以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:12 、訪客IP:13.59.170.52
姓名 張瑀征(Yu-Cheng Chang) 查詢紙本館藏 畢業系所 通訊工程學系 論文名稱 使用權重最小平方法之多目標資料關聯與追蹤方法作為多感測器資料融合
(Multitarget Data Association and Tracking with the Weighted Least Squares Method for Multisensor Data Fusion)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 無線感測器網路 (Wireless Sensor Network, WSN) 領域近年來受到越來越多的關注,由於無線感測網路擁有低成本、低頻寬、低能源耗損以及防碰撞機制,促進了許多新的應用。位置定位是其中非常重要的一環,如何提供準確的位置資訊,是近年來很熱門的研究主題。
本篇研究是在無線感測器網路中,利用接收訊號強度 (Received Signal Strength, RSS) 技術來對目標物進行追蹤,並使用擴展型卡爾曼濾波器 (Extended Kalman Filter, EKF) 來過濾 RSS 的變化,改善移動中目標的位置估計。除此之外,傳輸環境中可能存在數個目標物或雜波干擾的問題,為了降低干擾所造成的影響,我們使用機率數據關連濾波器 (Probabilistic Data Association Filter, PDAF)、機率假設密度濾波器 (Probability Hypothesis Density Filter, PHDF)來改善此問題,各個感測器將所接收到的訊息彙整至數據融合中心 (FusionCenter, FC),再由數據融合中心計算出較佳目標物路徑軌跡。摘要(英) Wireless sensor network (WSN) is an active research area that has attracted much attention in recent years. Since the sensors used in a WSN have the properties of low cost, low bandwidth, low energy consumption, and anti-collision mechanism, WSN has been found in many applications. How to know the accurate positions of mobile terminals in a WSN is an important issue.
This thesis studies an Received Signal Strength (RSS) technique to track mobile targets in a WSN and employs the Extended Kalman Filter (EKF) for position estimation of moving targets. In addition, there are usually multiple targets and clutter interferences in the tracking environment. To reduce the impact of interferences, we consider the Probabilistic Data Association Filter (PDAF) and Probability Hypothesis Density Filter (PHDF) to improve the tracking problem. Then, a data fusion center (FC) calculates target tracks with the weighted least squares method from the messages provided by multiple sensors.關鍵字(中) ★ 多目標追蹤
★ 資料關聯
★ 資料融合關鍵字(英) 論文目次 中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
第 1 章序論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 簡介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 章節架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
第 2 章系統架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 系統模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 動態模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 基於直角座標位置的系統模型 . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 基於距離估計的系統模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 觀測模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 雜波環境 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
第 3 章數據關聯演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 數據關聯演算法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.1 Nearest neighbor standard EKF . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Probabilistic Data Association Filter . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Probability Hypothesis Density Filter . . . . . . . . . . . . . . . . . . . . . . 20
3.2 直角座標定位法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 雅可比矩陣 H 推導 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 距離估計定位法 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 雅可比矩陣 H 推導 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Least Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Weighted Least Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
第 4 章系統模擬與結果分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1 系統模擬環境 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 模擬結果與討論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.1 基於距離估計的系統模型在不同加權情況下進行的模擬 . . . . . . 39
4.2.2 基於距離估計的系統模型取 Anchor1,2,3 和 Anchor1,3,5 的情況
下進行的模擬 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 基於直角座標位置的系統模型和基於距離估計的系統模型進行
的模擬 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2.4 基於距離估計的系統模型在不同雜波數量情況下進行的模擬 . . 55
第 5 章結論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60參考文獻 [1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114, Aug 2002.
[2] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and N. S. Correal, “Locating the nodes: cooperative localization in wireless sensor networks,” IEEE Signal Processing Magazine, vol. 22, no. 4, pp. 54–69, July 2005.
[3] T. He, P. Vicaire, T. Yan, Q. Cao, G. Zhou, L. Gu, L. Luo, R. Stoleru, J. A. Stankovic, and T. F. Abdelzaher, “Achieving long-term surveillance in vigilnet,” in Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications, April 2006, pp. 1–12.
[4] A. D. Wood, J. A. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan, Y. Wu, L. Fang, and R. Stoleru, “Context-aware wireless sensor networks for assisted living and residential monitoring,” IEEE Network, vol. 22, no. 4, pp. 26–33, July 2008.
[5] R. Mittal and M. P. S. Bhatia, “Wireless sensor networks for monitoring the environmental activities,” in 2010 IEEE International Conference on Computational Intelligence and Computing Research, Dec 2010, pp. 1–5.
[6] H. C. Lee, A. Banerjee, Y. M. Fang, B. J. Lee, and C. T. King, “Design of a multifunctional wireless sensor for in-situ monitoring of debris flows,” IEEE Transactions on Instrumentation and Measurement, vol. 59, no. 11, pp. 2958–2967, Nov 2010.
[7] Y. Wang, Q. Jin, and J. Ma, “Integration of range-based and range-free localization algorithms in wireless sensor networks for mobile clouds,” in 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Aug 2013, pp. 957–961.
[8] T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. F. Abdelzaher, “Range-free localization schemes for large scale sensor networks,” in MobiCom, 2003.
[9] J. C. Liberti and T. S. Rappaport, Smart Antennas for Wireless Communication:IS-95 and Third Generation CDMA Application. Prentice Hall, 1999.
[10] Y. T. Chan and K. C. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Transactions on Signal Processing, vol. 42, no. 8, pp. 1905–1915, Aug 1994.
[11] R. P and M. L. Sichitiu, “Angle of arrival localization for wireless sensor networks,” in 2006 3rd Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, vol. 1, Sept 2006, pp. 374–382.
[12] R. W. Ouyang, A. K. S. Wong, and C. T. Lea, “Received signal strength-based wireless localization via semidefinite programming: Noncooperative and cooperative schemes,” IEEE Transactions on Vehicular Technology, vol. 59, no. 3, pp. 1307–1318, March 2010.
[13] G. Wang and K. Yang, “A new approach to sensor node localization using rss measurements in wireless sensor networks,” IEEE Transactions on Wireless Communications, vol. 10, no. 5, pp. 1389–1395, May 2011.
[14] X. Li, “Rss-based location estimation with unknown pathloss model,” IEEE Transactions on Wireless Communications, vol. 5, no. 12, pp. 3626–3633, December 2006.
[15] S. J. Julier and J. K. Uhlmann, “A new extension of the kalman filter to nonlinear systems,” vol. 3068, 02 1999.
[16] R. A. Singer, “Estimating optimal tracking filter performance for manned maneuvering targets,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-6, no. 4, pp. 473–483, July 1970.
[17] R. Singer and R. Sea, “New results in optimizing surveillance system tracking and data correlation performance in dense multitarget environments,” IEEE Transactions on Automatic Control, vol. 18, no. 6, pp. 571–582, Dec 1973.
[18] Y. Bar-Shalom, F. Daum, and J. Huang, “The probabilistic data association filter,” IEEE Control Systems, vol. 29, no. 6, pp. 82–100, Dec 2009.
[19] R. P. S. Mahler, “Multitarget bayes filtering via first-order multitarget moments,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 4, pp. 1152–1178, Oct 2003.
[20] B. N. Vo and W. K. Ma, “The gaussian mixture probability hypothesis density filter,” IEEE Transactions on Signal Processing, vol. 54, no. 11, pp. 4091–4104, Nov 2006.
[21] K. Pahlavan and A. Levesque, Wireless information networks. Wiley-Interscience New York, NY, USA, 1995.
[22] D. Simon, “Kalman filtering with state constraints: a survey of linear and nonlinear algorithms,” IET Control Theory Applications, vol. 4, no. 8, pp. 1303–1318, August 2010.
[23] N. Longqiang, G. Shesheng, and X. Li, “Improved probabilistic data association and its application for target tracking in clutter,” in 2011 International Conference on Electronics, Communications and Control (ICECC), Sept 2011, pp. 293–296.
[24] M. E. Choi and S. W. Seo, “Robust multitarget tracking scheme based on gaussian mixture probability hypothesis density filter,” IEEE Transactions on Vehicular Technology, vol. 65, no. 6, pp. 4217–4229, June 2016.指導教授 張大中(Dah-Chung Chang) 審核日期 2018-6-22 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare