參考文獻 |
[1] Ka.Mun.Ho,C.Vaz,D.G.Daut, “Automatic classification of amplitude, frequency, and phase shift keyed signals in the wavelet domain,” IEEE Sarnoff Symposium, pp.1-6,April 2010.
[2] 林聰岷,《使用高階統計法則實現相位鍵移調變訊號分類作業》,碩士論文,國立臺灣大學電信工程學研究所,2012年1月。
[3] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin , “A Practical Guide to Support Vector Classification”,pp.16, May 19, 2016
[4] V. Mitra, W. Wang, and H/ Franco, “Deep Convolutional Nets and Robust Features for Reverberation-robust Speech Recognition,” in Proceedings of SLT, 2014.
[5] S. Wang, L. Chen, L. Xu, W. Fan, J. Sun, S. Naoi, “Deep knowledge training and heterogeneous CNN for handwritten Chinese text recognition,” Proc. ICFHR-2016, pp.84-89,2016.
[6] T. J. O’Shea, J. Corgan, “Convolutional radio modulation recognition networks”, CoRR, vol. abs/1602, no. 04105, pp. 1-15, Mar. 2016.
[7] Shengliang Peng, Hanyu Jiang, Huaxia Wang, Hathal Alwageed, and Yu-Dong Yao, "Modulation Classification Using Convolutional Neural Network Based Deep Learning Model",2017
[8] N.E. West, T. O′Shea, "Deep Architectures for Modulation Recognition", Proc. 2017 IEEE Int′l. Symposium Dynamic Spectrum Access Networks (DySPAN), pp. 16, March 2017.
[9] Hinton G E, Osindero S, Teh Y W. ”A fast learning algorithm for deep belief nets”. Neural computation, 2006, 18(7): 1527-1554.
[10] Christopher Olah.,Understanding LSTM Networks, http://colah.github.io/posts/2015-08-Understanding-LSTMs/,accessed 2017
[11] Tara N. Sainath, Oriol Vinyals, Andrew Senior, Has¸im Sak, “CONVOLUTIONAL, LONGSHORT-TERM MEMORY, FULLY CONNECTED DEEP NEURAL NETWORKS”, Google, Inc,2015.
[12] V. Nair, G.E. Hinton, "Rectified Linear Units Improve Restricted Boltzmann Machines", Proc. Int′l Conf. Machine Learning, 2010.
[13] TaraN Sainath ,Ron J. Weiss, Andrew Senior, Kevin W. Wilson, and Oriol Vinyals.” Learning the speech front-end with raw waveform CLDNNs”, Google, Inc,2015.
[14] Xiaoyu Liu, Diyu Yang, and Aly El Gamal, ” Deep Neural Network Architectures for Modulation Classification”,pp.1-5,2017
[15] T. O′Shea, J. Shea, Open Radio Machine Learning Datasets for Open Science. https://www.deepsig.io/datasets, accessed 2017
[16] T. J. O’Shea and N. West, “Radio machine learning dataset generation with gnu radio” in Proceedings of the GNU Radio Conference, vol. 1, no. 1, 2016.
[17] S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, S. Pollin, “Distributed deep learning models for wireless signal classification with low-cost spectrum sensors.”, arXiv:1707.08908,pp.1-13, 2017
[18] M. Kulin, T. Kazaz, I. Moerman, E. d. Poorter, “End-to-end Learning from Spectrum Data: A Deep Learning approach for Wireless Signal Identification in Spectrum Monitoring applications”, arXiv:1712.03987, 2017
[19] D. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980, pp.1-15,2014
[20] Justin Alexander, ” OFDM Modulation Recognition Using Convolutional Neural Networks”, degree of Master of Engineering, Apr. 26 2017.
[21] Xuming Lin, Ruifang Liu, Wenmei Hu, Yameng Li,” A Deep Convolutional Network Demodulator for Mixed Signals with Different Modulation Types”, pp.893-896,2017
[22] Yun Lin, Ya Tu , Zheng Dou, Zhiqiang Wu, “The Applicaction of Deep Learning in Communication Signal Modulation Recognition” in International Conference on Communications in China, 2017.
[23] Google Research Blog “Announcing Tensorflow 0.8 – now with distributed computing support!”. https://ai.googleblog.com/2016/04/announcing-tensorflow-08-now-with.html, accessed 2017.
[24] S. J. Pan and Q. Yang, “A survey on transfer learning,” Knowledge and Data Engineering, IEEE Transactions on, vol. 22, no. 10, pp. 1345– 1359, 2010. |