on neural networks, San Diego, CA, USA, 1988, vol. 1, no. 24, pp. 525-532.
[29] P.-C. Kao, "Application of SOM-PNN Hybrid Neural Network in Speaker Identification," 碩士, 2002.
[30] Y.-W. Wu, "Six-Axis Motion Recognition Applying to Smart Toothbrush," National Central University, 2016.
[31] Z. Cui, H. Chang, S. Shan, B. Zhong, and X. Chen, "Deep network cascade for image super-resolution," in European Conference on Computer Vision, Zurich, Switzerland, 2014, pp. 49-64: Springer.
[32] C. Hong, Y. Dit-Yan, and X. Yimin, "Super-resolution through neighbor embedding," in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., Washington, DC, USA, 2004, vol. 1, pp. I-I.
[33] M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi-Morel, "Low-complexity single-image super-resolution based on nonnegative neighbor embedding," Sep. 2012.
[34] S.-H. Hsieh and C.-H. Chen, "Adaptive image interpolation using probabilistic neural network," Expert Systems with Applications, vol. 36, no. 3, pp. 6025-6029, Apr. 2009.
[35] A. R. Rao, A taxonomy for texture description and identification. Springer Science & Business Media, 2012.
[36] 魏裕昌, 唐大崙, 徐明景, and 許維欽, "An Analytical Study of the Evaluation Method of Digital Archive Image Quality ", 數位典藏作業規劃與品質管理研討會, 2004.
[37] C.-Y. Yang, C. Ma, and M.-H. Yang, "Single-image super-resolution: A benchmark," in European Conference on Computer Vision, Zurich, Switzerland, 2014, pp. 372-386: Springer.
[38] L. Zhang and L. Zhang. (2014). Research on Image Quality Assessment. Available: http://sse.tongji.edu.cn/linzhang/IQA/IQA.htm
[39] N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, "Image quality assessment based on a degradation model," IEEE transactions on image processing, vol. 9, no. 4, pp. 636-650, Apr. 2000.
[40] E. Peli, "Contrast in complex images," JOSA A, vol. 7, no. 10, pp. 2032-2040, Oct. 1990.
[41] A. Bradley and I. Ohzawa, "A comparison of contrast detection and discrimination," Vision research, vol. 26, no. 6, pp. 991-997, Jun. 1986.
[42] B. A. Wandell and S. J. Thomas, "Foundations of Vision," Psyccritiques, vol. 42, no. 7, p. 649, 1997.
[43] H. R. Sheikh, A. C. Bovik, and G. De Veciana, "An information fidelity criterion for image quality assessment using natural scene statistics," IEEE Transactions on image processing, vol. 14, no. 12, pp. 2117-2128, Nov. 2005.
[44] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons, 2012.
[45] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE transactions on image processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.
[46] Z. Wang, E. P. Simoncelli, and A. C. Bovik, "Multiscale structural similarity for image quality assessment," in Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on, Pacific Grove, CA, USA, 2003, vol. 2, pp. 1398-1402: IEEE.
[47] C.-H. Chen, M.-Y. Lin, and X.-C. Guo, "High-level modeling and synthesis of smart sensor networks for Industrial Internet of Things," Computers & Electrical Engineering, vol. 61, no. Supplement C, pp. 48-66, Jul. 2017.
[48] M.-j. Lu, "Comparative Study of Background Subtraction Methods for Moving Object Detection Application," NCU, 2016.
[49] (2011). libdmtx. Available: http://libdmtx.sourceforge.net/
[50] K.-L. Tu, "Data-Matrix 二維條碼辨識的性能改善方法," NCU, 2017.
[51] A. T. Laboratories. (1992). The ORL Database of Faces. Available: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
[52] C.-H. Chen and C. Te Chu, "Fusion of face and iris features for multimodal biometrics," in International Conference on Biometrics, Berlin, Heidelberg, 2006, pp. 571-580: Springer.
[53] R. Zeyde, M. Elad, and M. Protter, "On single image scale-up using sparse-representations," in International conference on curves and surfaces, Berlin, Heidelberg, 2010, pp. 711-730: Springer.
[54] D. Martin, C. Fowlkes, D. Tal, and J. Malik, "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics," in Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, Vancouver, BC, Canada, 2001, vol. 2, pp. 416-423 vol.2.
[55] C. Ledig et al., "Photo-realistic single image super-resolution using a generative adversarial network," arXiv preprint arXiv:1609.04802, Sep. 2016.
[56] C.-Y. Yang and M.-H. Yang, "Fast direct super-resolution by simple functions," in Proceedings of the IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 2013, pp. 561-568.
[57] K. Zhang, D. Tao, X. Gao, X. Li, and Z. Xiong, "Learning Multiple Linear Mappings for Efficient Single Image Super-Resolution," IEEE Transactions on Image Processing, vol. 24, no. 3, pp. 846-861, Jan. 2015.
[58] R. Timofte, V. De Smet, and L. Van Gool, "A+: Adjusted anchored neighborhood regression for fast super-resolution," in Asian Conference on Computer Vision, Singapore, 2014, pp. 111-126: Springer.
[59] R. Timofte, V. De Smet, and L. Van Gool, "Anchored neighborhood regression for fast example-based super-resolution," in Proceedings of the IEEE International Conference on Computer Vision, Sydney, NSW, Australia, 2013, pp. 1920-1927.
指導教授 陳慶瀚(Ching-Han Chen) 審核日期 2017-11-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明