博碩士論文 104581008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.14.144.145
姓名 盧思穎(Su-Ying Lu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 虛擬電廠最佳化能源管理模式研究
(Research on Models of Energy Management Optimization in Virtual Power Plants)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-2-1以後開放)
摘要(中) 我國政府設定2050淨零排放目標,電力部門去碳化為關鍵重點之一,也持續帶動再生能源快速發展及電網儲能設備增長。另一方面,交通和工業領域低碳化,促使負載型態變得多元且具隨機性。面對電網發、用電的高度不確定性,電力系統管理複雜性因而增加。電網的整合與調度除須結合先進的資通訊和數據技術,亦需仰賴多種時間長度的彈性資源支持,以提升系統的效率與穩定性。
虛擬電廠可聚合各種分散式電源,利用先進的資通訊技術和最佳化演算法對分散式電源進行適當的協調和管理。在確保利害關係人的滿意度與最適利益的情況下,允許參與者因應市場價格訊號和/或電網運作狀況提供用戶側彈性資源,進而提高電力系統在淨零轉型過程中的可靠度與穩定度,被廣泛認為是電力系統脫碳所需的關鍵要素。
本博士論文以單一電力用戶滿足自身用電目標為始,探討分散式電源投資評估與運轉排程最佳化模型與方法;接著分析虛擬電廠在國內現行與未來電力市場架構下的角色與定位,研究虛擬電廠個別用戶資源調查、組成評估、及參與各式電力市場與方案機制的操作模型及成效評估工具。共計發展三種虛擬電廠最佳化能源管理模型,並與其他四種已知模型進行比較分析。各模型皆選用通用性的數學方法與程式化軟體,並運用國內真實案例數據進行模擬研究,研究結果顯示可分別適用於解決相關對應問題。
面對我國電力自由化發展仍處剛起步的階段,為加速市場交易的活絡及擴大電力經濟市場參與涵容性,期本博士論文可提供投資人與市場利害關係人一系列具有學術與實務價值的虛擬電廠操作工具,有助於加速虛擬電廠的推廣,擴大用戶側資源的調度與活用,並為政策制定者提供可行建議,提升市場運行效率,引領我國朝向穩健開放更多元的電力市場,順利達成2050淨零轉型目標。
摘要(英) In pursuit of the 2050 net-zero emissions target set by Taiwan, decarbonization of the energy department has emerged as a critical priority. This objective has driven the rapid development of renewable energy within the power grid. Concurrently, low-carbon transitions in the transportation and industrial sectors have introduced diverse and stochastic load patterns. As uncertainty in power generation and consumption increases, managing power systems has become increasingly complex. Addressing these challenges requires the integration of advanced information and communication technologies (ICT), data analytics, and flexible resources across varying timeframes to enhance system efficiency and stability.
Virtual power plants (VPPs) represent a key solution by aggregating diverse distributed energy resources (DERs) and utilizing advanced ICT and optimization algorithms for their coordination and management. By ensuring stakeholder satisfaction and optimizing benefits, VPPs enable participants to respond effectively to market price signals and/or grid operating conditions, providing demand-side flexibility. This capability significantly enhances the reliability and stability of the power system during the net-zero transition and is widely recognized as a critical element of power system decarbonization.
This dissertation begins with the exploration of investment evaluation and optimal scheduling models and methods for DERs, aimed at enabling an individual electricity user to meet their own energy consumption goals. Subsequently, the role and positioning of VPPs are analyzed under the current and future electricity market structures in Taiwan. The research investigates operational models and performance evaluation tools for resource surveys, composition assessment, and participation in various electricity markets and program mechanisms by individual users within a VPP. Three energy management optimization models for VPPs are developed and compared with four existing models. All models employ universal mathematical methods and programming software, utilizing real-world case data for simulation studies, and are tailored to address corresponding problems effectively.
As Taiwan′s electricity market liberalization is still in its early stages, this dissertation aims to provide investors and market stakeholders with a series of VPP operational models and tools that hold both academic and practical value. These models and tools can help enhance the dispatch and utilization of demand-side resources, offering actionable insights for policymakers to improve market efficiency. Ultimately, this supports the smooth achievement of Taiwan′s 2050 net-zero transition goals.
關鍵字(中) ★ 虛擬電廠
★ 淨零轉型
★ 電力自由化
★ 最佳化方法
關鍵字(英) ★ Virtual Power Plant
★ Net-Zero Transition
★ Electricity Market Liberalization
★ Mathematical optimization
論文目次 摘要 i
ABSTRACT ii
目錄 iv
圖目錄 vii
表目錄 ix
一、 緒論 1
1-1 研究緣起與目的 1
1-2 研究背景 5
1-2-1 我國淨零轉型推動目標 6
1-2-2 綠電先行政策與再生能源推動情形 7
1-2-3 我國交通電氣化政策發展 8
1-2-4 台電公司推動需量反應負載管理措施 10
1-2-5 我國電力市場自由化發展 11
1-2-6 淨零智慧電網與用戶側資源整合技術發展與演進 12
1-3 研究重要性 15
1-4 研究範圍與限制 16
1-4-1 研究範圍 16
1-4-2 研究限制 17
二、 文獻探討 19
2-1 虛擬電廠概念與運作發展情形 19
2-1-1 虛擬電廠發展緣起 19
2-1-2 虛擬電廠的定義 21
2-1-3 虛擬電廠的組成 23
2-1-4 虛擬電廠的架構與控制方式 31
2-1-5 虛擬電廠主要可參與之電力市場與方案機制 32
2-1-6 虛擬電廠的營運風險與挑戰 36
2-2 虛擬電廠決策要素與不確定性 38
2-2-1 虛擬電廠最佳化目標 38
2-2-2 研究變數與限制式 45
2-3 最佳化模型 52
2-3-1 模擬市場競爭決策關係的數學方法 52
2-3-2 最佳化問題的模型設計及求解 55
2-4 研究缺口 62
三、 研究方法 63
3-1 研究架構 63
3-1-1 單一用戶能源管理最佳化 64
3-1-2 我國電力市場架構與虛擬電廠定位探討 65
3-1-3 虛擬電廠資源組合與運轉管理最佳化 65
3-2 研究流程 67
3-3 理論論述 69
3-3-1 單一用戶能源管理最佳化 69
3-3-2 虛擬電廠資源組合與運轉管理最佳化 70
3-4 研究工具與模型建構 72
3-4-1 單一用戶能源管理最佳化 73
3-4-2 我國電力市場架構與虛擬電廠定位探討 92
3-4-3 虛擬電廠資源組合與運轉管理最佳化 102
四、 案例研究與結果 144
4-1 研究對象 144
4-1-1 低碳微電網實際案例 144
4-1-2 實現低碳能源與智慧管理的工廠策略與實踐 145
4-1-3 打造智慧低碳工業園區的策略與實踐 146
4-1-4 建立智慧住宅與社區的策略與實踐 148
4-1-5 推動智慧城市的策略與實踐 150
4-1-6 整合電動載具之虛擬電廠推動策略與實踐 153
4-2 模型數據資料與情境設定 156
4-2-1 用戶廠內用電與電源設備最佳化排程模型(模型一) 156
4-2-2 用戶表後儲能系統最佳化操作排程模型(模型二) 159
4-2-3 用戶整體發、用電與儲能設備最佳化能源組合與運轉決策模型(模型三) 161
4-2-4 虛擬電廠參與需量反應市場最佳化運轉操作與市場均衡模型(模型四) 165
4-2-5 虛擬電廠參與電力交易平台輔助服務市場最佳化投標策略模型(模型五) 166
4-2-6 虛擬電廠參與電能交易市場最佳化運轉操作與市場均衡模型(模型六) 168
4-2-7 虛擬電廠參與高度自由化電力市場最佳化運轉操作與市場均衡模型(模型七) 171
4-3 研究結果 175
4-3-1 單一用戶能源管理最佳化 175
4-3-2 我國電力市場架構與虛擬電廠定位探討 190
4-3-3 虛擬電廠資源組合與運轉管理最佳化 196
五、 結論與建議 241
5-1 結論 241
5-2 後續研究方向 249
參考文獻 251
附錄一、虛擬電廠用戶分散式資源盤點、調查與分析問卷 304
作者簡歷 308
參考文獻 [1] F.-J. Lin, S.-Y. Lu, M.-C. Hu, & Y.-H. Chen, “Stochastic Optimal Strategies and Management of Electric Vehicles and Microgrids.” Energies 17, 2024, 3726. doi: 10.3390/ en17153726.
[2] 陳彥豪、盧思穎等:《日月光集團智慧電網研究計畫兩階段成果彙整報告書》,高雄:日月光文教基金會,2021年6月。
[3] M.-C. Hu, S.-Y. Lu, & Y.-H. Chen, “Stochastic Programming and Market Equilibrium Analysis of Microgrids Energy Management Systems.” Energy, 113, 2016, pp. 662-670.
[4] 楊宏澤、盧思穎等:《結合邊緣運算與人工智慧即時調控之高綠能占比多重微電網區塊鏈調度平台建置(2/2)成果報告書》,台北:國家科學及技術委員會,2023年3月。
[5] M.-C. Hu, S.-Y. Lu, & Y.-H. Chen, “Stochastic-Multiobjective Market Equilibrium Analysis of a Demand Response Program in Energy Market Under Uncertainty.” Appl. Energy, 182, 2016, pp. 500-506.
[6] 盧思穎等:《整合電動車之虛擬電廠商業模式試驗研究完成報告》,台北:台灣電力股份有限公司,2024年7月。
[7] 楊宏澤等:《需量反應、分散式電源與儲能之整合應用(2/2)期末成果效益報告》,台北:科技部,2019年。
[8] 陳彥豪、盧思穎等:《「113年臺北市智慧能源優化及實證計畫」委託專業服務案期中服務報告書》,台北:臺北市政府產業發展局,2024年9月。
[9] ENTSO-E, A Power System for a Carbon Neutral Europe, Brussels: ENTSO-E AISBL, 10 October 2022.
[10] U.S. Department of Energy′s Grid Modernization Initiative, Grid Modernization Strategy 2024, Washington, DC: U.S. Department of Energy Grid Modernization Initiative, July 2024.
[11] ENTSO-E, European Electricity Transmission Grids and the Energy Transition, Brussels: ENTSO-E AISBL, 2021.
[12] European Environment Agency, Air pollution in the EU: facts and figures, 2024年10月13日,取自https://www.consilium.europa.eu/en/infographics/air-pollution-in-the-eu/#0
[13] European Environment Agency, Total Net Greenhouse Gas Emission Trends and Projections in Europe, 2024年10月13日,取自https://www.eea.europa.eu/en/analysis/indicators/total-greenhouse-gas-emission-trends
[14] European Commission, Energy Policies, 2024年10月13日,取自https://ec.europa.eu/info/policies/energy_en
[15] European Commission, Energy Strategy, 2024年10月13日,取自https://energy.ec.europa.eu/index_en
[16] United Nations, Sustainable Development Goals, 2024年10月13日,取自https://sdgs.un.org/
[17] 中華民國國家發展委員會:《臺灣2050淨零排放路徑及策略總說明》,台北:中華民國國家發展委員會,2022。
[18] International Energy Agency, Net Zero by 2050 A Roadmap for the Global Energy Sector, Paris: International Energy Agency, October 2021.
[19] 環境部氣候變遷署:〈環境部公布最新國家溫室氣體排放清冊 2022年全球疫後溫室氣體仍上升 我國排放量下降〉,2024年10月13日,取自https://enews.moenv.gov.tw/Page/3B3C62C78849F32F/e6e27ce7-ccd5-4e91-9096-1447c591653b。
[20] 台灣電力公司:〈強化電網韌性建設計畫〉,2024年10月13日,取自https://service.taipower.com.tw/csr/news/GK/detail。
[21] 曾文生:〈淨零產業轉型與綠色供應鏈〉,《台灣經濟論衡》,20(3),2022,19-27頁。
[22] European Commission, Carbon Border Adjustment Mechanism, 2024年10月13日,取自https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en
[23] 環境部:〈碳費費率審議會設置要點〉,2024年10月13日,取自https://oaout.moenv.gov.tw/law/LawContent.aspx?id=GL007893。
[24] 臺灣碳權交易所股份有限公司:〈臺灣碳權交易所〉,2024年10月13日,取自https://www.tcx.com.tw/zh/。
[25] 經濟部:〈一定契約容量以上之電力用戶應設置再生能源發電設備管理辦法〉,2024年10月13日,取自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0130095。
[26] 台灣電力公司:〈再生能源義務用戶儲能調整用電措施〉,2024年10月3日,取自https://www.taipower.com.tw/media/ua2n0cd4/%E5%86%8D%E7%94%9F%E8%83%BD%E6%BA%90%E7%BE%A9%E5%8B%99%E7%94%A8%E6%88%B6%E5%84%B2%E8%83%BD%E8%AA%BF%E6%95%B4%E7%94%A8%E9%9B%BB%E6%8E%AA%E6%96%BD.pdf。
[27] 經濟部:〈避免電力資源閒置 經濟部推動既有儲能設備投入系統〉,2024年10月13日,取自https://www.moea.gov.tw/MNS/populace/news/News.aspx?kind=1&menu_id=40&news_id=104364。
[28] 王耀庭:〈台電淨零轉型與智慧電網之發展方向〉,淨零城市展前系列論壇(3)-城市能源轉型與智慧電網,台北市電腦商業同業公會,台北市,2024年9月10日。
[29] M.M. Roozbehani, E. Heydarian-Forushani, S. Hasanzadeh, & S.B. Elghali, “Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities.” Sustainability, 14, 2022, 12486. https://doi.org/10.3390/ su141912486.
[30] 台灣電力公司:〈火力營運現況與績效〉,2024年10月13日,取自https://www.taipower.com.tw/2289/2363/2380/2381/10513/normalPost。
[31] 經濟部:〈再生能源發展條例〉,2024年10月13日,取自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0130032。
[32] 台灣電力公司:〈歷史與發展〉,2024年10月13日,取自https://www.taipower.com.tw/2289/2339/2340/10123/normalPost。
[33] 行政院:〈《電業法》修法—發展綠能,啟動國家能源轉型〉,2024年10月13日,取自https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/2ae8bfb8-6014-49d1-b04e-75374fbd6096。
[34] 經濟部能源署:〈儲能系統結合太陽光電發電設備中華民國一百十一年度競標及容量分配作業要點〉,2024年10月13日,取自https://www.moeaea.gov.tw/ECW/populace/Law/Content.aspx?menu_id=20835。
[35] International Energy Agency, Renewables 2023 Analysis and Forecast to 2028, Paris: International Energy Agency, Jan 2024.
[36] International Energy Agency, Renewables 2023 Executive Summary, 2024年10月13日,取自https://www.iea.org/reports/renewables-2023/executive-summary
[37] 台灣電力公司:〈儲能擴大展綠效益 提供用戶解決方案〉,2024年10月13日,取自https://service.taipower.com.tw/tpcjournal/article/6053。
[38] 黃美蓮:〈用戶端分散式資源於負載管理與新商業模式之潛力與彈性〉,2024虛擬電廠發展趨勢與應用案例研討會,台灣電力與能源工程協會,台北市,2024年5月13日。
[39] ENTSO-E, Electric Vehicle Integration into Power Grids, Brussels: ENTSO-E AISBL, 31 March 2021.
[40] 中華民國交通部:《2030年客運車輛電動化推動計畫》,台北:中華民國交通部,2023。
[41] 鄭冠淳:〈淨零先鋒:臺灣電動車市場的崛起與未來〉,2024年10月13日,取自https://www.artc.org.tw/tw/knowledge/articles/13739。
[42] Southern California Edison, Charge Ready Program, California: Southern California Edison, 2022.
[43] 台灣電力公司:〈電動車用電業務專區〉,2024年10月13日,取自https://www.taipower.com.tw/2289/2406/2420/2429/12047/normalPost。
[44] 台灣電力公司:〈當電動車變身備援電力 台電本島首座V2G智慧充電示範場今啟用〉,2024年10月13日,取自https://www.moea.gov.tw/Mns/populace/news/News.aspx?kind=1&menu_id=40&news_id=96316。
[45] 劉致峻:〈淺談電力需求面管理〉,2024年10月13日,取自https://learnenergy.tw/index.php?inter=knowledge&caid=4&id=473。
[46] 許瑜芳、盧思穎、黃慧宜和陳彥豪:〈從美國需量反應用戶合約探討其商業模式研究〉,《台電工程月刊》,789期,2014,128~ 143 頁。
[47] 台灣電力公司:〈需量反應措施 均衡尖離峰負載比蓋電廠重要〉,2024年10月13日,取自https://tpcjournal.taipower.com.tw/tpcjournal/article/6314。
[48] 台灣電力公司:《2023永續報告書》,台北:台灣電力公司,2024。
[49] 劉禹伸:〈電業自由化國外經驗有助於我國未來推動電力自由化的參考借鏡〉,2024年10月13日,取自https://km.twenergy.org.tw/Data/db_more?id=1303。
[50] 台灣電力公司:〈電力交易平台上路 能源轉型邁進新里程〉,2024年10月13日,取自https://service.taipower.com.tw/tpcjournal/article/4850。
[51] 經濟部:〈經濟部預告電業法部分條文修正草案 期許活絡綠電交易並落實淨零轉型〉,2024年10月13日,取自https://www.moea.gov.tw/MNS/populace/news/News.aspx?kind=1&menu_id=40&news_id=115427。
[52] 周芳正:〈虛擬電廠資源與電力交易市場之發展趨勢〉,2024虛擬電廠發展趨勢與應用案例研討會,台灣電力與能源工程協會,台北市,2024年5月13日。
[53] P. Cicilio, D. Glennon, A. Mate, A. Barnes, V. Chalishazar, E. Cotilla-Sanchez, B. Vaagensmith, J. Gentle, C. Rieger, R. Wies, et al., “Resilience in an Evolving Electrical Grid.” Energies, 14, 2021, 694. https://doi.org/10.3390/en14030694
[54] International Energy Agency, Unlocking Smart Grid Opportunities in Emerging Markets and Developing Economies, Paris: International Energy Agency, February 2024.
[55] 盧思穎、陳彥豪:〈虛擬電廠參與我國電力市場的商業模式介紹〉,《台灣經濟研究月刊》,第40卷第5期,2017年5月,29-40頁。
[56] T. R. McJunkin & J. T. Reilly, Net-Zero Carbon Microgrids, Idaho: Idaho National Laboratory, November 2021.
[57] 日本送配電協議會:《2050年???????????向??》,東京:送配電協議會,2021。
[58] European Commission, Clean Energy Technology Observatory: Smart Grids in the European Union, Luxembourg: European Commission, 2022.
[59] 一般社?法人 日本電?協?新聞部:〈送配電網協、系統技術?次世代化???????策定〉,2024年10月13日,取自https://www.denkishimbun.com/sp/126693。
[60] D. Pudjianto, C. Ramsay, & G. Strbac, “Virtual power plant and system integration of distributed energy resources.” IET Renew. Power Gener., vol. 1, no. 1, 2007, pp. 10–16.
[61] 劉文雄:〈虛擬電廠發展現況與展望〉,2024虛擬電廠發展趨勢與應用案例研討會,台灣電力與能源工程協會,台北市,2024年5月13日。
[62] Florian Andreas Kolb, Benefits and Challenges of Virtual Power Plants, 2024年10月13日,取自https://www.linkedin.com/pulse/benefits-challenges-virtual-power-plants-florian-andreas-kolb
[63] W. Nafkha-Tayari, S. Ben Elghali, E. Heydarian-Forushani, & M. Benbouzid, “Virtual Power Plants Optimization Issue: A Comprehensive Review on Methods, Solutions, and Prospects.” Energies, 15, 2022, 3607. https://doi.org/10.3390/en15103607.
[64] E. Mashhour & S. M. Moghaddas-Tafreshi, "Bidding Strategy of Virtual Power Plant for Participating in Energy and Spinning Reserve Markets—Part II: Numerical Analysis." IEEE Trans. Power Syst., vol. 26, no. 2, May 2011, pp. 957-964, doi: 10.1109/TPWRS.2010.2070883.
[65] M. Braun & P. Strauss, “A Review on Aggregation Approaches of Controllable Distributed Energy Units in Electrical Power Systems.” Fraunhofer IWES, 4, 2008, pp. 297–315.
[66] 羅士展:〈各產業之虛擬電廠聚合應用與未來展望〉,2024虛擬電廠發展趨勢與應用案例研討會,台灣電力與能源工程協會,台北市,2024年5月13日。
[67] 鄭智文:〈虛擬電廠與AI應用〉,2024虛擬電廠發展趨勢與應用案例研討會,台灣電力與能源工程協會,台北市,2024年5月13日。
[68] S. Awerbuch & A. Preston, The Virtual Utility: Accounting, Technology & Competitive Aspects of the Emerging Industry. New York: Springer Science & Business Media; 1997. https://doi.org/10.1007/978-1-4615-6167-5.
[69] Natalia Naval & Jose M. Yusta, “Virtual Power Plant Models and Electricity Markets - A Review.” Renew. Sustain. Energy Rev., Vo. 149, 2021, 111393, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2021.111393.
[70] M.R. Khan, Z.M. Haider, F.H. Malik, F.M. Almasoudi, K.S.S. Alatawi, & M.S. Bhutta, “A Comprehensive Review of Microgrid Energy Management Strategies Considering Electric Vehicles, Energy Storage Systems, and AI Techniques.” Processes 12, 2024, 270. https://doi.org/10.3390/pr12020270.
[71] D. Yang, S. He, M. Wang, & H. Pand?i?, "Bidding Strategy for Virtual Power Plant Considering the Large-Scale Integrations of Electric Vehicles." IEEE Trans. Ind. Appl., vol. 56, no. 5, Sept.-Oct. 2020, pp. 5890-5900, doi: 10.1109/TIA.2020.2993532.
[72] P. K. Saha, N. Chakraborty, A. Mondal, & S. Mondal, "Intelligent Real-Time Utilization of Hybrid Energy Resources for Cost Optimization in Smart Microgrids." IEEE Syst. J., vol. 18, no. 1, March 2024, pp. 186-197, doi: 10.1109/JSYST.2024.3352617.
[73] J. F. Venegas-Zarama, J. I. Munoz-Hernandez, L. Baringo, P. Diaz-Cachinero, & I. De Domingo-Mondejar, "A Review of the Evolution and Main Roles of Virtual Power Plants as Key Stakeholders in Power Systems." IEEE Access, vol. 10, 2022, pp. 47937-47964, doi: 10.1109/ACCESS.2022.3171823.
[74] T. Liu, J. Liu, & W. Li, “Research on Demand Response Bidding Strategy of Virtual Power Plant Considering Uncertainty.” Proceedings of the 2nd International Conference on Information Technologies and Electrical Engineering. 2019.
[75] Z. Ullah, G. Mokryani, F. Campean, & Y. Hu, “Comprehensive review of VPPs planning, operation and scheduling considering the uncertainties related to renewable energy sources.” IET Energy Syst. Integr., 1, 2019, pp. 147–157.
[76] S. A. Abbas Rizvi, A. Xin, & A. Masood, "Optimized Scheduling of Virtual Power Plants considering Demand Response with TOU approach." 2022 7th Asia Conference on Power and Electrical Engineering (ACPEE), Hangzhou, China, 2022, pp. 1982-1986, doi: 10.1109/ACPEE53904.2022.9784057.
[77] A. Ahmadian, K. Ponnambalam, A. Almansoori, & A. Elkamel, “Optimal Management of a Virtual Power Plant Consisting of Renewable Energy Resources and Electric Vehicles Using Mixed?Integer Linear Programming and Deep Learning.” Energies 16, 2023, 1000. https://doi.org/10.3390/en16021000.
[78] S. Bahramara, P. Sheikhahmadi, & H. Golpira, “Co-Optimization of Energy and Reserve in Standalone Micro-Grid Considering Uncertainties.” Energy, 176, 2019, pp. 792–804.
[79] J. Ul Ain Binte Wasif Ali, S. A. A. Kazmi, A. Altamimi, Z. A. Khan, O. Alrumayh, & M. M. Malik, "Smart Energy Management in Virtual Power Plant Paradigm with a New Improved Multilevel Optimization Based Approach." IEEE Access, vol. 10, 2022, pp. 50062-50077, doi: 10.1109/ACCESS.2022.3169707.
[80] J. Mohammadi, A. Rahimi-Kian, & M.S. Ghazizadeh, “Aggregated Wind Power and Flexible Load Offering Strategy.” IET Renew. Power Gener., vol. 5, no. 6, 2011, pp. 439–447.
[81] Morteza Shabanzadeh, Mohammad-Kazem Sheikh-El-Eslami, & Mahmoud-Reza Haghifam, "A Medium-Term Coalition-Forming Model of Heterogeneous DERs for a Commercial Virtual Power Plant." Appl. Energy, Vol. 169, 2016, pp. 663-681, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2016.02.058.
[82] S. M. Nosratabadi, H. Rahmat-Allah, & E. Gholipour, “A Comprehensive Review on Microgrid and Virtual Power Plant Concepts Employed for Distributed Energy Resources Scheduling in Power Systems.” Renew. Sustain. Energy Rev., 67, 2017, pp. 341–363.
[83] H. Xin, D. Gan, N. Li, et al., “Virtual Power Plant-Based Distributed Control Strategy for Multiple Distributed Generators.” IET Control Theory Appl., vol. 7, no. 1, 2013, pp. 90–98.
[84] P.T. Manditereza & R. Bansal, “Renewable Distributed Generation: The Hidden Challenges: A Review from the Protection Perspective.” Renew. Sustain. Energy Rev., vol. 58, no. 6, 2016, pp. 1457–1465.
[85] W.-S. Tan, M.Y. Hassan, M.S. Majid, et al., “Optimal Distributed Renewable Generation Planning: A Review of Different Approaches.” Renew. Sustain. Energy Rev., 18, 2013, pp. 626–645.
[86] A. Y. Abdelaziz, Y. G. Hegazy, W. El-Khattam, et al., “Optimal Allocation of Stochastically Dependent Renewable Energy Based Distributed Generators in Unbalanced Distribution Networks.” Electr. Power Syst. Res., 119, 2015, pp. 34–44.
[87] J. Ekanayake, N. Jenkins, K. Liyanage, J. Wu, & A. Yokoyama, Smart Grid: Technology and Applications. John Wiley & Sons; 2012. http://dx.doi.org/10.1002/9781119968696.
[88] W. Niu, L. I. Yang, & B. Wang, "Demand Response Based Virtual Power Plant Modeling Considering Uncertainty." Proceedings of the Csee, vol. 34, 2014, pp. 3630-3637.
[89] Perez-Arriaga IJ. Regulation of the power sector. Springer Science & Business Media; 2014. http://dx.doi.org/10.1007/978-1-4471-5034-3.
[90] XP. Zhang, Restructured Electric Power Systems: Analysis of Electricity Markets with Equilibrium Models. John Wiley & Sons 2010. http://dx.doi.org/10.1002/9780470608555.
[91] J. Cao, Y. Zheng, X. Han, D. Yang, J. Yu, N. Tomin, & P. Dehghanian, “Two-Stage Optimization of a Virtual Power Plant Incorporating with Demand Response and Energy Complementation.” Energy Reports, Vol. 8, 2022, pp. 7374-7385, ISSN 2352-4847, https://doi.org/10.1016/j.egyr.2022.05.255.
[92] Z. Tan, W. Fan, H. Li, G. De, J. Ma, S. Yang, L. Ju, & Q. Tan, “Dispatching Optimization Model of Gas-Electricity Virtual Power Plant Considering Uncertainty Based on Robust Stochastic Optimization Theory.” J. Clean. Prod., Vol. 247, 2020, 119106, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2019.119106.
[93] International Energy Agency, Energy and Climate Change, World Energy Outlook Special Report, Paris: International Energy Agency, 2015.
[94] J. Lee & D. Won, "Optimal Operation Strategy of Virtual Power Plant Considering Real-Time Dispatch Uncertainty of Distributed Energy Resource Aggregation." IEEE Access, vol. 9, 2021, pp. 56965-56983, doi: 10.1109/ACCESS.2021.3072550.
[95] S. Radle, J. Mast, J. Gerlach, et al., “Computational Intelligence Based Optimization of Hierarchical Virtual Power Plants.” Energy Syst. 12, 2021, pp. 517–544. https://doi.org/10.1007/s12667-020-00382-z.
[96] A. Baringo, L. Baringo, & J. M. Arroyo, “Day-Ahead Self-Scheduling of a Virtual Power Plant in Energy and Reserve Electricity Markets Under Uncertainty.” IEEE Trans. Power Syst., 34, 2019, pp. 1881-1894.
[97] R. Heydari, J. Nikoukar, & M. Gandomkar, “Optimal Operation of Virtual Power Plant with Considering the Demand Response and Electric Vehicles.” J. Electr. Eng. Technol., 16, 2021, pp. 2407–2419. https://doi.org/10.1007/s42835-021-00784-8.
[98] S. Hadayeghparast, A.S. Farsangi, & H. Shayanfar, “Day-Ahead Stochastic Multi-Objective Economic/Emission Operational Scheduling of a Large-Scale Virtual Power Plant.” Energy, 172, 2019, pp. 630–646.
[99] D. Xie, M. Liu, L. Xu, & W. Lu, "Multiplayer Nash–Stackelberg Game Analysis of Electricity Markets with the Participation of a Distribution Company." IEEE Syst. J., vol. 17, no. 3, Sept. 2023, pp. 3658-3669, doi: 10.1109/JSYST.2023.3240993.
[100] M. Dehghani, M. Taghipour, S. Sadeghi Gougheri, A. Nikoofard, G.B. Gharehpetian, & M. Khosravy, “A Deep Learning?Based Approach for Generation Expansion Planning Considering Power Plants Lifetime.” Energies, 14, 2021, 8035.
[101] D. Yang, S. He, Q. Chen, D. Li, & H. Pandzic, “Bidding Strategy of Virtual Power Plant Considering Carbon-Electricity Trading.” CSEE J. Power Energy Syst., 2019.
[102] W. Tang & H. -T. Yang, "Optimal Operation and Bidding Strategy of a Virtual Power Plant Integrated with Energy Storage Systems and Elasticity Demand Response." IEEE Access, vol. 7, 2019, pp. 79798-79809, doi: 10.1109/ACCESS.2019.2922700.
[103] J. Ryu & J. Kim, "Virtual Power Plant Operation Strategy Under Uncertainty with Demand Response Resources in Electricity Markets." IEEE Access, vol. 10, 2022, pp. 62763-62771, doi: 10.1109/ACCESS.2022.3181163.
[104] M. Chazarraa, J. Garcia-Gonzalez, J. I. Perez-Diaz, & M. Arteseros, “Stochastic Optimization Model for The Weekly Scheduling of a Hydropower System in Day-Ahead and Secondary Regulation Reserve Markets.” Elec. Power Syst. Res., vol. 130, Jan. 2016, pp. 67-77.
[105] S. Wang & W. Wu, “Aggregate Flexibility of Virtual Power Plants with Temporal Coupling Constraints.” IEEE Trans. Smart Grid, vol. 12, no. 6, 2021, pp. 5043–5051.
[106] X. Y. Kong, J. Xiao, C. Wang, et al., “Bi-Level Multi-Time Scale Scheduling Method Based on Bidding for Multi-Operator Virtual Power Plant.” Appl. Energy, vol 249, 2019, pp. 178-189.
[107] Z. N. Azimi, R. Hooshmand, & S. Soleymani, “Energy Management Considering Simultaneous Presence of Demand Responses and Electric Vehicles in Smart Industrial Grids.” Sustain. Energy Technol. Assess., 2021.
[108] X. Liu, Y. Liu, J. Liu, Y. Xiang, & X. Yuan, “Optimal Planning of ACDC Hybrid Transmission and Distributed Energy Resource System: Review and Prospects.” CSEE J. Power Energy Syst., vol. 5, no. 3, Sep. 2019, pp. 409–422.
[109] A. M. Saatloo, M. A. Mirzaei, & B. Mohammadi-Ivatloo, "A Robust Decentralized Peer-to-Peer Energy Trading in Community of Flexible Microgrids." IEEE Syst. J., vol. 17, no. 1, March 2023, pp. 640-651, doi: 10.1109/JSYST.2022.3197412.
[110] S. Yu, F. Fang, Y. Liu, & J. Liu, “Uncertainties of Virtual Power Plant: Problems and Countermeasures.” Appl. Energy, Vol. 239, 2019, pp. 454-470, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2019.01.224.
[111] Z. Qin, Y. Mo, H. Liu, & Y. Zhang, “Operational Flexibility Enhancements Using Mobile Energy Storage in Day-Ahead Electricity Market by Game Theoretic Approach.” Energy, vol. 232, Oct. 2021, Art. no. 121008.
[112] P. Sheikhahmadi & S. Bahramara, “The Participation of a Renewable Energy-Based Aggregator in Real-Time Market: A Bi-Level Approach.” J. Cleaner Prod., vol. 276, Dec. 2020, Art. no. 123149.
[113] S. R. Dabbagh & M. K. Sheikh-El-Eslami, “Risk-Based Profit Allocation to DERs Integrated with a Virtual Power Plant Using Cooperative Game Theory.” Electric Power Syst. Res., Vol. 121, 2015, pp. 368-378, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2014.11.025.
[114] L. Nikonowicz & J. Milewski, “Virtual Power Plants-General Review: Structure, Application and Optimization.” J. Power Technol., 2, 2012, pp. 135–149.
[115] W. Zhang, C. He, H. Qian, Z. Lin, Y. Li, X. Zhao, & C. Shu, “Virtual Power Plant Integration with Smart Grids: A Review.” In Proceedings of the 2022 IEEE 5th International Electrical and Energy Conference (CIEEC), Nangjing, China, 27–29 May 2022; pp. 4755–4759.
[116] E. A. Bhuiyan, M. Z. Hossain, S. M. Muyeen, S.R. Fahim, S.K. Sarker, & S.K. Das, “Towards Next Generation Virtual Power Plant: Technology Review and Frameworks.” Renew. Sustain. Energy Rev., 150, 2021, 111358.
[117] S. Sadeghi, H. Jahangir, B. Vatandoust, M. A. Golkar, A. Ahmadian, & A. Elkamel, “Optimal Bidding Strategy of a Virtual Power Plant in Day-Ahead Energy and Frequency Regulation Markets: A Deep Learning-Based Approach.” Int. J. Electr. Power Energy Syst., vol. 127, May 2021, 106646.
[118] D. Koraki & K. Strunz, “Wind and Solar Power Integration in Electricity Markets and Distribution Networks Through Service-Centric Virtual Power Plants.” IEEE Trans. Power Syst., vol. 33, no. 1, 2018, pp. 473–485.
[119] R. H. A. Zubo, G. Mokryani, H. S. Rajamani, et al., “Operation and Planning of Distribution Networks with Integration of Renewable Distributed Generators Considering Uncertainties: A Review.” Renew. Sustain. Energy Rev., 72, 2017, pp. 1177–1198.
[120] M. M. Othman, W. El-Khattam, Y. G. Hegazy, et al., “Optimal Placement and Sizing of Distributed Generators in Unbalanced Distribution Systems Using Supervised Big Bang–Big Crunch Method.” IEEE Trans. Power Syst., vol. 30, no. 2, 2015, pp. 911–919.
[121] Z. Vale, T. Pinto, H. Morais, I. Prac﹐ & P. Faria, “VPP’s Multi-Level Negotiation in Smart Grids and Competitive Electricity Markets.” IEEE Power and Energy Society General Meeting, Detroit, MI, USA; 2011. p. 1–8.
[122] A.G. Orths & P.B. Eriksen, “European Test Field: VPP Denmark.” IEEE Power and Energy Society General Meeting, 2009.
[123] X. Wang & Z. E. Kong, “Research on Multi-Energy Coordinated Intelligent Management Technology of Urban Power Grid Under the Environment of Energy Internet.” Appl. Sci. 9, 2019, 2608; doi:10.3390/app9132608.
[124] L. Zhang, D. Liu, G. Cai, L. Lyu, L.H. Koh, & T. Wang, “An Optimal Dispatch Model for Virtual Power Plant That Incorporates Carbon Trading and Green Certificate Trading.” Int. J. Electr. Power Energy Syst., 144, 2023, 108558.
[125] Z. Tan, G. Wang, L. Ju, Q. Tan, & W. Yang, “Application of CVaR Risk Aversion Approach in the Dynamical Scheduling Optimization Model for Virtual Power Plant Connected with Wind-Photovoltaic-Energy Storage System with Uncertainties and Demand Response.” Energy, 124, 2017, pp. 198–213.
[126] G. Strbac, N. Jenkins, T. Green, & D. Pudjianto, “Review of Innovative Network Concept.” Research Project Supported by European commission, Directorate-General for Energy and Transport, under the Energy Intelligent Europe (EIE), Dec. 2006.
[127] G. Chen & J. Li, “A Fully Distributed ADMM-Based Dispatch Approach for Virtual Power Plant Problems.” Appl Math Model, 58, 2018, pp. 300–312. https://doi.org/10.1016/j.apm. 2017.06.010.
[128] Y. Yuan, Z. Wei, G. Sun, Y. Sun, & D. Wang, “A Real-Time Optimal Generation Cost Control Method for Virtual Power Plant.” Neurocomputing, 143, 2014, pp. 322–330. https://doi.org/10.1016/j.neucom.2014.05.060.
[129] 陳彥豪、盧思穎、林法正:〈虛擬電廠概念與運作模式介紹〉,《電力電子雙月刊》,第11卷第4期,2013年7月,46-53頁。
[130] C. Wei, J. Xu, S. Liao, Y. Sun, Y. Jiang, D. Ke, Z. Zhang, & J. Wang, “A Bi-Level Scheduling Model for Virtual Power Plants with Aggregated Thermostatically Controlled Loads and Renewable Energy.” Appl. Energy, 224, 2018, pp. 659–670.
[131] C. Tarazona, M. Muscholl, R. Lopez, & J.C. Passelergue, “Integration of Distributed Energy Resources in the Operation of Energy Management Systems.” In Proceedings of the 2009 IEEE PES/IAS Conference on Sustainable Alternative Energy (SAE), Valencia, Spain, 28–30 September 2009, pp. 1–5.
[132] J. Sarmiento-Vintimilla, Virtual Power Plants (VPPs). 2024年10月13日,取自https://encyclopedia.pub/entry/19051.
[133] D. Aloini, E. Crisostomi, M. Raugi, & R. Rizzo, "Optimal Power Scheduling in a Virtual Power Plant." 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies, Manchester, UK, 2011, pp. 1-7, doi: 10.1109/ISGTEurope.2011.6162768.
[134] L. Ju, Z. Yin, Q. Zhou, Q. Li, P. Wang, W. Tian, P. Li, & Z. Tan, “Nearly-Zero Carbon Optimal Operation Model and Benefit Allocation Strategy for a Novel Virtual Power Plant Using Carbon Capture, Power-to-Gas, and Waste Incineration Power in Rural Areas.” Appl. Energy, 310, 2022, 118618.
[135] A. R. Jordehi, “A Stochastic Model for Participation of Virtual Power Plants in Futures Markets, Pool Markets and Contracts with Withdrawal Penalty.” J. Energy Storage, 50, 2022, 104334.
[136] C. Tan, J. Wang, S. Geng, L. Pu, & Z. Tan, “Three-Level Market Optimization Model of Virtual Power Plant with Carbon Capture Equipment Considering Copula—CVaR Theory.” Energy, 237, 2021, 121620.
[137] J. Z. Riveros, K. Bruninx, K. Poncelet, & W. D’haeseleer, “Bidding Strategies for Virtual Power Plants Considering CHPs and Intermittent Renewables.” Energy Convers. Manag., 103, 2015, pp. 408–418.
[138] M. Alsaleh & A. S. Abdul-Rahim, “Bioenergy Industry and the Growth of the Energy Sector in the EU-28 Region: Evidence from Panel Cointegration Analysis.” J. Renew. Sustain. Energy, 10, 2018, pp. 53–61.
[139] E. Gonzalez-Romera, E. Romero-Cadaval, C. Roncero-Clemente, M.-I. Milanes-Montero, F. Barrero-Gonzalez, & A.-A. Alvi, “A Genetic Algorithm for Residential Virtual Power Plants with Electric Vehicle Management Providing Ancillary Services.” Electronics, 12, 2023, 3717. https://doi.org/10.3390/electronics12173717.
[140] J. Xiao, X. Kong, Q. Jin, H. You, K. Cui, & Y. Zhang, “Demand Response Virtual Power Plant Optimization Scheduling Method Based on Competitive Bidding Equilibrium.” Energy Procedia, 152, 2018, pp. 1158–1163.
[141] C. Andrieu, M. Fontela, B. Enacheanu, H. Pham, B. Raison, Y. Besanger, M. Randrup, U. B. Nilsson, R. Kamphuis, & G. J. Schaeffer, “Distributed Network Architectures.” European Project CRISP (ENK5-CT-2002-00673), Aug. 30, 2005, Deliverable D1. 7.
[142] K. Dietrich, J. M. Latorre, L. Olmos, & A. Ramos, "Modelling and Assessing the Impacts of Self Supply and Market-Revenue Driven Virtual Power Plants." Electric Power Syst. Res., Vol. 119, 2015, pp. 462-470, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2014.10.015.
[143] A. Tovaglieri, Research Collection. Brisk Bin Robust Invariant Scalable Keypoints ETH. Zurich: Zurich, Switzerland, 2003.
[144] S. A. A. Kazmi, M. K. Shahzad, A. Z. Khan, & D. R. Shin, “Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective.” Energies, vol. 10, no. 4, Apr. 2017, 501.
[145] O. Erdinc & M. Uzunoglu, “The Importance of Detailed Data Utilization on the Performance Evaluation of a Grid-Independent Hybrid Renewable Energy System.” Int. J. Hydrogen Energy, vol. 36, no. 20, 2011, pp. 12664–12677.
[146] M. Peik-Herfeh, H. Seifi, & M. K. Sheikh-El-Eslami, “Decision Making of a Virtual Power Plant under Uncertainties for Bidding in a Day-Ahead Market Using Point Power Estimate Method.” Int. J. Electr. Power, 44, 2013, pp. 88–98. http://dx.doi.org/10.1016/j.ijepes.2012.07.016.
[147] N. Ruiz, I. Cobelo, & J. Oyarzabal, “A Direct Load Control Model for Virtual Power Plant Management.” IEEE Trans. Power Syst., vol. 24, no. 2, 2009, pp. 959–966. https://doi.org/10.1109/TPWRS.2009.2016607.
[148] P. Lombardi, M. Powalko, & K. Rudion, “Optimal Operation of a Virtual Power Plant.” In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009, pp. 1–6.
[149] K. Mahmud, B. Khan, J. Ravishankar, A. Ahmadi, & P. Siano, “An Internet of Energy Framework with Distributed Energy Resources, Prosumers and Small-Scale Virtual Power Plants: An Overview.” Renew. Sustain. Energy Rev., Vol. 127, 2020, 109840, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2020.109840.
[150] S. You, S. Member, C. Traholt, & B. Poulsen, “A Market-Based Virtual Power Plant.” 2009 Int. Conf. Clean Electrical Power IEEE, Capri, Italy, 2009, pp. 460–465.
[151] M. Seyyed, H. Rahmat-Allah, & G. Eskandar, "Stochastic Profit-Based Scheduling of Industrial Virtual Power Plant Using the Best Demand Response Strategy." Appl. Energy, Vol. 164. 1, Jan. 2016, pp. 590-606.
[152] J. Mohammadi, A. Rahimi-Kian, & M. S. Ghazizadeh, “Joint Operation of Wind Power and Flexible Load as Virtual Power Plant.” 2011 10th International Conference on Environment and Electrical Engineering, May 2011, pp. 1–4.
[153] H. Pandzic, I. Kuzle, & T. Capuder, “Virtual Power Plant Mid-Term Dispatch Optimization.” Appl. Energy, 101, 2013, pp. 134–141. http://dx.doi.org/10.1016/j.apenergy.2012.05.039.
[154] H. Bai, S. Miao, X. Ran, & C. Ye. “Optimal Dispatch Strategy of a Virtual Power Plant Containing Battery Switch Stations in a Unified Electricity Market.” Energies, vol. 8, no. 3, Mar. 2015, pp. 2268-2289.
[155] B. Liu, J. R. Lund, S. Liao, X. Jin, L. Liu, & C. Cheng, “Optimal Power Peak Shaving Using Hydropower to Complement Wind and Solar Power Uncertainty.” Energy Convers. Manag., 209, 2020, 112628.
[156] C. Kieny, B. Berseneff, N. Hadjsaid, Y. Besanger, & J. Maire, “On the Concept and the Interest of Virtual Power Plant: Some Results from the European Project Fenix.” In Proceedings of the 2009 IEEE Power & Energy Society General Meeting, Calgary, AB, Canada, 26–30 July 2009, pp. 1–6.
[157] L. Yavuz, A. Onen, S. Muyeen, & I. Kamwa, “Transformation of Microgrid to Virtual Power Plant—A Comprehensive Review.” IET Gener. Transm. Distrib., 13, 2019, pp. 1994–2005.
[158] H. Saboori, M. Mohammadi, & R. Taghe, “Virtual Power Plant (VPP), Definition, Concept, Components and Types.” In Proceedings of the 2011 Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 25–28 March 2011, pp. 1–4.
[159] D. Pudjianto, C. Ramsay, & G. Strbac, The FENIX Vision: The Virtual Power Plant and System Integration of Distributed Energy Resources. Contract No: SES6 –518272, Deliverable 1.4.0, 2006.
[160] E. Mashhour & S. M. Moghaddas-Tafreshi, "Bidding Strategy of Virtual Power Plant for Participating in Energy and Spinning Reserve Markets—Part I: Problem Formulation." IEEE Trans. Power Syst., vol. 26, no. 2, May 2011, pp. 949-956, doi: 10.1109/TPWRS.2010.2070884.
[161] G. Plancke, K. De Vos, R. Belmans, et al., “Virtual Power Plants: Definition, Applications and Barriers to the Implementation in the Distribution System.” 2015 12th Int. Conf. European Energy Market (EEM), Lisbon, Portugal, 2015, pp. 1–5.
[162] E. Mashhour, & S. M. Moghaddas-Tafreshi, “A Review on Operation of Micro Grids and Virtual Power Plants in the Power Markets.” Second Int. Conf. Adaptive Science & Technology 2009, ICAST 2009 IEEE, Accra, Ghana, 2009.
[163] M.M. Othman, Y.G. Hegazy, & A.Y. Abdelaziz, “A Review of Virtual Power Plant Definitions, Components, Framework and Optimization.” Int. Electr. Eng. J., vol. 6, no. 9, 2015, pp. 2010–2024.
[164] M. Braun, “Virtual Power Plants in Real Applications-Pilot Demonstrations in Spain and England as Part of the European Project FENIX.” ETG Fachbericht-Int. ETG-Kongress 2009, Dusseldorf, Germany, 2009
[165] D. Pudjianto, C. Ramsay, G. Strbac, et al., “The Virtual Power Plant: Enabling Integration of Distributed Generation and Demand.” Fenix Bull., 2, 2008, pp. 10–16.
[166] T. Sikorski, M. Jasi?ski, E. Ropuszy?ska-Surma, M. We﹐glarz, D. Kaczorowska, P. Kosty?a, Z. Leonowicz, R. Lis, J. Rezmer, W. Rojewski, M. Sobierajski, J. Szyma?da, D. Bejmert, & P. Janik, “A Case Study on Distributed Energy Resources and Energy-Storage Systems in A Virtual Power Plant Concept: Economic Aspects.” Energies, vol. 12, no. 23, Nov. 2019, 4447.
[167] S. Tabatabaee, S.S. Mortazavi, & T. Niknam, “Stochastic Energy Management of Renewable Micro-Grids in the Correlated Environment Using Unscented Transformation.” Energy, 109, 2016, pp. 365–377.
[168] R. Santodomingo, M. Uslar, A. Goring, M. Gottschalk, L. Nordstrom, A. Saleem, & M. Chenine, “SGAM-Based Methodology to Analyse Smart Grid Solutions in DISCERN European Research Project.” In Proceedings of the 2014 IEEE International Energy Conference (ENERGYCON), Cavtat, Croatia, 13–16 May 2014, pp. 751–758.
[169] S. Ghavidel, L. Li, J. Aghaei, et al., “A Review on the Virtual Power Plant: Components and Operation Systems.” 2016 IEEE Int. Conf. Power System Technology (POWERCON) IEEE, Wollongong, NSW, Australia, 2016.
[170] P. Vishnuram & S. Alagarsamy, “Grid Integration for Electric Vehicles: A Realistic Strategy for Environmentally Friendly Mobility and Renewable Power.” World Electr. Veh. J., 15, 2024, 70. https://doi.org/10.3390/wevj15020070.
[171] European Commission, Financing the Energy Renovation of Buildings with Cohesion Policy Funding; Technical Guidance, Luxembourg: European Commission, 2015.
[172] M. Daraei, P.E. Campana, & E. Thorin, “Power-To-Hydrogen Storage Integrated with Rooftop Photovoltaic Systems and Combined Heat and Power Plants.” Appl. Energy, 276, 2020, 115499.
[173] M. Kolenc, P. Nemˇcek, C. Gutschi, N. Suljanovi’c, & M. Zajc, “Performance Evaluation of a Virtual Power Plant Communication System Providing Ancillary Services.” Electr. Power Syst. Res., 149, 2017, pp. 46–54.
[174] A. Bloess, “Modeling of Combined Heat and Power Generation in the Context of Increasing Renewable Energy Penetration.” Appl. Energy, 267, 2020, pp. 1–17.
[175] International Electrotechnical Commission, Virtual Power Plants—Part 1: Architecture and Functional Requirements, document IEC 63189-1 ED1, Geneva, Switzerland: IEC, 2020.
[176] M. H. Rehmani, A. Davy, B. Jennings, & C. Assi, ‘‘Software Defined Networks-Based Smart Grid Communication: A Comprehensive Survey,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 3, 3rd Quart., 2019, pp. 2637–2670.
[177] A. L. Dimeas & N. D. Hatziargyriou, “Agent Based Control of Virtual Power Plants.” International Conference on Intelligent Systems Applications to Power Systems, 2007.
[178] Z. A. Vale, P. Faria, H. Morais, H. M. Khodr, M. Silva, & P. Kadar, “Scheduling Distributed Energy Resources in an Isolated Grid - An Artificial Neural Network Approach.” IEEE Power and Energy Society General Meeting, 2010.
[179] J. Driesen, G. Deconinck, W. D’haeseleer, & R. Belmans, “Active User Participation in Energy Markets Through Activation of Distributed Energy Resources.” IEEE Power Engineering Society General Meeting, 2007.
[180] S. Sudtharalingam, A.D. Hawkes, & T. C. Green, “Feasibility of Domestic Micro Combined Heat and Power Units with Real Time Pricing.” IEEE Power and Energy Society General Meeting, 2010.
[181] M. J. Kasaei, M. Gandomkar, & J. Nikoukar, “Optimal Management of Renewable Energy Sources by Virtual Power Plant.” Renew. Energy, 114, 2017, pp. 1180–1188.
[182] M. Darvishi, M. Tahmasebi, E. Shokouhmand, J. Pasupuleti, P. Bokoro, & J.S. Raafat, “Optimal Operation of Sustainable Virtual Power Plant Considering the Amount of Emission in the Presence of Renewable Energy Sources and Demand Response.” Sustainability, 15, 2023, 11012. https://doi.org/10.3390/su151411012.
[183] Federal Energy Regulatory Commission, Participation of Distributed Energy Resource Aggregations in Markets Operated by Regional Transmission Organizations and Independent System Operators, document FERC 2222, Washington, DC: FERC, 2020.
[184] G. Koeppel, Distributed generation literature review and outline of the Swiss situation, Zurich, Germany: EEH Power Systems Laboratory, Nov. 2003.
[185] G. Aghajani & I. Heydari, “Energy Management in Microgrids Containing Electric Vehicles and Renewable ?Energy Sources Considering Demand Response.” J. Oper. Autom. Power Eng., vol. 9, no. 1, 2021, pp. 34-48. doi: 10.22098/joape.2020.5854.1438.
[186] W. L. Filho, A. L. Salvia, A. D. Paco, R. Anholon, O. L. G. Quelhas, I.S. Rampasso, A. Ng, A.?L. Balogun, B. Kondev, & L. L. Brandli, “A Comparative Study of Approaches Towards Energy Efficiency and Renewable Energy Use at Higher Education Institutions.” J. Clean. Prod., 237, 2019, 117728.
[187] PTVBN Kumar, S. Suryateja, G. Naveen, M. Singh, & P. Kumar, “Smart Home Energy Management with Integration of PV and Storage Facilities Providing Grid Support.” IEEE Power Energy Soc. Gen. Meet. 2013, 2013, pp. 1–5.
[188] J. Shen, C. Jiang, Y. Liu, & X. Wang, “A Microgrid Energy Management System and Risk Management Under an Electricity Market Environment.” IEEE Access, 4, 2016, pp. 2349–2356.
[189] D. Eltigani & S. Masri, “Challenges of Integrating Renewable Energy Sources to Smart Grids: A Review.” Renew. Sustain. Energy Rev., 52, 2015, pp. 770–780.
[190] M. H. Rehmani, M. Reisslein, A. Rachedi, M. Erol-Kantarci, & M. Radenkovic, “Integrating Renewable Energy Resources into the Smart Grid: Recent Developments in Information and Communication Technologies.” IEEE Trans. Ind. Inform., 14, 2018, pp. 2814–2825.
[191] K. Mahmud, G. E. Town, & M. J. Hossain, “Mitigating the Impact of Rapid Changes in Photovoltaic Power Generation on Network Voltage.” IEEE Power Energy Conf. Illinois, PECI 2017, pp. 1–6.
[192] P. Lombardi, T. Sokolnikova, Z. Styczynski, et al., “Virtual Power Plant Management Considering Energy Storage Systems.” IFAC Proc. Vol. 45, no. 21, 2012, pp. 132–137.
[193] H. Ding, Z. Hu, & Y. Song, “Rolling Optimization of Wind Farm and Energy Storage System in Electricity Markets.” IEEE Trans. Power Syst., vol. 30, no. 5, Sep. 2015, pp. 2676–2684.
[194] F. Bignucolo, R. Caldon, M. Pettina, & F. Pasut, “Renewables Contributing to Primary Control Reserve: The Role of Battery Energy Storage Systems.” Proc. IEEE Int. Conf. Environ. Electrical Eng., IEEE Ind. Commercial Power Syst. Eur., Milan, Italy, Jun. 2017, pp. 1–6.
[195] H. Beltran, E. Bilbao, E. Belenguer, I. Etxeberria-Otadui, & P. Rodriguez, “Evaluation of Storage Energy Requirements for Constant Production In PV Power Plants.” IEEE Trans. Ind. Electron., vol. 60, no. 3, Mar. 2013, pp. 1225–1234.
[196] S. L. Arun & M. P. Selvan, “Intelligent Residential Energy Management System for Dynamic Demand Response in Smart Buildings.” IEEE Syst. J., vol. 12, no. 2, Jun. 2018, pp. 1329–1340.
[197] A. Mohd, E. Ortjohann, A. Schmelter, N. Hamsic, & D. Morton, “Challenges in Integrating Distributed Energy Storage Systems into Future Smart Grid.” Ind. Electron. 2008. ISIE 2008. IEEE Int. Symp., IEEE 2008, pp. 1627–1632.
[198] J. Aghaei & M-I. Alizadeh, “Demand Response in Smart Electricity Grids Equipped with Renewable Energy Sources: A Review.” Renew. Sustain Energy Rev., 18, 2013, pp. 64–72.
[199] G. Carpinelli, G. Celli, S. Mocci, F. Mottola, F. Pilo, & D. Proto, “Optimal Integration of Distributed Energy Storage Devices in Smart Grids.” IEEE Trans. Smart Grid, 4, 2013, pp. 985–995.
[200] M. Cheng, SS. Sami, & J. Wu, “Benefits of Using Virtual Energy Storage System for Power System Frequency Response.” Appl. Energy, 194, 2017, pp. 376–385.
[201] W. S. Ho, S. Macchietto, JS. Lim, H. Hashim, Z. A. Muis, & W.H. Liu, “Optimal Scheduling of Energy Storage for Renewable Energy Distributed Energy Generation System.” Renew. Sustain Energy Rev., 58, 2016, pp. 1100–1107.
[202] H. A. Rahman, M.S. Majid, J. Rezaee, A. Chin G. Kim, MY. Hassan, & S. O. Fadhl, “Operation and Control Strategies of Integrated Distributed Energy Resources: A Review.” Renew. Sustain Energy Rev., 51, 2015, pp. 1412–1420.
[203] W. Ko & M.-K. Kim, “Operation Strategy for Maximizing Revenue of an Energy Storage System with a Photovoltaic Power Plant Considering the Incentive for Forecast Accuracy in South Korea.” IEEE Access, vol. 9, 2021, pp. 71184–71193.
[204] K. El Bakari & W.L. Kling, “Virtual Power Plants: An Answer to Increasing Distributed Generation.” 2010 IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe) IEEE, Gothenberg, Sweden, 2010. pp 1–6.
[205] R. Fallahifar & M. Kalantar, “Optimal Planning of Lithium?Ion Battery Energy Storage for Microgrid Applications: Considering Capacity Degradation.” J. Energy Storage, 57, 2023, 106103.
[206] C. S. Makola, P. F. Le Roux, & J.A. Jordaan, “Comparative Analysis of Lithium?Ion and Lead–Acid as Electrical Energy Storage Systems in a Grid?Tied Microgrid Application.” Appl. Sci. 2023, 13, 3137.
[207] C. Schubert, W.F. Hassen, B. Poisl, S. Seitz, J. Schubert, E. O. Usabiaga, P.M. Gaudo, & K. H. Pettinger, “Hybrid Energy Storage Systems Based on Redox?Flow Batteries: Recent Developments, Challenges, and Future Perspectives.” Batteries, 9, 2023, 211.
[208] S. Dhundhara & Y.P. Verma, “Application of Micro Pump Hydro Energy Storage for Reliable Operation of Microgrid System.” IET Renew. Power Gener., 14, 2020, pp. 1368–1378.
[209] A. Gheiratmand, E. Ayoubi, & M. Sarlak, “Optimal Operation of Micro Grid in Presence of Renewable Resources and Compressed Air Energy Storage.” In Proceedings of the 2017 Conference on Electrical Power Distribution Networks Conference (EPDC), Semnan, Iran, 19–20 April 2017, pp. 131–136.
[210] S. Choudhury, “Review of Energy Storage System Technologies Integration to Microgrid: Types, Control Strategies, Issues, and Future Prospects.” J. Energy Storage, 48, 2022, 103966.
[211] L. Bagherzadeh, H. Shahinzadeh, H. Shayeghi, & G. B. Gharehpetian, “A Short Term Energy Management of Microgrids Considering Renewable Energy Resources, Micro Compressed Air Energy Storage and DRPs.” Int. J. Renew. Energy Res., 9, 2019, pp. 1712–1723.
[212] M. Faisal, M. A. Hannan, P. J. Ker, A. Hussain, M. B. Mansor, & F. Blaabjerg, “Review of Energy Storage System Technologies in Microgrid Applications: Issues and Challenges.” IEEE Access, 6, 2018, pp. 35143–35164.
[213] D. Enescu, G. Chicco, R. Porumb, & G. Seritan, “Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends.” Energies, 13, 2020, 340.
[214] F. Tooryan, H. HassanzadehFard, E. R. Collins, S. Jin, & B. Ramezani, “Smart Integration of Renewable Energy Resources, Electrical, and Thermal Energy Storage in Microgrid Applications.” Energy, 212, 2020, 118716.
[215] M. B. Sanjareh, M. H. Nazari, G. B. Gharehpetian, & S. H. Hosseinian, “A Novel Approach for Sizing Thermal and Electrical Energy Storage Systems for Energy Management of Islanded Residential Microgrid.” Energy Build., 238, 2021, 110850.
[216] M. Khalid, “A Review on the Selected Applications of Battery Supercapacitor Hybrid Energy Storage Systems for Microgrids.” Energies, 12, 2019, 4559.
[217] A. Ndiaye, F. Locment, A. De Bernardinis, M. Sechilariu, & E. Redondo Iglesias, “A Techno Economic Analysis of Energy Storage Components of Microgrids for Improving Energy Management Strategies.” Energies, 15, 2022, 1556.
[218] N. Horesh, et al., “Driving to the Future of Energy Storage: Techno-Economic Analysis of a Novel Method to Recondition Second Life Electric Vehicle Batteries.” Appl. Energy, vol. 295, 2021, Art. no. 117007.
[219] National Renewable Energy Laboratory, Cost Projections for Utility-Scale Battery Storage: 2023 Update, Colorado: National Renewable Energy Laboratory, 2023.
[220] Y. Zhang, Y. Xu, H. Yang, Z. Y. Dong, & R. Zhang, “Optimal Whole Life-Cycle Planning of Battery Energy Storage for Multi-Functional Services in Power Systems.” IEEE Trans. Sustain. Energy, vol. 11, no. 4, Oct. 2020, pp. 2077–2086.
[221] Y. Zhang, D. Wei, F. Luo, Y. Deng, J. Qiu, & Z. Y. Dong, "Two-Stage Capacity Determination Framework for Residential Second-Life BESSs Considering Cloud Energy Storage Service." IEEE Syst. J., vol. 17, no. 3, pp. 4737-4747, Sept. 2023, doi: 10.1109/JSYST.2022.3232732.
[222] T. M. Masaud & E. El-Saadany, "Optimal Battery Planning for Microgrid Applications Considering Battery Swapping and Evolution of the SOH During Lifecycle Aging." IEEE Syst. J., vol. 17, no. 3, Sept. 2023, pp. 4725-4736, doi: 10.1109/JSYST.2023.3285147.
[223] P. Aliasghari, B. Mohammadi, M. Alipour, M. Abapour, & K. Zare, “Optimal Scheduling of Plug-In Electric Vehicles and Renewable Micro-Grid in Energy and Reserve Markets Considering Demand Response Program.” J. Cleaner Prod., 186, 2018, pp. 293–303.
[224] V. Monteiro, J. G. Pinto, & J. L. Afonso, “Operation Modes for the Electric Vehicle in Smart Grids and Smart Homes: Present and Proposed Modes.” IEEE Trans. Veh. Technol., 65, 2016, pp. 1007–1020.
[225] J. Wang, Y. Shi, & Y. Zhou, “Intelligent Demand Response for Industrial Energy Management Considering Thermostatically Controlled Loads and EVs.” IEEE Trans. Ind. Inform., 15, 2019, pp. 3432–3442.
[226] T. He, D.-C. Lu, M. Wu, Q. Yang, T. Li, & Q. Liu, “Four-Quadrant Operations of Bidirectional Chargers for Electric Vehicles in Smart Car Parks: G2V, V2G, and V4G.” Energies, 142020, 14, 181.
[227] X. Li, Y. Tan, X. Liu, Q. Liao, B. Sun, G. Cao, C. Li, X. Yang, & Z. Wang, “A Cost-Benefit Analysis of V2G Electric Vehicles Supporting Peak Shaving in Shanghai.” Electr. Power Syst. Res., 179, 2019, 106058.
[228] K. Logavani, A. Ambikapathy, G. Arun Prasad, A. Faraz, & H. Singh, Smart Grid, V2G and Renewable Integration. In Green Energy and Technology. Singapore: Springer, 2021.
[229] V. Khare & P. Chaturvedi, “Design, Control, Reliability, Economic and Energy Management of Microgrid: A Review.” E?Prime?Adv. Electr. Eng. Electron. Energy, 5, 2023, 100239.
[230] A. F. Raab, M. Ferdowsi, E. Karfopoulos, I. G. Unda, S. Skarvelis-Kazakos, P. Papadopoulos, E. Abbasi, L. Cipcigan, N. Jenkins, N. Hatziargyriou, et al., “Virtual Power Plant Control Concepts with Electric Vehicles.” In Proceedings of the 2011 16th International Conference on Intelligent System Applications to Power Systems, Hersonissos, Greece, 25–28 September 2011, Vol. 2011, pp. 1–6.
[231] M. Vasirani, R. Kota, R.G. Cavalcante, S. Ossowski, & N. R. Jennings, “An Agent-Based Approach to Virtual Power Plants of Wind Power Generators and Electric Vehicles.” IEEE Trans. Smart Grid, 4, 2013, pp. 1314–1322.
[232] 濱田拓:〈TEPCO′s Activities for DER Management. Smart Utilization of ′′EVs as a Grid Resource〉,2024虛擬電廠發展趨勢與應用案例研討會,台灣電力與能源工程協會,台北市,2024年5月13日。
[233] A. Ahmadi, A. Tavakoli, P. Jamborsalamati, N. Rezaei, M.R. Miveh, F.H. Gandoman, et al., “Power Quality Improvement in Smart Grids Using Electric Vehicles: A Review.” IET Electr. Syst. Transp., 9, 2019, pp. 53–64.
[234] L. Ju, H. Li, J. Zhao, K. Chen, Q. Tan, & Z. Tan, “Multi-Objective Stochastic Scheduling Optimization Model for Connecting a Virtual Power Plant to Wind-Photovoltaic Electric Vehicles Considering Uncertainties and Demand Response.” Energy Convers. Manage., 128, 2016, pp. 160–177.
[235] S. A. A. Rizvi, A. Xin, A. Masood, S. Iqbal, M. U. Jan, & H. Rehman, “Electric Vehicles and Their Impacts on Integration into Power Grid: A Review.” 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), 2018.
[236] Z. Hu, Y. Song, Z. Xu, et al., " Impacts and Utilization of Electric Vehicles Integration into Power System." Proceedings of the CSEE, vol. 32, 4, Apr. 2012, pp. 1-10.
[237] S. D. Saldarriaga-Zuluaga, J. M. Lopez-Lezama, C. D. Z. Rios, & A.V. Jaramillo, “Effects of the Incorporation of Electric Vehicles on Protection Coordination in Microgrids.” World Electr. Veh. J., 13, 2022, 163.
[238] M. N. H. Shazon & A. Nahid-Al-Masood Jawad, “Frequency Control Challenges and Potential Countermeasures in Future Low-Inertia Power Systems: A Review.” Energy Rep., 8, 2022, pp. 6191–6219.
[239] E. Mengelkamp, J. Garttner, K. Rock, S. Kessler, L. Orsini, & C. Weinhardt, “Designing Microgrid Energy Markets: A Case Study: The Brooklyn Microgrid.” Appl. Energy, 210, 2018, pp. 870–880.
[240] M. A. Baba, M. Labbadi, M. Cherkaoui, & M. Maaroufi, “Fuel Cell Electric Vehicles: A Review of Current Power Electronic Converters Topologies and Technical Challenges.” IOP Conf. Ser. Earth Environ. Sci., 785, 2021, 012011.
[241] Y. Wu, Z. Wang, Y. Huangfu, A. Ravey, D. Chrenko, & F. Gao, “Hierarchical Operation of Electric Vehicle Charging Station in Smart Grid Integration Applications—An Overview.” Int. J. Electr. Power Energy Syst. 139, 2022, 108005.
[242] MF. Shaaban, M. Ismail, E. F. El-Saadany, & W. Zhuang, “Real-time PEV Charging/Discharging Coordination in Smart Distribution Systems.” IEEE Trans. Smart Grid., vol. 5, no. 4, 2014, pp. 1797–1807.
[243] P. Richardson, et al., “Local Versus Centralized Charging Strategies for Electric Vehicles in Low Voltage Distribution Systems.” IEEE Trans. Smart Grid, vol. 3, 2012, pp. 1020-28.
[244] J. Y. Yong, W. S. Tan, M. Khorasany, & R. Razzaghi, “Electric Vehicles Destination Charging: An Overview of Charging Tariffs, Business Models and Coordination Strategies.” Renew. Sustain. Energy Rev., 184, 2023, 113534.
[245] Z. Liu, W. Zheng, F. Qi, L. Wang, B. Zou, F. Wen, & Y. Xue, “Optimal Dispatch of a Virtual Power Plant Considering Demand Response and Carbon Trading.” Energies, vol. 11, Jun. 2018, p. 1488.
[246] F. Alanazi, “Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation.” Appl. Sci., 13, 2023, 6016.
[247] P. Barman, L. Dutta, S. Bordoloi, A. Kalita, P. Buragohain, S. Bharali, & B. Azzopardi, “Renewable Energy Integration with Electric Vehicle Technology: A Review of the Existing Smart Charging Approaches.” Renew. Sustain. Energy Rev., 183, 2023, 113518.
[248] S. M. Arif, T. T. Lie, B. C. Seet, S. Ayyadi, & K. Jensen, “Review of Electric Vehicle Technologies, Charging Methods, Standards and Optimization Techniques.” Electronics, 10, 2021, 1910.
[249] O. Arslan & O. E. Karasan, “Cost and Emission Impacts of Virtual Power Plant Formation in Plug-In Hybrid Electric Vehicle Penetrated Networks.” Energy, 60, 2013, pp. 116–124.
[250] R. M. Azevedo, L. N. Canha, V. J. Garcia, C. A. S. Rangel, T. A. S. Santana, & Z. I. Nadal, “Dynamic and Proactive Metaheuristic for AC/DC Hybrid Smart Home Energy Operation Considering Load, Energy Resources and Price Uncertainties.” Int. J. Electr. Power Energy Syst., vol. 137, 2022, article 107463.
[251] M. R. Javed, Z. Shabbir, F. Asghar, W. Amjad, F. Mahmood, M. O. Khan, U. S. Virk, A. Waleed, & Z. M. Haider, “An Efficient Fault Detection Method for Induction Motors Using Thermal Imaging and Machine Vision.” Sustainability, 14, 2022, 9060.
[252] M. A. Ortega-Vazquez, F. Bouffard, & V. Silva, “Electric Vehicle Aggregator/System Operator Coordination for Charging Scheduling and Services Procurement.” IEEE Trans. Power Syst., vol. 28, no. 2, May 2013, pp. 1806–1815.
[253] H. Khaloie & A. Anvari?Moghaddam, “Robust Optimization Approach for Generation Scheduling of a Hybrid Thermal?Energy Storage System.” IEEE Int. Symp. Ind. Electron., 2020, 2020, pp. 971–976.
[254] S. Powell, G.V. Cezar, L. Min, I.M.L. Azevedo, & R. Rajagopal, “Charging Infrastructure Access and Operation to Reduce the Grid Impacts of Deep Electric Vehicle Adoption.” Nat. Energy, 7, 2022, pp. 932–945.
[255] M. Rahimiyan & L. Baringo, "Strategic Bidding for a Virtual Power Plant in the Day-Ahead and Real-Time Markets: A Price-Taker Robust Optimization Approach." IEEE Transactions on Power Systems, vol. 31, no. 4, Jul. 2016, pp. 2676-2687.
[256] M. Ahrabi, M. Abedi, H. Nafisi, M.A. Mirzaei, B. Mohammadi-Ivatloo, & M. Marzband, “Evaluating the Effect of Electric Vehicle Parking Lots in Transmission-Constrained AC Unit Commitment under a Hybrid IGDT-Stochastic Approach.” Int. J. Electr. Power Energy Syst., 125, 2021, 106546.
[257] M. Sufyan, N. Rahim, M. Muhammad, C. Tan, S. Raihan, & A. Bakar, “Charge Coordination and Battery Lifecycle Analysis of Electric Vehicles with V2G Implementation.” Electr. Power Syst. Res., 184, 2020, 106307.
[258] S. Parmar & M. A. Patel, “Review on Renewable Energy Integration for Electric Vehicles.” Int. J. Eng. Appl. Sci. Technol., 5, 2020, pp. 247–254.
[259] N. Zhou, X. Xiong, & Q. Wang, "Simulation of Charging Load Probability for Connection of Different Electric Vehicles to Distribution Network." Electr. Power Autom. Equip., Vol. 34. no. 2, Feb. 2014, pp. 1-7.
[260] S. M. Hakimi, A. Hajizadeh, & JPS. Catal? ao, “Demand Response and Flexible Management to Improve Microgrids Energy Efficiency with a High Share of Renewable Resources.” Sustain. Energy Technol. Assess, 42, 2020.
[261] J. Aghaei & M-I. Alizadeh, “Demand Response in Smart Electricity Grids Equipped with Renewable Energy Sources: A Review.” Renew. Sustain Energy Rev., 18, 2013, pp. 64–72.
[262] V. C. Pandey, N. Gupta, K. R. Niazi, A. Swarnkar, & R. A. Thokar, “A Hierarchical Price-Based Demand Response Framework in Distribution Network.” IEEE Trans. Smart Grid, vol. 13, no. 2, Mar. 2022, pp. 1151–1164.
[263] M. Tavakkoli, S. Fattaheian-Dehkordi, M. Pourakbari-Kasmaei, M. Liski, & M. Lehtonen, “Bonus-Based Demand Response Using Stackelberg Game Approach for Residential End-Users Equipped with Hvac System.” IEEE Trans. Sustain. Energy, vol. 12, no. 1, Jan. 2021, pp. 234–249.
[264] V. Pradhan, V. S. K. Murthy Balijepalli, & S. A. Khaparde, "An Effective Model for Demand Response Management Systems of Residential Electricity Consumers." IEEE Syst. J., vol. 10, no. 2, June 2016, pp. 434-445, doi: 10.1109/JSYST.2014.2336894.
[265] M. H. Yaghmaee, "Incentive-Based Demand Response Program for Blockchain Network." IEEE Syst. J., vol. 18, no. 1, March 2024, pp. 134-145, doi: 10.1109/JSYST.2023.3342846.
[266] A. Arefi, A. Abeygunawardana, & G. Ledwich, “A New Risk-Managed Planning of Electric Distribution Network Incorporating Customer Engagement and Temporary Solutions.” IEEE Trans. Sustain. Energy, 7, 2016, pp. 1646–1661.
[267] F. Angizeh, M. Parvania, M. Fotuhi-Firuzabad, & A. Rajabi-Ghahnavieh, “Flexibility Scheduling for Large Customers.” IEEE Trans. Smart Grid, vol. 10, no. 1, Jan. 2019, pp. 371–379.
[268] N. Nezamoddini & Y. Wang, “Risk Management and Participation Planning of Electric Vehicles in Smart Grids for Demand Response.” Energy, 116, 2016, pp. 836–850.
[269] L. Ju, Z. Tan, J. Yuan, Q. Tan, H. Li, & F. Dong, “A Bi-Level Stochastic Scheduling Optimization Model for a Virtual Power Plant Connected to a Wind–Photovoltaic–Energy Storage System Considering the Uncertainty and Demand Response.” Appl. Energy, 171, 2016, pp. 184–199.
[270] Y. Tan, Y. Zhi, Z. Luo, H. Fan, J. Wan, & T. Zhang, “Optimal Scheduling of Virtual Power Plant with Flexibility Margin Considering Demand Response and Uncertainties.” Energies, 16, 2023, 5833. https://doi.org/10.3390/en16155833.
[271] G.C. Heffner, C.A. Goldman, & M.M. Moezzi, “Innovative Approaches to Verifying Demand Response of Water Heater Load Control.” IEEE Trans. Power Deliv., Vol. 21, no. 1, 2006, pp. 388–397.
[272] M. A. Pedrasa, T.D. Spooner, & I. F. MacGill, “A Novel Energy Service Model and Optimal Scheduling Algorithm for Residential Distributed Energy Resources.” Electr. Power Syst. Res., vol. 81, no. 12, 2011, pp. 2155–2163.
[273] J. A. Moreno, A. M. Garcia, A. G. Marin, E. G. Lazaro, & C. A. Bel, “An Integrated Tool for Assessing the Demand Profile Flexibility.” IEEE Trans. Power Syst., vol. 19, no. 1, 2004, pp. 668–675.
[274] B. Behi, A. Baniasadi, A. Arefi, A. Gorjy, P. Jennings, & A. Pivrikas, “Cost–Benefit Analysis of a Virtual Power Plant Including Solar PV, Flow Battery, Heat Pump, and Demand Management: A Western Australian Case Study.” Energies, 13, 2020, 2614. https://doi.org/10.3390/en13102614.
[275] H. A. Aalami, M. P. Moghaddam, & G. R. Yousefi, “Modeling and Prioritizing Demand Response Programs in Power Markets.” Electric. Power Syst. Res., vol. 80, no. 4, 2010, pp. 426–435.
[276] A. K. Mishra, J. Jokisalo, R. Kosonen, T. Kinnunen, M. Ekkerhaugen, H. Ihasalo, & K. Martin, “Demand Response Events in District Heating: Results from Field Tests in a University Building.” Sustain. Cities Soc., 47, 2019, 101481.
[277] M. Royapoor, M. Pazhoohesh, P.J. Davison, C. Patsios, & S. Walker, “Building as a Virtual Power Plant, Magnitude and Persistence of Deferrable Loads and Human Comfort Implications.” Energy Build., 213, 2020, 109794.
[278] S. Abapour, B. Mohammadi-Ivatloo, & M.T. Hagh, “Robust Bidding Strategy for Demand Response Aggregators in Electricity Market Based on Game Theory.” J. Clean. Prod., Vol. 243, 2020, 118393, ISSN 0959-6526, https://doi.org/10.1016/j.jclepro.2019.118393.
[279] Federal Energy Regulatory Commission, Assessment of Demand Response and Advanced Metering, Washington, DC: FERC, 2010.
[280] H. A. Aalami & A. Khatibzadeh, “Regulation of Market Clearing Price Based on Nonlinear Models of Demand Bidding and Emergency Demand Response Programs.” Int. Trans. Electr. Energy Syst., vol. 26, no. 11, 2016, pp. 2463–2478.
[281] D. Yang, M. Wang, R. Yang, Y. Zheng, & H. Pandzic, “Optimal Dispatching of an Energy System with Integrated Compressed Air Energy Storage and Demand Response.” Energy, 234, 2021, 121232.
[282] M. Hu, J.-W. Xiao, S.-C. Cui, & Y.-W. Wang, “Distributed Real-Time Demand Response for Energy Management Scheduling in Smart Grid.” Int J Electr Power Energy Syst, 99, 2018, pp. 233–45.
[283] A. S. Kahnamouei & S. Lotfifard, “Enhancing Resilience of Distribution Networks by Coordinating Microgrids and Demand Response Programs in Service Restoration.” IEEE Syst. J., vol. 16, no. 2, Jun. 2022, pp. 3048–3059.
[284] F. Rassaei, W.-S. Soh, & K.-C. Chua, “Distributed Scalable Autonomous Market-Based Demand Response Via Residential Plug-In Electric Vehicles in Smart Grids.” IEEE Trans. Smart Grid, 9, 2016, pp. 3281–3290.
[285] A. Rezai, M. F. Shaaban, E. F. El-Saadany, & F. Karray, “New EMS to Incorporate Smart Parking Lots into Demand Response.” IEEE Trans. Smart Grid, vol. 9, no. 2, 2016, pp. 1376–1386.
[286] F. S. Gazijahani, H. Hosseinzadeh, A. A. Abadi, & J. Salehi, “Optimal Day Ahead Power Scheduling of Microgrids Considering Demand and Generation Uncertainties.” 9432017 Iranian Conference on Electrical Engineering (ICEE), 948 pages, Tehran, Iran, 2017.
[287] R. Henriquez, G. Wenzel, D. E. Olivares & M. Negrete-Pincetic, "Participation of Demand Response Aggregators in Electricity Markets: Optimal Portfolio Management." IEEE Trans. Smart Grid, vol. 9, no. 5, Sept. 2018, pp. 4861-4871, doi: 10.1109/TSG.2017.2673783.
[288] X. Liu, B. Gao, C. Wu, & Y. Tang, “Demand-Side Management with Household Plug-In Electric Vehicles: A Bayesian Game-Theoretic Approach.” IEEE Syst. J., vol. 12, no. 3, Sep. 2018, pp. 2894–2904.
[289] S. Rajamand, “Effect of Demand Response Program of Loads in Cost Optimization of Microgrid Considering Uncertain Parameters in PV/WT, Market Price and Load Demand.” Energy, vol. 194, Mar. 2020, p. 116917.
[290] M. A. Mirzaei, H. Mehrjerdi, & A. Mansour Saatloo, “Robust Strategic Behavior of a Large Multi-Energy Consumer in Electricity Market Considering Integrated Demand Response.” IEEE Syst. J., vol. 17, no. 4, 2023, pp. 6346-6356. https://doi.org/10.1109/jsyst.2023.3299706.
[291] International Energy Agency, The power of transformation: Wind, sun and the economics of flexible power systems, Paris: International Energy Agency, 2014.
[292] A. Al Hadi, C. A. S. Silva, E. Hossain, & R. Challoo, “Algorithm for Demand Response to Maximize the Penetration of Renewable Energy.” IEEE Access, vol. 8, Mar. 2020, pp. 55279–55288.
[293] M. A. Z. Alvarez, K. Agbossou, A. Cardenas, S. Kelouwani, & L. Boulon, “Demand Response Strategy Applied to Residential Electric Water Heaters Using Dynamic Programming and K-Means Clustering.” IEEE Trans. Sustain. Energy, vol. 11, no. 1, Jan. 2020, pp. 524–533.
[294] D. Muthirayan, D. Kalathil, K. Poolla, & P. Varaiya, “Mechanism Design for Demand Response Programs.” IEEE Trans. Smart Grid, vol. 11, no. 1, Jan. 2020, pp. 61–73.
[295] M. Akinobu, K. Yasuhiko, H. Mu, & W. Zhou, “Electricity Demand in the Chinese Urban Household-Sector.” Appl. Energy, vol. 85, no. 12, 2008, pp. 20.
[296] J. Keith, R. Baker, & R. Mark, “Improving the Prediction of UK Domestic Energy Demand Using Annual Consumption-Data.” Appl. Energy, vol. 85, no. 6, 2008, pp. 20.
[297] F.I. Ibitoye & A. Adenikinju, “Future Demand for Electricity in Nigeria.” Appl Energy, vol. 84, no. 5, 2007.
[298] J. Markle-Hus, S. Feuerriegel, & D. Neumann, “Large-Scale Demand Response and Its Implications for Spot Prices, Load and Policies: Insights from the German-Austrian Electricity Market.” Appl. Energy, 210, 2018, pp. 1290-1298.
[299] X. Liu, D. Tang & Q. He, "A State-Based Potential Game-Theoretic Approach for Massive Residential Consumers Participating in Demand Response." IEEE Syst. J., vol. 17, no. 1, March 2023, pp. 1193-1203, doi: 10.1109/JSYST.2022.3189727.
[300] E. Heydarian-Forushani, M. E. H. Golshan, M. Shafie-khah, & P. Siano, “Optimal Operation of Emerging Flexible Resources Considering Sub-Hourly Flexible Ramp Product.” IEEE Trans. Sustain. Energy, vol. 9, no. 2, Apr. 2018, pp. 916–929.
[301] Y. Liu, S. Hu, H. Huang, R. Ranjan, A. Y. Zomaya, & L. Wang, "Game-Theoretic Market-Driven Smart Home Scheduling Considering Energy Balancing." IEEE Syst. J., vol. 11, no. 2, June 2017, pp. 910-921, doi: 10.1109/JSYST.2015.2418032.
[302] H. A. Aalami, M. Parsa Moghaddam, & G. R. Yousefi, “Demand Response Modeling Considering Interruptible/Curtailable Loads and Capacity Market Programs.” Appl. Energy, Vol. 87, no. 1, 2010, pp. 243-250, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2009.05.041.
[303] R. Zafar, A. Mahmood, S. Razzaq, W. Ali, U. Naeem, & K. Shehzad, “Prosumer Based Energy Management and Sharing in Smart Grid.” Renew. Sustain Energy Rev., 82, 2018, pp. 1675–1684.
[304] K. Mahmud, G. E. Town, S. Morsalin, & M. J. Hossain, “Integration of Electric Vehicles and Management in the Internet of Energy.” Renew. Sustain Energy Rev., 82, 2018, pp. 4179–4203.
[305] M. S. H. Nizami, M. J. Hossain, S. Rafique, K. Mahmud, U. B. Irshad, & G. Town, “A Multi-Agent System Based Residential Electric Vehicle Management System for Grid Support Service.” IEEE Int. Conf. Environ. Electr. Eng. 2019 IEEE Ind. Commer. Power Syst. Eur. (EEEIC/I&CPS Eur., IEEE), 2019, 2019, pp. 1–6.
[306] X. Chen, T. Wei, & S. Hu, “Uncertainty-Aware Household Appliance Scheduling Considering Dynamic Electricity Pricing in Smart Home.” IEEE Trans. Smart Grid, vol. 4, no. 2, Jun. 2013, pp. 932–941.
[307] K. Mahmud, S. Morsalin, Y.R. Kafle, & G.E. Town, “Improved Peak Shaving in Grid Connected Domestic Power Systems Combining Photovoltaic Generation, Battery Storage, and V2G-Capable Electric Vehicle.” IEEE Int. Conf. Power Syst. Technol., 2016, 2016, pp. 1–4.
[308] K. Mahmud, M. J. Hossain, & G. E. Town “Peak-Load Reduction by Coordinated Response of Photovoltaics, Battery Storage, and Electric Vehicles.” IEEE Access, 6, 2018, pp. 29353–29365.
[309] M. M. Othman, Y. G. Hegazy, A. Y. Abdelaziz, et al., “Virtual Power Plant: The Future of Power Delivery Systems.” Conference of Second European Workshop on Renewable Energy Systems, Antalya, TURKEY, September 2013, DOI:10.13140/2.1.2472.9922.
[310] A. Colmenar-Santos, C. Reino-Rio, D. Borge-Diez, & E. Collado-Fernandez, “Distributed Generation: A Review of Factors That Can Contribute Most to Achieve a Scenario of DG Units Embedded in the New Distribution Networks.” Renew. Sustain. Energy Rev., vol. 59, Jun. 2016, pp. 1130–1148.
[311] P. P. Pesantez, “Eficiente De Redes Inteligentes (Smartgrids) Incluyendo La Gestion Active De La Demanda: Aplicacion a Ecuador.” Doctoral Dissertation, Universitat Politecnica de Valencia, Valencia, Spain, 4 May 2018.
[312] B. Belabbas, T. Allaoui, M. Tadjine, & M. Denai, “Power Management and Control Strategies for Off-Grid Hybrid Power Systems with Renewable Energies and Storage.” Energy Syst., vol. 10, no. 2, 2019, pp. 355–384.
[313] N. Mazzi, A. Trivella, & J. M. Morales, “Enabling Active/Passive Electricity Trading in Dual-Price Balancing Markets.” IEEE Trans. Power Syst., vol. 34, no. 3, May 2019, pp. 1980–1990.
[314] J. Shen, C. Jiang, & B. Li, “Controllable Load Management Approaches in Smart Grids.” Energies, vol. 8, no. 10, Oct. 2015, pp. 11187–11202.
[315] M. Pasetti, S. Rinaldi, & D. Manerba, “A Virtual Power Plant Architecture for the Demand-Side Management of Smart Prosumers.” Appl. Sci., vol. 8, no. 3, Mar. 2018, p. 432.
[316] S. Pal & R. Kumar, “Electric Vehicle Scheduling Strategy in Residential Demand Response Programs with Neighbor Connection.” IEEE Trans. Ind. Inform., vol. 14, no. 3, Mar. 2018, pp. 980–988.
[317] A. Richter, I. Hauer, & M. Wolter, “Algorithms for Technical Integration of Virtual Power Plants into German System Operation Electricity Market.” Adv. Sci. Technol. Eng. Syst. J., vol. 3, no. 1, 2018, pp. 135–147.
[318] J. Thomsen, N. Saad Hussein, C. Senkpiel, N. Hartmann, & T. Schlegl, “An Optimized Energy System Planning and Operation on Distribution Grid Level—The Decentralized Market Agent as a Novel Approach.” Sustain. Energy, Grids Net., vol. 12, Dec. 2017, pp. 40–56.
[319] H. Yang, D. Yi, J. Zhao, & Z. Dong, “Distributed Optimal Dispatch of Virtual Power Plant Via Limited Communication.” IEEE Trans. Power Syst., 28, 2013, pp. 3511–3512. http://dx.doi.org/10.1109/TPWRS.2013.2242702.
[320] International Energy Agency, Re-powering Markets, Paris: International Energy Agency, 2016.
[321] M. Jafari & A. Akbari Foroud, “A Medium/Long-Term Auction-Based Coalition-Forming Model for a Virtual Power Plant Based on Stochastic Programming.” Int. J. Electr. Power Energy Syst., 118, 2020, 105784.
[322] J. F. Toubeau, Z. De Gr`eve, & F. Vall’ee, “Medium-Term Multimarket Optimization for Virtual Power Plants: A Stochastic-Based Decision Environment.” IEEE Trans. Power Syst., vol. 33, no. 2, 2018, pp. 1399–1410.
[323] H. Wang, S. Riaz, & P. Mancarella, “Integrated Techno-Economic Modeling, Flexibility Analysis, and Business Case Assessment of an Urban Virtual Power Plant with Multimarket Co-Optimization.” Appl. Energy, 259, 2020, 114142.
[324] M. A. Tajeddini, A. Rahimi-Kian, & A. Soroudi, “Risk Averse Optimal Operation of a Virtual Power Plant Using Two Stage Stochastic Programming.” Energy, 73, 2014, pp. 958–967.
[325] T. Sowa, M. Vasconcelos, A. Schnettler, M. Metzger, A. Hammer, M. Reischboek, & R. Koberle, “Method for the Operation Planning of Virtual Power Plants Considering Forecasting Errors of Distributed Energy Resources.” Electr. Eng., vol. 98, no. 4, 2016, pp. 347–354.
[326] M. Shafiekhani, A. Badri, M. Shafie-khah, & JPS. Catal?ao “Strategic Bidding of Virtual Power Plant in Energy Markets: A Bi-Level Multi-Objective Approach.” Int. J. Electr. Power Energy Syst., 113, 2019, pp. 208–219.
[327] H. PandZi ˇ ’c, J.M. Morales, A.J. Conejo, & I. Kuzle, “Offering Model for a Virtual Power Plant Based on Stochastic Programming.” Appl. Energy, 105, 2013, pp. 282–292.
[328] F. J. Heredia, M. D. Cuadrado, & C. Corchero, “On Optimal Participation in the Electricity Markets of Wind Power Plants with Battery Energy Storage Systems.” Comput. Oper. Res., 96, 2018, pp. 316–329.
[329] M. Mousavi, M. Rayati, & A. M. Ranjbar, “Optimal Operation of a Virtual Power Plant in Frequency Constrained Electricity Market.” IET Gener. Transm. Distrib., vol. 13, no. 11, 2019, pp. 2015–2023.
[330] H. Nezamabadi & M. Setayesh Nazar, “Arbitrage Strategy of Virtual Power Plants in Energy, Spinning Reserve and Reactive Power Markets.” IET Gener. Transm. Distrib., vol. 10, no. 3, 2016, pp. 750–763.
[331] A. Alahyari, M. Ehsan, & MS. Mousavizadeh, “A Hybrid Storage-Wind Virtual Power Plant (VPP) Participation in the Electricity Markets: A Self-Scheduling Optimization Considering Price, Renewable Generation, and Electric Vehicles Uncertainties.” J. Energy Storage, 25, 2019, 100812.
[332] L. Ju, Q. Tan, Y. Lu, Z. Tan, Y. Zhang, & Q. Tan, “A CVaR-Robust-Based Multi-Objective Optimization Model and Three-Stage Solution Algorithm for a Virtual Power Plant Considering Uncertainties and Carbon Emission Allowances.” Int. J. Electr. Power Energy Syst., 107, 2019, pp. 628–643.
[333] Y. Zhou, Z. Wei, G. Sun, K.W. Cheung, H. Zang, & S. Chen, “Four-Level Robust Model for a Virtual Power Plant in Energy and Reserve Markets.” IET Gener. Transm. Distrib., vol. 13, no. 11, 2019, pp. 2006–2014.
[334] S. R. Dabbagh & M. K. Sheikh-El-Eslami, “Risk Assessment of Virtual Power Plants Offering in Energy and Reserve Markets.” IEEE Trans. Power Syst., vol. 31, no. 5, 2016, pp. 3572–3582.
[335] S. Rahmani-Dabbagh & M. K. Sheikh-El-Eslami, “A Profit Sharing Scheme for Distributed Energy Resources Integrated into a Virtual Power Plant.“ Appl. Energy, 184, 2016, pp. 313–328.
[336] C. Ziegler, A. Richter, I. Hauer, & M. Wolter, “Technical Integration of Virtual Power Plants Enhanced by Energy Storages into German System Operation with Regard to Following the Schedule in Intra-Day. “In: Proc - 2018 53rd int. univ. power eng. Conf. UPEC 2018. Glasgow, 2018, pp. 1–6.
[337] D. Wozabal & G. Rameseder, “Optimal Bidding of a Virtual Power Plant on the Spanish Day-Ahead and Intraday Market for Electricity.” Eur. J. Oper. Res., vol. 280, no. 2, 2020, pp. 639–655.
[338] H. T. Nguyen, L. B. Le, & Z. Wang, “A Bidding Strategy for Virtual Power Plants with the Intraday Demand Response Exchange Market Using the Stochastic Programming.” IEEE Trans. Ind. Appl., vol. 54, no. 4, 2018, pp. 3044–3055.
[339] R. Ko, D. Kang, & S. K. Joo “Mixed Integer Quadratic Programming Based Scheduling Methods for Day-Ahead Bidding and Intra-Day Operation of Virtual Power Plant.” Energies, vol. 12, no. 8, 2019, 1410.
[340] M. K. Petersen, L. H. Hansen, J. Bendtsen, K. Edlund, & J. Stoustrup, “Market Integration of Virtual Power Plants.” In: Proc. IEEE conf. decis. control. Florence, 2013, pp. 2319–2325.
[341] J. Qiu, K. Meng, Y. Zheng, & Z. Y. Dong, “Optimal Scheduling of Distributed Energy Resources as a Virtual Power Plant in a Transactive Energy Framework.” IET Gener. Transm. Distrib., 11, 2017, pp. 3417–3427.
[342] S. Yin, Q. Ai, Z. Li, Y. Zhang, & T. Lu, “Energy Management for Aggregate Prosumers in a Virtual Power Plant: A Robust Stackelberg Game Approach.” Int. J. Electr. Power Energy Syst., 117, 2020, 105605.
[343] M. Rahimiyan & L. Baringo, “Real-Time Energy Management of a Smart Virtual Power Plant.” IET Gener. Transm. Distrib., vol. 13, no. 11, 2019, pp. 2063–2076.
[344] Y. Wang, X. Ai, Z. Tan, L. Yan, & S. Liu, “Interactive Dispatch Modes and Bidding Strategy of Multiple Virtual Power Plants Based on Demand Response and Game Theory.” IEEE Trans. Smart Grid, vol. 7, no. 1, 2016, pp. 510–519.
[345] A. Baringo & L. Baringo, “A Stochastic Adaptive Robust Optimization Approach for the Offering Strategy of a Virtual Power Plant.” IEEE Trans. Power Syst., vol. 32, no. 5, 2017, pp. 3492–3504.
[346] R. Gao, H. Guo, R. Zhang, T. Mao, Q. Xu, B. Zhou, & P. Yang, “A Two-Stage Dispatch Mechanism for Virtual Power Plant Utilizing the Cvar Theory in the Electricity Spot Market.” Energies, vol. 12, no. 17, 2019, 3402.
[347] A. T. Al-Awami, N. Amleh, & A. Muqbel, “Optimal Demand Response Bidding and Pricing Mechanism with Fuzzy Optimization: Application for a Virtual Power Plant.” IEEE Trans. Ind. Appl., vol. 53, no. 5, 2017, pp. 5051–5061.
[348] J. Hu, C. Jiang, & Y. Liu, “Short-Term Bidding Strategy for a Price-Maker Virtual Power Plant Based on Interval Optimization.” Energies, vol. 12, no. 19, 2019, 3662.
[349] H. Wu, X. Liu, B. Ye, & B. Xu, “Optimal Dispatch and Bidding Strategy of a Virtual Power Plant Based on a Stackelberg Game.” IET Gener. Transm. Distrib., vol. 14, no. 4, 2020, pp. 552–563.
[350] A. Castillo, J. Flicker, C.W. Hansen, J.P. Watson, & J. Johnson, “Stochastic Optimisation with Risk Aversion for Virtual Power Plant Operations: A Rolling Horizon Control.” IET Gener. Transm. Distrib., vol. 13, no. 11, 2019, pp. 2182–2189.
[351] G. Zhang, C. Jiang, & X. Wang, “Comprehensive Review on Structure and Operation of Virtual Power Plant in Electrical System.” IET Gener. Transm. Distrib., 13, 2019, pp. 145–156.
[352] G. Sun, W. Qian, W. Huang, Z. Xu, Z. Fu, Z. Wei, & S. Chen, “Stochastic Adaptive Robust Dispatch for Virtual Power Plants Using the Binding Scenario Identification Approach.” Energies, vol. 12, no. 10, May 2019, p. 1918.
[353] 台灣電力公司:《需量反應負載管理措施》,台北:台灣電力公司,2024。
[354] 台灣電力公司:《電力交易平台管理規範及作業程序》,台北:台灣電力公司,2024。
[355] T. G. Werner & R. Remberg, “Technical, Economical and Regulatory Aspects of Virtual Power Plants.” Third Int. Conf. Electric Utility Deregulation and Restructuring and Power Technologies 2008 DRPT 2008 IEEE, Nanjing, China, 2008. pp. 2427–2433.
[356] X. Liang, “Emerging Power Quality Challenges Due to Integration of Renewable Energy Sources.” IEEE Trans. Ind. Appl., vol. 53, no. 2, 2017, pp. 855–866.
[357] C. Rae, S. Kerr, & M. M. Maroto-Valer, “Upscaling Smart Local Energy Systems: A Review of Technical Barriers.” Renew. Sustain. Energy Rev., vol. 131, Oct. 2020, Art. n o. 110020.
[358] M. Brenna, M.C. Falvo, F. Foiadelli, et al., “Challenges in Energy Systems for the Smart-Cities of the Future.” 2012 IEEE Int. Energy Conf. Exhibition (ENERGYCON) IEEE, Florence, Italy, 2012
[359] A. Zorbing, “Unlocking Customer Value: The Virtual Power Plant.” US Department of Energy, 2010.
[360] M. Alizadeh, M.P. Moghaddam, N. Amjady, P. Siano, & M. Sheikh-El-Eslami, “Flexibility in Future Power Systems with High Renewable Penetration: A Review.” Renew. Sustain Energy Rev., 57, 2016, pp. 1186–93. https://doi.org/10.1016/j.rser.2015.12.200.
[361] P. Moutis & N. D. Hatziargyriou, “Decision Trees Aided Scheduling for Firm Power Capacity Provision by Virtual Power Plants.” Int. J. Electr. Power Energy Syst., 63, 2014, pp. 730–739. https://doi.org/10.1016/j.ijepes.2014.06.038.
[362] Z. Wei, S. Yu, G. Sun, Y. Sun, Y. Yuan, & D. Wang, “Concept and Development of Virtual Power Plant.” Automat. Electr. Power Syst., vol. 37, no. 13, 2013, pp. 1–9.

[363] J. M. Xu, Y. Sun, Q. Sun, & J. W. Ma, “A Comprehensive Evaluation Index System of Virtual Power Plant Participating in Power Coordination And Optimal Dispatching.” in Proc. IEEE Int. Conf. Appl. Supercond. Electromagn. Devices (ASEMD), Apr. 2018, pp. 1–2.
[364] I. Kuzle, M. Zdrili?, & H. Pand?i?, “Virtual Power Plant Dispatch Optimization Using Linear Programming.” 2011 Tenth Int. Conf. Environment and Electrical Engineering (EEEIC) IEEE, Rome, Italy, 2011.
[365] M. A. Salmani, S. M. M. Tafreshi, & H. Salmani, “Operation Optimization for a Virtual Power Plant.” 2009 IEEE PES/IAS Conf. Sustainable Alternative Energy (SAE) IEEE, Valencia, Spain, 2009.
[366] O. Palizban, K. Kauhaniemi, & JM. Guerrero, “Microgrids in Active Network Management Part I: Hierarchical Control, Energy Storage, Virtual Power Plants, and Market Participation.” Renew. Sustain Energy Rev., 36, 2014, pp. 428–439. https://doi.org/10.1016/jrser.2014.01.016.
[367] A. G. Zamani, A. Zakariazadeh, & S. Jadid “Day-Ahead Resource Scheduling of a Renewable Energy Based Virtual Power Plant.” Appl. Energy, 169, 2016, pp. 324–340. https://doi.org/10.1016/j.apenergy.2016.02.011.
[368] K. P. Kumar, B. Saravanan, & K. Swarup, “A Two Stage Increase-Decrease Algorithm to Optimize Distributed Generation in a Virtual Power Plant.” Energy Procedia, 90, 2016, pp. 276–282. https://doi.org/10.1016/j.egypro.2016.11.195. 5th International Conference on Advances in Energy Research (ICAER) 2015.
[369] J. Soares, N. Borges, C. Lobo, & Z. Vale, “VPP Energy Resources Management Considering Emissions: The Case of Northern Portugal 2020 to 2050.” 2015 IEEE Symposium Series on Computational Intelligence 2015. pp. 1259–66. https://doi.org/10.1109/SSCI.2015.180.
[370] H. Cheng, Y. Gao, J. Zhang, R. Li, & H. Liang, “The Power System Multi-Objective Optimization Dispatching Containing Virtual Power Plant.” 2014 International Conference on Power System Technology 2014. pp. 3316–3321. https://doi.org/10.1109/POWERCON.2014.6993875.
[371] S. Su?i?, T. Dragi?evi?, T. Capuder, & M. Delimar, “Economic Dispatch of Virtual Power Plants in an Event-Driven Service-Oriented Framework Using Standards-Based Communications.” Electr. Power Syst. Res., vol. 81, no. 12, 2011, pp. 2108–2119. https://doi.org/10.1016/j.epsr.2011.08.008.
[372] D. Lee, D. Park, J.-B. Park, & K.-Y. Lee, “Security-Constrained Unit Commitment Considering Demand Response Resource as Virtual Power Plant.” IFAC Workshop on Control of Transmission and Distribution Smart Grids CTDSG 2016, vol. 49, no. 27, 2016, pp. 290–295. https://doi.org/10.1016/j.ifacol.2016.10.706.
[373] Y. Liu, H. Xin, Z. Wang, & D. Gan, “Control of Virtual Power Plant in Microgrids: A Coordinated Approach Based on Photovoltaic Systems and Controllable Loads.” IET Gener. Transm. Distrib., vol. 9, no. 10, 2015, pp. 921–928. https://doi.org/10.1049/iet-gtd.2015.0392.
[374] M. K. Petersen, L. H. Hansen, J. Bendtsen, K. Edlund, & J. Stoustrup, “Heuristic Optimization for the Discrete Virtual Power Plant Dispatch Problem.” IEEE Trans. Smart Grid, vol. 5, no. 6, 2014, pp. 2910–2918. https://doi.org/10.1109/TSG.2014.2336261.
[375] H. Cui, F. Li, Q. Hu, L. Bai, & X. Fang, “Day-Ahead Coordinated Operation of Utility-Scale Electricity and Natural Gas Networks Considering Demand Response Based Virtual Power Plants.” Appl. Energy, 176, 2016, pp. 183–195. https://doi.org/10.1016/j.apenergy.2016.05.007.
[376] B. Wille-Haussmann, T. Erge, & C. Wittwer, “Decentralised Optimisation of Cogeneration in Virtual Power Plants.” Sol. Energy, vol. 84, no. 4, 2010, pp. 604–61. https://doi.org/10.1016/j.solener.2009.10.009.
[377] J. Xiao, X. Kong, Q. Jin, H. You, K. Cui, & Y. Zhang, “Demand-Responsive Virtual Power Plant Optimization Scheduling Method Based on Competitive Bidding Equilibrium.” Energy Procedia, 152, 2018, pp. 1158–63. https://doi.org/10.1016/j.egypro.2018.09.151.
[378] L. Hernandez, C. Baladron, J.M. Aguiar, B. Carro, A. Sanchez-Esguevillas, J. Lloret, D. Chinarro, J.J. Gomez-Sanz, D. Cook, et al., “A Multi-Agent System Architecture for Smart Grid Management and Forecasting of Energy Demand in Virtual Power Plants.” IEEE Commun. Mag., vol. 51, no. 1, 2013, pp. 106–113. https://doi.org/10.1109/MCOM.2013.6400446.
[379] M. M. Othman, Y. Hegazy, & A. Y. Abdelaziz, “Electrical Energy Management in Unbalanced Distribution Networks Using Virtual Power Plant Concept.” Electr. Power Syst. Res., 145, 2017, pp. 157–165. https://doi.org/10.1016/j.epsr.2017.01.004.
[380] A. Thavlov & H.W. Bindner, “Utilization of Flexible Demand in a Virtual Power Plant Setup.” IEEE Trans. Smart Grid, vol. 6, no. 2, 2015, pp. 640–647. https://doi.org/10.1109/TSG.2014.2363498.
[381] M. Shabanzadeh, M. Sheikholeslami, & M.-R. Haghifam, “Decision-Making Tool for Virtual Power Plants Considering Midterm Bilateral Contracts.” 1, 2015.
[382] C. Huang, D. Yue, J. Xie, Y. Li, & K. Wang, “Economic Dispatch of Power Systems with Virtual Power Plant Based Interval Optimization Method.” CSEE J Power Energy Syst., vol. 2, no. 1, 2016, pp. 74–80. https://doi.org/10.17775/CSEEJPES.2016.00011.
[383] E. G. Kardakos, C. K. Simoglou, & A. G. Bakirtzis, “Optimal Offering Strategy of a Virtual Power Plant: A Stochastic Bi-Level Approach.” IEEE Trans. Smart Grid, vol. 7, no. 2, 2016, pp. 794–806. https://doi.org/10.1109/TSG.2015.2419714.
[384] M. Javad Kasaei, M. Gandomkar, & J. Nikoukar, “Optimal Management of Renewable Energy Sources by Virtual Power Plant.” Renew. Energy, 114, 2017, pp. 1180–1188. https://doi.org/10.1016/j.renene.2017.08.010.
[385] M. Shabanzadeh, M.-K Sheikh-El-Eslami, & M.-R. Haghifam, “An Interactive Cooperation Model for Neighboring Virtual Power Plants.” Appl. Energy, 200, 2017, pp. 273–289. https://doi.org/10.1016/j.apenergy.2017.05.066.
[386] Y. Liu, M. Li, H. Lian, X. Tang, C. Liu, & C. Jiang, “Optimal Dispatch of Virtual Power Plant Using Interval and Deterministic Combined Optimization.” Int. J. Electr. Power Energy Syst., 102, 2018, pp. 235–244. https://doi.org/10.1016/j.ijepes.2018.04.011.
[387] R. Lima, A.J. Conejo, S. Langodan, I. Hoteit, & O. Knio, “Risk-Averse Formulations and Methods for a Virtual Power Plant.” Comput. Operat. Res., 96, 2018, pp. 350–373. https://doi.org/10.1016/j.cor.2017.12.007.
[388] R-A. Hooshmand, SM. Nosratabadi, & E. Gholipour, “Event-based scheduling of industrial technical virtual power plant considering wind and market prices stochastic behaviors – a case study in Iran.” J. Clean Prod., 2018, 172, pp. 1748–1764. https://doi.org/10.1016/j.jclepro.2017.12.017.
[389] J. Yang, J. Zhao, F. Wen, Y. Xue, L. Li, & H. Lyu, “Development of Bidding Strategies for Virtual Power Plants Considering Uncertain Outputs from Plug-In Electric Vehicles and Wind Generators.” Automat Electr. Power Syst., 38, 2014, pp. 92–102. https://doi.org/10.7500/AEPS20140212010.
[390] W. F. Samuelson & S. G. Marks, Managerial Economics, IV edition., New York: Wiley, 2003.
[391] T. Barforoushi, et al., “Evaluation of Regulatory Impacts on Dynamic Behavior of Investments in Electricity Markets: A New Hybrid DP/GAME Framework.” IEEE Trans. Power Syst., vol. 25, no. 4, Nov. 2010, pp. 1978-1986. https://doi.org/10.1109/tpwrs.2010.2049034.
[392] T. Gonen, Modern Power System Analysis, New York: Wiley, 1988.
[393] J. L. C. Meza, M. B. Yildirim, & A. S. M. Masud, “A Model for the Multiperiod Multiobjective Power Generation Expansion Problem.” IEEE Trans. Power Syst., vol. 22, no. 2, May 2007, pp. 871–878.
[394] K. Rajesh, K. Karthikeyan, S. Kannan, et al., “Generation Expansion Planning Based on Solar Plants with Storage.” Renew. Sustain. Energy Rev., 57, 2016, pp. 953–964
[395] M. Peik-Herfeh, H. Seifi, & M.K. Sheikh-El-Eslami, “Decision Making of a Virtual Power Plant Under Uncertainties for Bidding in a Day-Ahead Market Using Point Estimate Method.” Int. J. Electr. Power Energy Syst., vol. 44, no. 1, 2013, pp. 88–98.
[396] S. You, C. Traeholt, & B. Poulsen, “Generic Virtual Power Plants: Management of Distributed Energy Resources Under Liberalized Electricity Market.” London, UK, 2009, pp. 63.
[397] S. I. Taheri, M. B. C. Salles, & E. C. M. Costa, “Optimal Cost Management of Distributed Generation Units and Microgrids for Virtual Power Plant Scheduling.” IEEE Access, vol. 8, 2020, pp. 208449–208461.
[398] A. Mardani, E. K. Zavadskas, Z. Khalifah, et al., “A Review of Multi-Criteria Decision-Making Applications to Solve Energy Management Problems: Two Decades From 1995 to 2015.” Renew. Sustain. Energy Rev., 71, 2017, pp. 216–256.
[399] G. Mokryani, Y.F. Hu, P. Papadopoulos, et al., “Deterministic Approach for Active Distribution Networks Planning with High Penetration of Wind and Solar Power.” Renew. Energy, 113, 2017, pp. 942–951.
[400] C. Tan, Z. Tan, G. Wang, Y. Du, L. Pu, & R. Zhang, “Business Model of Virtual Power Plant Considering Uncertainty and Different Levels of Market Maturity.” J. Clean. Prod., 362, 2022,131433.
[401] O. Sadeghian, A. Oshnoei, R. Khezri, & S. Muyeen, “Risk-Constrained Stochastic Optimal Allocation of Energy Storage System in Virtual Power Plants.” J. Energy Storage, 31, 2020, 101732.
[402] E. Gnansounou, J. Dong, S. Pierre, & A. Quintero, “Market Oriented Planning Using Agent-Based Model.” in Proc. 2004 IEEE Power System and Exhibition, vol. 3, pp. 1306–1311.
[403] M. Shabani, F. Wallin, E. Dahlquist, & J. Yan, “Techno-Economic Assessment of Battery Storage Integrated into a Grid-Connected and Solar-Powered Residential Building Under Different Battery Ageing Models.” Appl. Energy, vol. 318, 2022, Art. no. 119166.
[404] L. Bhamidi & S. Sivasubramani, “Optimal Planning and Operational Strategy of a Residential Microgrid with Demand Side Management.” IEEE Syst. J., vol. 14, no. 2, Jun. 2020, pp. 2624–2632.
[405] S. Bandyopadhyay, G. R. C. Mouli, Z. Qin, L. R. Elizondo, & P. Bauer, “Techno-Economical Model Based Optimal Sizing of PV-Battery Systems for Microgrids.” IEEE Trans. Sustain. Energy, vol. 11, no. 3, Jul. 2020, pp. 1657–1668.
[406] F. Salah, R. Henriquez, G. Wenzel, D.E. Olivares, M. Negrete-Pincetic, & C. Weinhardt, “Portfolio Design of a Demand Response Aggregator with Satisficing Consumers.” IEEE Trans. Smart Grid, vol. 10, no. 3, 2018, pp. 2475-2484.
[407] F. S. Gazijahani & J. Salehi, “IGDT-Based Complementarity Approach for Dealing with Strategic Decision Making of Price-Maker VPP Considering Demand Flexibility.” IEEE Trans. Ind. Inform., vol. 16, no. 4, Apr. 2020, pp. 2212–2220.
[408] H. Khaloie, M. Mollahassani-Pour, & A. Anvari-Moghaddam, “Optimal Behavior of a Hybrid Power Producer in Day-Ahead and Intraday Markets: A Bi-Objective Cvar-Based Approach.” IEEE Trans. Sustain. Energy, vol. 12, no. 2, Apr. 2021, pp. 931–943.
[409] H. Rashidizadeh-Kermani, M. Vahedipour-Dahraie, M. Shafie-khah, G. J. Osorio, & J. P. S. Catalao, “Optimal Scheduling of a Virtual Power Plant with Demand Response in Short-Term Electricity Market.” in 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, Jun. 2020, pp. 599–604.
[410] M. Song & M. Amelin, “Price-Maker Bidding in Day-Ahead Electricity Market for A Retailer with Flexible Demands.” IEEE Trans. Power Syst., vol. 33, no. 2, Mar. 2018, pp. 1948–1958.
[411] A. Naebi, S. SeyedShenava, J. Contreras, C. Ruiz, & A. Akbarimajd, “EPEC Approach for Finding Optimal Day-Ahead Bidding Strategy Equilibria of Multi-Microgrids in Active Distribution Networks.” Int. J. Elect. Power Energy Syst., vol. 117, May 2020, Art. no. 105702.
[412] G. Graditi, M.D. Somma, & P. Siano, “Optimal Bidding Strategy for a DER Aggregator in the Day-Ahead Market in the Presence of Demand Flexibility.” IEEE Trans. Ind. Electron., Vol. 66, no. 2, 2018, pp. 1509-1519.
[413] G. Zhang, C. Jiang, X. Wang, B. Li, & H. Zhu, “Bidding Strategy Analysis of Virtual Power Plant Considering Demand Response and Uncertainty of Renewable Energy.” IET Gener. Transm. Distrib., vol. 11, no. 13, 2017, pp. 3268-3277.
[414] S. S. Gougheri, H. Jahangir, M. A. Golkar, A. Ahmadian, & M. Aliakbar Golkar, “Optimal Participation of a Virtual Power Plant in Electricity Market Considering Renewable Energy: A Deep Learning Based Approach.” Sustain. Energy Grids Netw., 26, 2021, 100448.
[415] A. Saez-de-Ibarra, A. Milo, H. Gaztanaga, V. Debusschere, & S. Bacha, “Co-Optimization of Storage System Sizing and Control Strategy for Intelligent Photovoltaic Power Plants Market Integration.” IEEE Trans. Sustain. Energy, vol. 7, no. 4, Oct. 2016, pp. 1749–1761.
[416] J. Iria, F. Soares, & M. Matos, “Optimal Supply and Demand Bidding Strategy for an Aggregator of Small Prosumers.“ Appl. Energy, 213, 2018, pp. 658-669.
[417] M. Vahedipour-Dahraie, H. Rashidizade-Kermani, M. Shafie-khah, & J. P. S. Catalao, “Risk-Averse Optimal Energy and Reserve Scheduling for Virtual Power Plants Incorporating Demand Response Programs.” IEEE Trans. Smart Grid, 2020.
[418] M. Yazdaninejad, N. Amjady, & S. Dehghan, “VPP Self-Scheduling Strategy Using Multi-Horizon IGDT, Enhanced Normalized Normal Constraint, and Bi-Directional Decision-Making Approach.” IEEE Trans. Smart Grid, vol. 11, no. 4, Jul. 2020, pp. 3632–3645.
[419] H. Khaloie, A. Anvari-Moghaddam, N. Hatziargyriou, & J. Contreras, “Risk-Constrained Self-Scheduling of a Hybrid Power Plant Considering Interval-Based Intraday Demand Response Exchange Market Prices.” J. Cleaner Prod., vol. 282, Feb. 2021, Art. no. 125344.
[420] S. A. A. Rizvi, A. Xin, & A. Masood, “Optimal Scheduling of Virtual Power Plants Utilizing Wind Power and Electric Vehicles.” 2021 11th International Conference on Power and Energy Systems (ICPES), 2021.
[421] M. Vahedipour Dahraiea, H. Rashidizadeh Kermania, & A. Anvari Moghaddam, “Scheduling of Virtual Power Plants Considering Demand Response and Uncertainties.” Int. J. Electr. Power Energy Syst., 121, 2020, 106126.
[422] M. Rahimi, F.J. Ardakani, & A.J. Ardakani, “Optimal Stochastic Scheduling of Electrical and Thermal Renewable and Non-Renewable Resources in Virtual Power Plant.” Int. J. Electr. Power Energy Syst., vol. 127, May 2021, Art. no. 106658.
[423] A. Zakariazadeh, S. Jadid, & P. Siano, “Economic–Environmental Energy and Reserve Scheduling Of Smart Distribution Systems: A Multi-Objective Mathematical Programming Approach.” Energy Convers. Manage., vol. 78, Feb. 2014, pp. 151–164.
[424] J. Naughton, H. Wang, S. Riaz, M. Cantoni, & P. Mancarella, “Optimization of Multi-Energy Virtual Power Plants for Providing Multiple Market and Local Network Services.” Electr. Power Syst. Res., vol. 189, Dec. 2020, Art. no. 106775.
[425] N. Naval, R. Sanchez, & J. M. Yusta, “A Virtual Power Plant Optimal Dispatch Model with Large and Small-Scale Distributed Renewable Generation.”’ Renew. Energy, vol. 151, May 2020, pp. 57–69.
[426] L. Lin, X. Guan, Y. Peng, N. Wang, S. Maharjan, & T. Ohtsuki, “Deep Reinforcement Learning for Economic Dispatch of Virtual Power Plant in Internet of Energy.” IEEE Internet Things J., vol. 7, no. 7, Jul. 2020, pp. 6288–6301.
[427] W. S. Sakr, R. A. EL-Sehiemy, A. M. Azmy, & H. A. Abd el-Ghany, “Identifying Optimal Border of Virtual Power Plants Considering Uncertainties and Demand Response.” Alex. Eng. J., 61, 2022, pp. 9673–9713.
[428] H. Nezamabadi, P. Nezamabadi, M. Setayeshnazar, & G. B. Gharehpetian, “Participation of Virtual Power Plants in Energy Market with Optimal Bidding Based on Nash-SFE Equilibrium Strategy and Considering Interruptible Load.” in Proc. 3rd Conf. Therm. Power Plants, Tehran, Iran, Oct. 2011, pp. 1–6.
[429] S. Shafiee, H. Zareipour, & A. M. Knight, “Developing Bidding and Offering Curves of a Price-Maker Energy Storage Facility Based on Robust Optimization.” IEEE Trans. Smart Grid, vol. 10, no. 1, Jan. 2019, pp. 650–660.
[430] L. Dong, S. Fan, Z. Wang, J. Xiao, H. Zhou, Z. Li, & G. He, “An Adaptive Decentralized Economic Dispatch Method for Virtual Power Plant.” Appl. Energy, 300, 2021, 117347.
[431] M. Aghamohamadi, A. Mahmoudi, & M. H. Haque, “Two-Stage Robust Sizing and Operation Co-Optimization for Residential PV–Battery Systems Considering the Uncertainty of PV Generation and Load.” IEEE Trans. Ind. Inform., vol. 17, no. 2, Feb. 2021, pp. 1005–1017.
[432] H. Zhang, D. Yue, C. Dou, K. Li, & X. Xie, “Event-Triggered Multiagent Optimization for Two-Layered Model of Hybrid Energy System with Price Bidding-Based Demand Response.” IEEE Trans. Cybern., vol. 51, no. 4, Apr. 2021, pp. 2068–2079, doi: 10.1109/TCYB.2019.2931706.
[433] A. Hany Elgamal, G. Kocher-Oberlehner, V. Robu, & M. Andoni, “Optimization of a Multiple-Scale Renewable Energy-Based Virtual Power Plant in the U.K.” Appl. Energy, vol. 256, Dec. 2019, Art. no. 113973.
[434] T. Wang, X. Jiang, Y. Jin, D. Song, M. Yang, & Q. Zeng, “Peaking Compensation Mechanism for Thermal Units and Virtual Peaking Plants Union Promoting Curtailed Wind Power Integration.” Energies, vol. 12, no. 17, Aug. 2019, p. 3299.
[435] M. H. Abbasia, M. Takia, A. Rajabib, L. Lib, & J. Zhangb, “Coordinated Operation of Electric Vehicle Charging and Wind Power Generation as a Virtual Power Plant: A Multi-Stage Risk Constrained Approach.” Appl. Energy, 239, 2019, pp. 1294–1307.
[436] R. Sharifi, A. Anvari-Moghaddam, S. H. Fathi, & V. Vahidinasab, “A bi-level model for strategic bidding of a price-maker retailer with flexible demands in day-ahead electricity market.” Int. J. Elect. Power Energy Syst., vol. 121, 2020, Art. no. 106065.
[437] Z. Liang, Q. Alsafasfeh, T. Jin, H. Pourbabak, & W. Su, “Risk Constrained Optimal Energy Management for Virtual Power Plants Considering Correlated Demand Response.” IEEE Trans. Smart Grid, 10, 2017, pp. 1577–1587.
[438] S. Pazouki, M.-R. Haghifam, & S. Pazouki, “Transition from Fossil Fuels Power Plants Toward Virtual Power Plants of Distribution Networks.” in Proc. 21st Conf. Electr. Power Distrib. Netw. Conf. (EPDC), Apr. 2016, pp. 82–86.
[439] C. Corinaldesi, D. Schwabeneder, G. Lettner, & H. Auer, “A Rolling Horizon Approach for Real-Time Trading and Portfolio Optimization of End-User Flexibilities.” Sustain. Energy Grids Netw., 24, 2020, 100392.
[440] M. Nistor & C. H. Antunes, “Integrated Management of Energy Resources in Residential Buildings—A Markovian Approach.” IEEE Trans. Smart Grid, vol. 9, no. 1, Jan. 2018, pp. 240–251.
[441] E. Mahboubi-Moghaddam, M. Nayeripour, J. Aghaei, A. Khodaei, & E. Waffenschmidt, “Interactive Robust Model for Energy Service Providers Integrating Demand Response Programs in Wholesale Markets.” IEEE Trans. Smart Grid, vol. 9, no. 4, Jul. 2018, pp. 2681–2690.
[442] M. Z. Oskouei, M. A. Mirzaei, B. Mohammadi-Ivatloo, M. Shafiee, M. Marzband, & A. Anvari-Moghaddam, “A Hybrid Robust-Stochastic Approach to Evaluate the Profit of a Multi-Energy Retailer in Tri-Layer Energy Markets.” Energy, vol. 214, 2021, Art. no. 118948.
[443] M. Moeini-Aghtaie, P. Dehghanian, M. Fotuhi-Firuzabad, & A. Abbaspour, “Multiagent Genetic Algorithm: An Online Probabilistic View on Economic Dispatch of Energy Hubs Constrained by Wind Availability.” IEEE Trans. Sustain. Energy, vol. 5, no. 2, Apr. 2014, pp. 699–708.
[444] S. Li, J. Yang, W. Song, & A. Chen, “A Real-Time Electricity Scheduling for Residential Home Energy Management.” IEEE Internet Things J., vol. 6, no. 2, Apr. 2019, pp. 2602–2611.
[445] R. S. Kumar, L. P. Raghav, D. K. Raju, & A. R. Singh, “Intelligent Demand Side Management for Optimal Energy Scheduling of Grid Connected Microgrids.” Appl. Energy, vol. 285, 2021, Art. no. 116435.
[446] Z. Ullah, N.H. Mirjat, & M. Baseer, “Optimisation and Management of Virtual Power Plants Energy Mix Trading Model.” Int. J. Renew. Energy Dev., 11, 2022, pp. 83–94.
[447] Z. Ullah & M. Baseer, “Operational Planning and Design of Market-Based Virtual Power Plant with High Penetration of Renewable Energy Sources.” Int. J. Renew. Energy Dev., 11, 2022, pp. 620–629.
[448] E. Strantzali & K. Aravossis, “Decision Making in Renewable Energy Investments: A Review.” Renew. Sustain. Energy Rev., 55, 2016, pp. 885–898
[449] A. Maroufmashat, et al., “Modeling and Optimization of a Network of Energy Hubs to Improve Economic and Emission Considerations.” Energy, vol. 93, Dec. 2015, pp. 2546–2558.
[450] Z. Ullah & N.H. Mirjat, “Modelling and Analysis of Virtual Power Plants Interactive Operational Characteristics in Distribution Systems.” Energy Convers. Economics, 3, 2021, pp. 11–19.
[451] M. Klobasa, “Analysis of Demand Response and Wind Integration in Germany’s Electricity Market.” IET Renewable Power Gener., vol. 4, no. 1, 2010, pp. 55–63.
[452] S. De Rijcke, K. De Vos, & J. Driesen, “Balancing Wind Power with Demand-Side Response.” IEEE Young Researchers Symp. Edition: 5, Leuven, Belgium, March 2010.
[453] L. Ju, R. Zhao, Q. Tan, Y. Lu, Q. Tan, & W. Wang, “A Multi-Objective Robust Scheduling Model and Solution Algorithm for a Novel Virtual Power Plant Connected With Power-To-Gas and Gas Storage Tank Considering Uncertainty and Demand Response.” Appl. Energy, 250,2019, pp. 1336–1355.
[454] M. Vahedipour-Dahraie, H. Rashidizadeh-Kermani, A. Anvari-Moghaddam, & P. Siano, “Risk-Averse Probabilistic Framework for Scheduling of Virtual Power Plants Considering Demand Response and Uncertainties.” Int. J. Electr. Power Energy Syst., vol. 121, Oct. 2020, Art. no. 106126.
[455] H. Khaloie, A. Abdollahi, M. Shafie-Khah, P. Siano, S. Nojavan, A. Anvari-Moghaddam, & J. P. S. Catalao, “Co-Optimized Bidding Strategy of an Integrated Wind-Thermal-Photovoltaic System in Deregulated Electricity Market Under Uncertainties.” J. Cleaner Prod., vol. 242, Jan. 2020, Art. no. 118434.
[456] H. Khaloie, A. Abdollahi, M. Shafie-Khah, A. Anvari-Moghaddam, S. Nojavan, P. Siano, & J. P. S. Catalao, “Coordinated Wind-Thermal Energy Storage Offering Strategy in Energy and Spinning Reserve Markets Using a Multi-Stage Model.” Appl. Energy, vol. 259, Feb. 2020, Art. no. 114168.
[457] J. Zhang, Z. Xu, W. Xu, F. Zhu, X. Lyu, & M. Fu, “Bi-Objective Dispatch of Multi-Energy Virtual Power Plant: Deep-Learning-Based Prediction and Particle Swarm Optimization.” Appl. Sci., vol. 9, no. 2, Jan. 2019, p. 292.
[458] M. Tahmasebi, J. Pasupuleti, F. Mohamadian, M. Shakeri, J.M. Guerrero, M.R. Basir Khan, M.S. Nazir, A. Safari, & N. Bazmohammadi, “Optimal Operation of Stand-Alone Microgrid Considering Emission Issues and Demand Response Program Using Whale Optimization Algorithm.” Sustainability, 13, 2021, 7710.
[459] W. Kang, M. Chen, W. Lai, & Y. Luo, “Distributed Real-Time Power Management for Virtual Energy Storage Systems Using Dynamic Price.” Energy, 216, 2021, 119069.
[460] M. Shafiekhani, A. Ahmadi, O. Homaee, M. Shafie-khah, & J.P. Catalao, “Optimal Bidding Strategy of a Renewable-Based Virtual Power Plant Including Wind and Solar Units and Dispatchable Loads.” Energy, 239, 2022, 122379.
[461] H. Yuan, K. Feng, W. Li, & X. Sun, “Multi-Objective Optimization of Virtual Energy Hub Plant Integrated with Data Center and Plug-Inelectric Vehicles Under a Mixed Robust-Stochastic Model.” J. Clean. Prod., 363, 2022, 132365.
[462] A. K. Pandey & V. K. Jadoun, “Real-Time and Day-Ahead Risk Averse Multi-Objective Operational Scheduling of Virtual Power Plant Using Modified Harris Hawk’s Optimization.” Electr. Power Syst. Res., 220, 2023, 109285.
[463] M. Tayyab, I. Hauer, & S. Helm, “Holistic Approach for Microgrid Planning for E-Mobility Infrastructure under Consideration of Long-Term Uncertainty.” Sustain. Energy Grids Netw., vol. 34, 2023, article 101073.
[464] R. Khezri, A. Mahmoudi, & H. Aki, “Multiobjective Long-Period Optimal Planning Model for a Grid-Connected Renewable-Battery System.” IEEE Trans. Ind. Appl., vol. 58, no. 4, Jul./Aug. 2022, pp. 5055–5067.
[465] C. Corinaldesi, A. Fleischhacker, L. Lang, J. Radl, D. Schwabeneder, & G. Lettner, “European Case Studies for Impact of Marketdriven Flexibility Management in Distribution Systems.” In Proceedings of the 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Beijing, China, 21–23 October 2019, pp. 1–6.
[466] C. Zhang, Q. Wang, J. Wang, M. Korpas, & M. E. Khodayar, “Strategy Making for a Proactive Distribution Company in the Real-Time Market with Demand Response.” Appl. Energy, vol. 181, Nov. 2016, pp. 540–548.
[467] X. Lu, K. W. Chan, S. Xia, M. Shahidehpour, & W. H. Ng, “An Operation Model for Distribution Companies Using the Flexibility of Electric Vehicle Aggregators.” IEEE Trans. Smart Grid, vol. 12, no. 2, Mar. 2021, pp. 1507–1518.
[468] M. Pasetti, S. Rinaldi, & D. Manerba, “A Virtual Power Plant Architecture for the Demand-Side Management of Smart Prosumers.” Appl. Sci., vol. 8, no. 3, 2018, 432.
[469] N. Shaukat, S. M. Ali, C. A. Mehmood, B. Khan, M. Jawad, U. Farid, Z. Ullah, S. M. Anwar, & M. Majid, “A Survey on Consumers Empowerment, Communication Technologies, and Renewable Generation Penetration Within Smart Grid.” Renew. Sustain. Energy Rev., vol. 81, Jan. 2018, pp. 1453–1475.
[470] H. Ghasemi, J. Aghaei, G. B. Gharehpetian, M. Shafie-Khah, & J. P. Catalao, “Bi-Level Decomposition Approach for Coordinated Planning of an Energy Hub with Gas-Electricity Integrated Systems.” IEEE Syst. J., vol. 16, no. 1, Mar. 2022, pp. 1529–1539.
[471] J. Zhu, P. Duan, M. Liu, Y. Xia, Y. Guo, & X. Mo, “Bi-Level Real-Time Economic Dispatch of VPP Considering Uncertainty.” IEEE Access, 7, 2019, pp. 15282–15291.
[472] R. Rocha, R. Silva, J. Mello, S. Faria, F. Retorta, C. Gouveia, & J. Villar, “A Three-Stage Model to Manage Energy Communities, Share Benefits and Provide Local Grid Services.” Energies, 16, 2023, 1143.
[473] C. Zhang, Q. Wang, J. Wang, P. Pinson, J.M. Morales, & J. Ostergaard, “Real-Time Procurement Strategies of a Proactive Distribution Company with Aggregator-Based Demand Response.” IEEE Trans. Smart Grid, vol. 9, no. 2, 2018, pp. 766-776.
[474] Z. Azimi, R.-A. Hooshmand, & S. Soleymani, “Optimal Integration of Demand Response Programs and Electric Vehicles in Coordinated Energy Management of Industrial Virtual Power Plants.” J. Energy Storage, 41, 2021, 102951.
[475] S. Aghajani & M. Kalantar, “Operational Scheduling of Electric Vehicles Parking Lot Integrated with Renewable Generation Based on Bilevel Programming Approach.” Energy, vol. 139, 2017, pp. 422-432.
[476] N. Mahmoudi, T.K. Saha, & M. Eghbal, “Demand Response Application by Strategic Wind Power Producers.” IEEE Trans. Power Syst., vol. 31, no. 2, 2016, pp. 1227-1237.
[477] F. Sheidaei & A. Ahmarinejad, “Multi-Stage Stochastic Framework for Energy Management of Virtual Power Plants Considering Electric Vehicles and Demand Response Programs.” Int. J. Electr. Power Energy Syst., 120, 2020, 106047.
[478] M. Sandelic, A. Sangwongwanich, & F. Blaabjerg, “Impact of Power Converters and Battery Lifetime on Economic Profitability of Residential Photovoltaic Systems.” IEEE Open J. Ind. Appl., vol. 3, 2022, pp. 224–236, doi: 10.1109/OJIA.2022.3198366.
[479] A. Mahmood, A.R. Butt, U. Mussadiq, R. Nawaz, R. Zafar, & S. Razzaq “Energy Sharing and Management for Prosumers in Smart Grid With Integration of Storage System.” 2017 5th Int. Istanbul Smart Grid Cities Congr. Fair, 2017, pp. 153–156.
[480] N. Liu, X. Yu, C. Wang, & J. Wang, “Energy Sharing Management for Microgrids With PV Prosumers: A Stackelberg Game Approach.” IEEE Trans. Ind. Inform., 13, 2017, pp. 1088–1098.
[481] Y. Zhou, J. Wu, C. Long, M. Cheng, & C. Zhang, “Performance Evaluation of Peer-To-Peer Energy Sharing Models.” Energy Procedia, 143, 2017, pp. 817–822.
[482] X. Li, D. Zhao, & B. Guo, “Decentralized and Collaborative Scheduling Approach for Active Distribution Network with Multiple Virtual Power Plants.” Energies, vol. 11, no. 11, 2018, p. 3208.
[483] T. Hubert & S. Grijalva, “Realizing Smart Grid Benefits Requires Energy Optimization Algorithms at Residential Level.” in Proc. IEEE ISGT, 2011, pp. 1–8.
[484] R. Obringer, S. Mukherjee, & R. Nateghi, “Evaluating the Climate Sensitivity of Coupled Electricity-Natural Gas Demand Using a Multivariate Framework.” Appl. Energy, 262, 2020, 114419.
[485] A.-H. Mohesenian-Rad & A. Leon-Garcia, “Optimal Residential Load Control with Price Prediction in Real-Time Electricity Pricing Environments.” IEEE Trans. Smart Grid, vol. 1, no. 2, Sep. 2010, pp. 120–133.
[486] P. M. De Oliveira-De Jesus & C. H. Antunes, “Economic Valuation of Smart Grid Investments on Electricity Markets.” Sustain. Energy, Grids Netw., vol. 16, Dec. 2018, pp. 70–90.
[487] J. Liu, J. Li, Y. Xiang, X. Zhang, & W. Jiang, “Optimal Sizing of Cascade Hydropower and Distributed Photovoltaic Included Virtual Power Plant Considering Investments and Complementary Benefits in Electricity Markets.” Energies, vol. 12, no. 5, Mar. 2019, pp. 952.
[488] J. Gong, D. Xie, C. Jiang, & Y. Zhang, “Multiple Objective Compromised Method for Power Management in Virtual Power Plants.” Energies, vol. 4, no. 4, Apr. 2011, pp. 700–716.
[489] Z. Cabrane, J. Kim, K. Yoo, & S.H. Lee, “Fuzzy Logic Supervisor-Based Novel Energy Management Strategy Reflecting Different Virtual Power Plants.” Electr. Power Syst. Res., 205, 2022, 107731.
[490] Z. Ullah, Arshad, & H. Hassanin, “Modeling, Optimization, and Analysis of a Virtual Power Plant Demand Response Mechanism for the Internal Electricity Market Considering the Uncertainty of Renewable Energy Sources.” Energies, 15, 2022, 5296. https://doi.org/10.3390/en15145296.
[491] A. Arteconi, A. Mugnini, & F. Polonara, “Energy Flexible Buildings: A Methodology for Rating the Flexibility Performance of Buildings with Electric Heating and Cooling Systems.” Appl. Energy, 251, 2019, 113387.
[492] F. E. Z. Magdy, D. K. Ibrahim, & W. Sabry, “Energy Management of Virtual Power Plants Dependent on Electro-Economical Model.” Ain Shams Eng. J., 11, 2020, pp. 643–649.
[493] M. Sedighizadeh, G. Shaghaghi-shahr, M. Esmaili, & M. R. Aghamohammadi, “Optimal Distribution Feeder Reconfiguration and Generation Scheduling for Microgrid Day-Ahead Operation in the Presence of Electric Vehicles Considering Uncertainties.” J. Energy Storage, vol. 21, 2019, pp. 58–71.
[494] S. Li, F. Luo, J. Yang, G. Ranzi, & J. Wen, “A Personalized Electricity Tariff Recommender System Based on Advanced Metering Infrastructure and Collaborative Filtering.” Int. J. Electr. Power Energy Syst., vol. 113, Dec. 2019, pp. 403–410.
[495] E. R. Ghadikolaei, A. Ghafouri, & M. Sedighi, "Probabilistic Energy Management of DGs and Electric Vehicle Parking Lots in a Smart Grid considering Demand Response." Int. J. Energy Res., 1, 2024, 5543500.
[496] M. Aien, A. Hajebrahimi, & M. Fotuhi-Firuzabad, “A Comprehensive Review on Uncertainty Modeling Techniques in Power System Studies.” Renew. Sustain. Energy Rev., 57, 2016, pp. 1077–1089. https://doi.org/10.1016/j.rser.2015.12.070.
[497] D. T. Nguyen & L. B. Le, “Optimal Bidding Strategy for Microgrids Considering Renewable Energy and Building Thermal Dynamics.” IEEE Trans. Smart Grid, vol. 5, no. 4, Jul. 2014, pp. 1608–1620.
[498] N. Nasiri, S. Zeynali, & S. N. Ravadanegh, "Tactical Participation of a Multienergy System in Distributionally Robust Wholesale Electricity Market Under High Penetration of Electric Vehicles." IEEE Syst. J., vol. 17, no. 1, March 2023, pp. 1465-1476, doi: 10.1109/JSYST.2022.3221490.
[499] J. Guerrero, D. Gebbran, S. Mhanna, A.C. Chapman, & G. Verbic, "Towards a Transactive Energy System for Integration of Distributed Energy Resources: Home Energy Management, Distributed Optimal Power Flow, and Peer-To-Peer Energy Trading." Renew. Sustain. Energy Rev., 132, 2020, 110000.
[500] Y. Liu, Z. Shen, X. Tang, H. Lian, J. Li, & J. Gong, "Worst-Case Conditional Value-At-Risk Based Bidding Strategy For Wind-Hydro Hybrid Systems Under Probability Distribution Uncertainties." Appl. Energy, 256, 2019, 113918.
[501] C.-L. Su & C.-N. Lu, "Two-Point Estimate Method for Quantifying Transfer Capability Uncertainty." IEEE Trans. Power Syst., 20, 2005, pp. 573–579.
[502] H. M. Hussain, A. Ahmad, A. Narayanan, P. H. J. Nardelli, & Y. Yang, "Benchmarking of Heuristic Algorithms for Energy Router-Based Packetized Energy Management in Smart Homes." IEEE Syst. J., vol. 17, no. 2, June 2023, pp. 2721-2732, doi: 10.1109/JSYST.2022.3208414.
[503] F. E. Z. Magdy, D. K. Ibrahim, & W. SABRY, “Virtual Power Plants Modeling and Simulation Using Innovative Electro-Economical Concept.” In Proceedings of the 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA), Varna, Bulgaria, 6–8 June 2019; pp. 1–5.
[504] Y. Degeilh & G. Gross, “Stochastic Simulation of Power Systems with Integrated Intermittent Renewable Resources.” Int. J. Electr. Power Energy Syst., 64, 2015, pp. 542–550.
[505] E. Zio, “Monte Carlo Simulation-Based Probabilistic Assessment of DG Penetration in Medium Voltage Distribution Networks.” Int. J. Electr. Power Energy Syst., 64, 2015, pp. 852–860.
[506] R. Dominguez, L. Baringo, & A. Conejo, “Optimal Offering Strategy for a Concentrating Solar Power Plant.” Appl. Energy, 98, 2012, pp. 316–325.
[507] A. J. Conejo, M. Carrion, & J. M. Morales, Decision Making under Uncertainty in Electricity Markets. New York, NY, USA: Springer, 2010.
[508] H. Eisazadeh, M. M. Moghaddam, & B. Alizadeh, “Optimal Frequency Response of VPP-Based Power Systems Considering Participation Coefficient.” Int. J. Electr. Power Energy Syst., 129, 2021, 106881.
[509] T. Ding, S. Liu, W. Yuan, Z. Bie, & B. Zeng, “A Two-Stage Robust Reactive Power Optimization Considering Uncertain Wind Power Integration in Active Distribution Networks.” IEEE Trans. Sustainable Energy, vol. 7, no. 1, 2016, pp. 301– 311.
[510] P. Xiong, P. Jirutitijaroen, & C. Singh, “A Distributionally Robust Optimization Model for Unit Commitment Considering Uncertain Wind Power Generation.” IEEE Trans. Power Syst., vol. 32, no. 1, 2017, pp. 39–49.
[511] G. Liu, M. Starke, B. Xiao, & K. Tomsovic, “Robust Optimisation-Based Microgrid Scheduling with Islanding Constraints.” IET Gener. Transm. Distrib., vol. 11, no. 7, 2017, pp. 1820–1828.
[512] A. R. Malekpour, T. Niknam, A. Pahwa, et al., “Multi-Objective Stochastic Distribution Feeder Reconfiguration in Systems with Wind Power Generators and Fuel Cells Using the Point Estimate Method.” IEEE Trans. Power Syst., vol. 28, no. 2, 2013, pp. 1483–1492.
[513] C. Shao, Y. Ding, P. Siano, & Y. Song, "Optimal Scheduling of the Integrated Electricity and Natural Gas Systems Considering the Integrated Demand Response of Energy Hubs." IEEE Syst. J., vol. 15, no. 3, Sept. 2021, pp. 4545-4553, doi: 10.1109/JSYST.2020.3020063.
[514] A. Mnatsakanyan & S. Kennedy, "Optimal Demand Response Bidding and Pricing Mechanism: Application for a Virtual Power Plant." 2013 1st IEEE Conference on Technologies for Sustainability (SusTech), Portland, OR, USA, 2013, pp. 167-174, doi: 10.1109/SusTech.2013.6617315.
[515] S. M. B. Sadati, J. Moshtagh, M. Shafie-khah, A. Rastgou, & J. P. Catalao, "Operational Scheduling of a Smart Distribution System Considering Electric Vehicles Parking Lot: A Bi-Level Approach." Int. J. Electr. Power Energy Syst., 105, 2019, pp. 159–178.
[516] M. Vahedipour-Dahraie, H. Rashidizadeh-Kermani, & A. Anvari-Moghaddam, "Risk-Based Stochastic Scheduling of Resilient Microgrids Considering Demand Response Programs." IEEE Syst. J., vol. 15, no. 1, March 2021, pp. 971-980, doi: 10.1109/JSYST.2020.3026142.
[517] W. El-Khattam, Y. Hegazy, & M. Salama, "Investigating Distributed Generation Systems Performance Using Monte Carlo Simulation." IEEE Trans. Power Syst., vol. 21, no. 2, 2006, pp. 524–532.
[518] J. Vuelvas & F. Ruiz, "A Novel Incentive-Based Demand Response Model for Cournot Competition in Electricity Markets." Energy Syst., vol. 10, no. 1, 2018, pp. 95-112.
[519] M. Nazari-Heris, B. Mohammadi-Ivatloo, G.B. Gharehpetian, & M. Shahidehpour, "Robust Short-Term Scheduling of Integrated Heat and Power Microgrids." IEEE Syst. J., 99, 2018, pp. 1-9.
[520] H. Ye, Y. Ge, M. Shahidehpour, & Z. Li, "Uncertainty Marginal Price, Transmission Reserve, and Day-Ahead Market Clearing With Robust Unit Commitment." IEEE Trans. Power Syst. vol. 32, no. 3, 2017, pp. 1782–1795.
[521] A. J. Conejo, J. M. Morales, & L. Baringo, “Real-Time Demand Response Model.” IEEE Trans. Smart Grid, vol. 1, no. 3, Dec. 2010, pp. 236–242.
[522] Z. Yi, Y. Xu, W. Gu, & W. Wu, "A Multi-Time-Scale Economic Scheduling Strategy for Virtual Power Plant Based on Deferrable Loads Aggregation and Disaggregation." IEEE Trans. Sustain. Energy, vol. 11, no. 3, 2020, pp. 1332–1346.
[523] C. Xiao, D. Sutanto, K.M. Muttaqi, & M. Zhang, "Multi-Period Data Driven Control Strategy for Real-Time Management of Energy Storages in Virtual Power Plants Integrated with Power Grid." Int. J. Electr. Power, 118, 2020, 105747.
[524] T. Sowa, S. Krengel, S. Koopmann, & J. Nowak, “Multi-Criteria Operation Strategies of Power-To-Heat-Systems in Virtual Power Plants with a High Penetration of Renewable Energies.” Energy Procedia, 46, 2014, pp. 237–245. https://doi.org/10.1016/j.egypro. 2014.01.178. 8th International Renewable Energy Storage Conference and Exhibition (IRES 2013).
[525] M. Nozarian, A. Fereidunian, & M. Barati, "Reliability-Oriented Planning Framework for Smart Cities: From Interconnected Micro Energy Hubs to Macro Energy Hub Scale." IEEE Syst. J., vol. 17, no. 3, Sept. 2023, pp. 3798-3809, doi:10.1109/JSYST.2023.3244498.
[526]A. Singh, B. K. Sethi, A. Kumar, D. Singh, & R. K. Misra, "Three-Level Hierarchical Management of Active Distribution System with Multimicrogrid." IEEE Syst. J., vol. 17, no. 1, March 2023, pp. 605-616, doi: 10.1109/JSYST.2022.3208032.
[527] H. Singh, “Introduction to Game Theory and Its Application in Electric Power Markets.” IEEE Comput. Appl. Power, vol. 12, no. 4, Oct. 1999, pp. 18–22.
[528] D. Kirschen & G. Strbac, Fundamentals of Power System Economics. New York: Wiley, 2004.
[529] X. F. Liu, B. T. Gao, & Y. Li, "Review on Application of Game Theory in Power Demand Side." Power Syst. Technol., vol. 42, no. 8, pp. 2704–2711. doi:10.13335/j.1000-3673.pst.2018.00.2018
[530] H. B. Wang, W.W. Chen, & L.Q. Yang, "Coordinated Control of Vehicle Chassis System Based on Game Theory and Function Distribution." J. Mech. Eng., vol. 48, no. 22, pp. 105–112. doi:10.3901/JME.2012.22.105.2012.
[531] W. Huang & H. Li, "Game Theory Applications in the Electricity Market and Renewable Energy Trading: A Critical Survey." Front. Energy Res., 10, 2022, 1009217. doi: 10.3389/fenrg.2022.1009217.
[532] W. Hua, H. Sun, H. Xiao, & W. Pei, "Stackelberg Game-Theoretic Strategies for Virtual Power Plant and Associated Market Scheduling Under Smart Grid Communication Environment." IEEE int conf commun control comput technol smart grids, SmartGridComm 2018. Aalborg; 2018. pp. 1–6.
[533] M. Liu, X.D. Chu, & W. Zhan, "A Coordinated AGC Strategy for Interconnected Power Grid Based on Cooperative Game Theory." Power Syst. Technol., vol. 41, no. 5, 2017, pp. 1509–1597. doi:10.13335/j.1000-3673.pst.2016.1514.2017.
[534] F. S. Gazijahani & J. Salehi, “Game Theory Based Profit Maximization Model for Microgrid Aggregators with Presence of EDRP Using Information Gap Decision Theory.” IEEE Syst. J., vol. 13, no. 2, Jun. 2019, pp. 1767–1775.
[535] M. Samadi, H. Kebriaei, H. Schriemer, & M. Erol-Kantarci, “Stochastic Demand Response Management Using Mixed-Strategy Stackelberg Game.” IEEE Syst. J., vol. 16, no. 3, Sep. 2022, pp. 4708–4718.
[536] Y. Wang, W. Gao, F. Qian, & Y. Li, "Evaluation of Economic Benefits of Virtual Power Plant Between Demand and Plant Sides Based on Cooperative Game Theory." Energy Convers. Manag., 238, 2021, 114180.
[537] M. Ghorbanian, S. H. Dolatabadi, & P. Siano, “Game Theory-Based Energy-Management Method Considering Autonomous Demand Response and Distributed Generation Interactions in Smart Distribution Systems.” IEEE Syst. J., vol. 15, no. 1, Mar. 2021, pp. 905–914.
[538] K. Alshehri, J. Liu, X. Chen, & T. Basar, “A Game-Theoretic Framework for Multiperiod-Multicompany Demand Response Management in the Smart Grid.” IEEE Trans. Control Syst. Technol., vol. 29, no. 3, May 2021, pp. 1019–1034.
[539] S. Fan, Q. Ai, & L. Piao, “Bargaining-Based Cooperative Energy Trading for Distribution Company and Demand Response.” Appl. energy, vol. 226, Jun. 2018, pp. 469–482.
[540] C. Eksin, H. Delic, & A. Ribeiro, “Demand Response Management in Smart Grids with Heterogeneous Consumer Preferences.” IEEE Trans. Smart Grid, vol. 6, no. 6, Nov. 2015, pp. 3082–3094.
[541] B. Chai, J. Chen, Z. Yang, & Y. Zhang, “Demand Response Management with Multiple Utility Companies: A Two-Level Game Approach.” IEEE Trans. Smart Grid, vol. 5, no. 2, Mar. 2014, pp. 722–731.
[542] S. Chen, R. S. Cheng, & A. Ribeiro, “Operating Reserves Provision from Residential Users Through Load Aggregators in Smart Grid: A Game Theoretic Approach.” IEEE Trans. Smart Grid, vol. 10, no. 2, Mar. 2019, pp. 1588–1598.
[543] A. Mohsenian-Rad, V. Wong, J. Jatskevich, & R. Schober, “Optimal and Autonomous Incentive-Based Energy Consumption Scheduling Algorithm for Smart Grid.” in Proc. ISGT, 2010, pp. 1–6.
[544] A. Mohsenian-Rad, V. Wong, J. Jatskevich, R. Schober, & A. Leon-Garcia, “Autonomous Demand-Side Management Based on Game-Theoretic Energy Consumption Scheduling for The Future Smart Grid.” IEEE Trans. Smart Grid, vol. 1, no. 3, Dec. 2010, pp. 320–331.
[545] A. S. Chuang, F. Wu, & P. Varaiya, “A Game-Theoretic Model for Generation Expansion Planning: Problem Formulation and Numerical Comparisons.” IEEE Trans. Power Syst., vol. 16, no. 4, Nov. 2001, pp. 885–891.
[546] J. H. Kim, J. B. Park, J. K. Park, & S. K. Joo, “A Market-Based Analysis on the Generation Expansion Planning Strategies.” in Proc. 2005 13th Int. Conf. Intelligent Systems Application to Power Systems.
[547] L. Du, S. Grijalva, & R. G. Harley, “Game-Theoretic Formulation of Power Dispatch with Guaranteed Convergence and Prioritized Best Response.” IEEE Trans. Sustain. Energy, vol. 6, no. 1, Jan. 2015, pp. 51–59.
[548] Y. Liang, F. Liu, & S. Mei, “Distributed Real-Time Economic Dispatch in Smart Grids: A State-Based Potential Game Approach.” IEEE Trans. Smart Grid, vol. 9, no. 5, Sep. 2017, pp. 4194–4208.
[549] S. Z. Moghaddam & T. Akbari, “Network-Constrained Optimal Bidding Strategy of A Plug-In Electric Vehicle Aggregator: A Stochastic/Robust Game Theoretic Approach.” Energy, vol. 151, Mar. 2018, pp. 478–489.
[550] C. Wu, A. Mohsenian-Rad, & J. Huang, “Vehicle-To-Aggregator Interaction Game.” IEEE Trans. Smart Grid, vol. 3, no. 1, Mar. 2012, pp. 434–442.
[551] M. Motalleb, A. Annaswamy, & R. Ghorbani, “A Real-Time Demand Response Market Through a Repeated Incomplete-Information Game.” Energy, 143, 2018, pp. 424-438.
[552] T. Li & M. Shahidehpour, “Strategic Bidding of Transmission-Constrained GENCOs With Incomplete Information.” IEEE Trans. Power Syst., vol. 20, no. 1, Feb. 2005, pp. 437–447.
[553] I. Otero-Novas, C. Meseguer, C. Batlle, & J. J. Alba, “Efficient Determination of Cournot Equilibria in Electricity Markets.” IEEE Trans. Power Syst., vol. 19, no. 4, Nov. 2004, pp. 1837–1844.
[554] L. B. Cunningham, R. Baldick, & M. L. Baughman, “An Empirical Study of Applied Game Theory: Transmission Constrained Cournot Behavior.” IEEE Trans. Power Syst., vol. 17, no. 1, Feb. 2002, pp. 166–172.
[555] E. van Damme, "Game Theory: Noncooperative Games." International Encyclopedia of the Social & Behavioral Sciences, Pergamon, 2001, Pages 5873-5880, ISBN 9780080430768, https://doi.org/10.1016/B0-08-043076-7/02230-0.
[556] W. W. Lin, Z. J. Hu, & S.W. Xie, “Optimal Planning Method of Independent Electricity Retail Company Based on Non-Cooperative Game.” Electr. Power Autom. Equip., vol. 40, no. 3, 2020, pp. 154–161. doi:10.16081/j.epae.202002028
[557] M. Marzband, M. Javadi, S. A. Pourmousavi, & G. Lightbody, “An Advanced Retail Electricity Market for Active Distribution Systems and Home Microgrid Interoperability Based on Game Theory.” Electr. Power Syst. Res., 157, 2018, pp. 187-199.
[558] L. Gkatzikis, I. Koutsopoulos, & T. Salonidis, “The Role of Aggregators in Smart Grid Demand Response Markets.” Selected Areas in Communications, IEEE Journal, vol. 31, no. 7, July 2013, pp. 1247–1257.
[559] E. Centeno, J. Reneses, R. Garcia, & J. J. Sanches, “Long-Term Market Equilibrium Modeling for Generation Expansion Planning.” in Proc. 2003 IEEE Power Tech., Bologna, Italy, vol. 1.
[560] R. Wang, Y. Li, & S. Zhang. "Joint Equilibrium Analysis of Option and Spot Markets Considering Transmission Constrain." Autom. Electr. Power Syst., China, vol. 32, 2008, pp. 35-39.
[561] P. Samadi, A. H. Mohsenian-Rad, R. Schober, & V. W. S. Wong, “Advanced Demand Side Management for the Future Smart Grid Using Mechanism Design.” IEEE Trans. Smart Grid, vol. 3, no. 3, Sep. 2012, pp. 1170–1180.
[562] W. Lv, et al., “Load Aggregator-Based Integrated Demand Response for Residential Smart Energy Hubs.” Math. Problems Eng., vol. 2019, Apr. 2019, pp. 1–14.
[563] S. S. Gougheri, M. Dehghani, A. Nikoofard, H. Jahangir, & M. A. Golkar, “Economic Assessment of Multi Operator Virtual Power Plants in Electricity Market: A Game Theory Based Approach.” Sustain. Energy Technol. Assess., 53, 2022, 102733.
[564] J. M. McNamara, K. Binmore, & A. I. Houston, “Cooperation Should Not Be Assumed.” Trends Ecol. Evol., Vol. 21, Issue 9, 2006, pp. 476-478, ISSN 0169-5347, https://doi.org/10.1016/j.tree.2006.07.005.
[565] J. Zhou, K. Chen, & W. Wang, “A Power Evolution Game Model and Its Application Contained in Virtual Power Plants.” Energies, 16, 2023, 4373. https://doi.org/10.3390/en16114373.
[566] Stanford Encyclopedia of Philosophy, Evolutionary Game Theory, 2024年10月13日,取自https://plato.stanford.edu/entries/game-evolutionary/.
[567] D. Foster & P. Young, "Stochastic Evolutionary Game Dynamics.” Theoretical Population Biology, Vol. 38, Issue 2, 1990, pp. 219-232, ISSN 0040-5809, https://doi.org10.1016/0040-5809(90)90011-J.
[568] J. Wang, Z. Zhou, & A. Botterud, “An Evolutionary Game Approach to Analyzing Bidding Strategies in Electricity Markets with Elastic Demand.” Energy, Vol. 36, Issue 5, 2011, pp. 3459-3467, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2011.03.050.
[569] Smith MJ. Evolution and the theory of games. Cambridge, UK: Cambridge University Press; 1982.
[570] Axelrod R. The evolution of cooperation. New York: Basic Books; 1984.
[571] Boulding KE. Evolutionary economics. Beverly Hills, CA, London: Sage; 1981. p. 23e47 (reprinted in Witt, 1993, p. 523e47).
[572] Nelson RR & Winter SG. Firm and industry response to changed market conditions: an evolutionary approach. Economic Inquiry, 1980;18:179e202 (reprinted in Witt, 1993, p. 101e24).
[573] PA. David, “Clio and the Economics of QWERTY.” American Economic Review Papers and Proceedings,75, 1985, 332e7, (reprinted in Witt, 1993, p. 267e72).
[574] D. Gately, "Sharing The Gains from Regional Cooperation: A Game Theoretic Application to Planning Investment in Electric Power." Int. Econ. Rev., 15, 1974, pp. 195–208.
[575] J. M. Zolezzi & H. Rudnick, "Transmission Cost Allocation by Cooperative Games and Coalition Formation." IEEE Trans. Power Syst., 17, 2002, pp. 1008–1015.
[576] D. Chattopadhyay, "An Energy Brokerage System with Emission Trading and Allocation of Cost Savings." IEEE Trans. Power Syst., 10, 1995, pp. 1939–1945.
[577] G. N. Beltadze, "Foundations of Lexicographic Cooperative Game Theory." IJMECS 5, 2013, pp.18–25.
[578] S. Dey, "Securing Majority-Attack in Blockchain Using Machine Learning and Algorithmic Game Theory: A Proof of Work." In Proceedings of the 2018 10th Computer Science and Electronic Engineering Conference (CEEC) 2018, Colchester, UK, 19–21 September 2018; pp. 7–10.
[579] E. Ogidiaka, F.N. Ogwueleka, & M.E. Irhebhude, "Game-Theoretic Resource Allocation Algorithms for Device-to-Device Communications in Fifth Generation Cellular Networks: A Review." Int. J. Inf. Eng. Electron. Bus., 3, 2021, pp. 44–51.
[580] A. Pitchai, A. V. Reddy, & N. Savarimuthu, "Quantum Walk Algorithm to Compute Subgame Perfect Equilibrium in Finite Two-player Sequential Games." Int. J. Math. Sci. Comput., 2, 2016, pp. 32–40.
[581] H. Dalkani, M. Mojarad, & H. Arfaeinia, "Modelling Electricity Consumption Forecasting Using the Markov Process and Hybrid Features Selection." Int. J. Intell. Syst. Appl., 13, 2021, pp. 14–23.
[582] J. Contreras, M. Klusch, & J.B. Krawczyk, "Numerical Solutions to Nash-Cournot Equilibria in Coupled Constraint Electricity Markets." IEEE Trans. Power Syst., 19, 2004, pp. 195–206.
[583] D. Pozo & J. Contreras, "Finding Multiple Nash Equilibria in Pool-Based Markets: A Stochastic EPEC Approach." IEEE Trans. Power Syst., 26, 2011, pp. 1744–1752.
[584] D. Menniti, A. Pinnarelli, & N. Sorrentino, "Simulation of Producers Behaviour in the Electricity Market by Evolutionary Games." Electr. Power Syst. Res., Vol. 78, Issue 3, 2008, pp. 475-483, ISSN 0378-7796, https://doi.org/10.1016/j.epsr.2007.04.005.
[585] C. Carraretto & A. Zigante, "Interaction Among Competitive Producers in the Electricity Market: An Iterative Market Model for the Strategic Management of Thermal Power Plants." Energy, 31, 2006, 3145e58.
[586] C. H. Peng, K. Qian, & J. L. Yan, "A Bidding Strategy Based on Differential Evolution Game for Generation Side in Power Grid Integrated with Renewable Energy Resources." Power Syst. Technol., vol. 43, no. 6, 2019, pp. 2002–2010. doi:10.13335/j.1000-3673.pst.2018.2084.
[587] E. D. Zhao, H. Wang, & H. Y. Lin, "Research on Ladder Bidding Strategy of Thermal Power Enterprises According to Evolutionary Game In Spot Market." Electr. Power Constr., vol. 41, no. 8, 2020, pp. 68–77. doi:10.12204/j.issn.1000-7229.2020.08.009.
[588] L. F. Cheng & T. Yu, "Typical Scenario Analysis of Equilibrium Stability of Multi-Group Asymmetric Evolutionary Games in the Open and Ever-Growing Electricity Market." Proc. CSEE, vol. 38, no. 19, 2018, pp. 5687–5703. doi:10.13334/j.0258-8013.pcsee.172219.
[589] Y. T. Sun, Y. Q. Song, & L. Z. Yao, "Study on Power Consumers’ Choices of Electricity Retailers in Electricity Selling Market." Power Syst. Technol., vol. 42, no. 4, 2018, pp. 1124–1131. doi:10.13335/j.1000-3673.pst.2017.2338.
[590] Y. Zhao & J. Liu, "The Evolutionary Game of Electric Power Market Including Renewable Resource Generation." 2015 5th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Changsha, China, 2015, pp. 17-22, doi: 10.1109/DRPT.2015.7432213.
[591] M. Pan, S. Liu, L. Wang, Q. An, & L. Wu, "Evolutionary Game Analysis of Demand Response of Power Users′ Participation." IOP Conference Series: Materials Science and Engineering, 394, 2018. https://doi.org/10.1088/1757-899X/394/4/042078.
[592] Y. Yang & L. A. Pan, "Evolutionary Game Model of Market Participants and Government in Carbon Trading Markets with Virtual Power Plant Strategies." Energies, 17, 2024, 4464. https://doi.org/10.3390/en17174464.
[593] A. Vijay, W. Afzal, M. Tariq, A. Mustafa, & A. Shahzad, "Review of Power Generation Optimization Algorithms: Challenges and Its Applications." In Proceedings of the 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), Trichy, India, 23–25 August 2022, pp. 1391–1397.
[594] A. Molderink, V. Bakker, M.G.C Bosman, J.L. Hurink, & G.J.M. Smit "Management and Control of Domestic Smart Grid Technology." IEEE Trans. Smart Grid, 1, 2010, pp. 109–119.
[595] M. Petersen, J. Bendtsen, & J. Stoustrup, "Optimal Dispatch Strategy for the Agile Virtual Power Plant." In: 2012 American Control Conference, Montr’eal, Canada, 2012, p. 288–294.
[596] S. V. Papaefthymiou & S. A. Papathanassiou, "Optimum Sizing of Wind-Pumped- Storage Hybrid Power Stations in Island Systems." Renew. Energy, 64, 2014, pp. 187–196.
[597] M. Taherkhani & R. Safabakhsh, "A Novel Stability-Based Adaptive Inertia Weight for Particle Swarm Optimization." Appl. Soft Comput., 38, 2016, pp. 281–295.
[598] S. Khanmohammadi, O. Kizilkan, & F. Musharavati, Chapter 17 - Multiobjective optimization of a geothermal power plant, Thermodynamic Analysis and Optimization of Geothermal Power Plants, Elsevier, 2021, pp. 279-291, ISBN 9780128210376, https://doi.org/10.1016/B978-0-12-821037-6.00011-1.
[599] M. Aien, M. Rashidinejad, & M. Fotuhi-Firuzabad, “On Possibilistic and probabilistic Uncertainty Assessment of Power Flow Problem: A Review and a New Approach.” Renew. Sustain. Energy Rev., 37, 2014, pp. 883–895.
[600] Z. Y. Xu, H. N. Qu, W. H. Shao, & W. S. Xu, "Virtual Power Plant-Based Pricing Control For Wind /Thermal Cooperated Generation in China." IEEE Trans. Syst. Man., Cybern Syst., vol. 46, no. 5, 2016, pp. 706–712.
[601] A. Bagchi, L. Goel, & P. Wang, "An Optimal Virtual Power Plant Planning Strategy from a Composite System Cost/Worth Perspective." In: 2019 IEEE Milan Power Tech, PowerTech 2019. Milan, Italy, 2019, pp. 1–6.
[602] G. Xydis & C. Koroneos, "A Linear Programming Approach for the Optimal Planning of a Future Energy System. Potential Contribution of Energy Recovery from Municipal Solid Wastes." Renew. Sustain. Energy Rev., 16, 2012, pp. 369–378.
[603] J. Y. Lee & S. G. Choi, "Linear Programming Based Hourly Peak Load Shaving Method at Home Area." 16th Int. Conf. Adv. Commun. Technol., IEEE 2014, pp. 310–313.
[604] J. Leithon, S. Sun, & T.J. Lim, "Energy Management Strategies for Base Stations Powered by the Smart Grid." IEEE Glob. Commun. Conf., IEEE 2013, 2013, pp. 2635–2640.
[605] C. Cao, J. Xie, D. Yue, C. Huang, J. Wang, S. Xu, & X. Chen, “Distributed Economic Dispatch of Virtual Power Plant Under a Non-Ideal Communication Network.” Energies, vol. 10, no. 2, Feb. 2017, pp. 235.
[606] O. Arslan & OE. Karasan, "Cost and Emission Impacts of Virtual Power Plant Formation in Plug-In Hybrid Electric Vehicle Penetrated Networks." Energy, 60, 2013, pp. 116–24.
[607] J. Soares, MA. Fotouhi Ghazvini, N. Borges, & Z. Vale, "A Stochastic Model for Energy Resources Management Considering Demand Response in Smart Grids." Elec. Power Syst. Res., 143, 2017, pp. 599–610.
[608] R. Bourbon, SU. Ngueveu, X. Roboam, B. Sareni, C. Turpin, & D. Hernandez-Torres, "Energy Management Optimization of a Smart Wind Power Plant Comparing Heuristic and Linear Programming Methods." Math. Comput. Simulat., 158, 2018, pp. 418–431.
[609] S. Pazouki & MR. Haghifam, "Optimal Planning and Scheduling of Energy Hub in Presence of Wind, Storage and Demand Response Under Uncertainty." Int. J. Electr. Power Energy Syst., 80, 2016, pp. 219–239.
[610] OP. Akkas & E. Cam, "Optimal Operation of Virtual Power Plant in a Day Ahead Market." 3rd int symp multidiscip stud innov technol ISMSIT 2019 - proc. Ankara, Turkey, 2019, pp. 1–4.
[611] M. Giuntoli & D. Poli, "Optimized Thermal and Electrical Scheduling of a Large-Scale Virtual Power Plant in the Presence of Energy Storages." IEEE Trans. Smart Grid, vol. 4, no. 2, 2013, pp. 942–955.
[612] D. Hropko, J. Ivanecky, & J. Turˇcek, "Optimal Dispatch of Renewable Energy Sources Included in Virtual Power Plant Using Accelerated Particle Swarm Optimization." In: Proc 9th int. conf. ELEKTRO 2012. Rajeck teplice; 2012. pp. 196–200.
[613] IG. Moghaddam, M. Nick, F. Fallahi, M. Sanei, & S. Mortazavi, "Risk-Averse Profit-Based Optimal Operation Strategy of a Combined Wind Farm-Cascade Hydro System in an Electricity Market." Renew. Energy, 55, 2013, pp. 252–259.
[614] R. Ko & SK. Joo, "Stochastic Mixed-Integer Programming (SMIP)-Based Distributed Energy Resource Allocation Method for Virtual Power Plants." Energies, vol. 13, no. 1, 2019, 67.
[615] S. U. Khan, K. K. Mehmood, Z. M. Haider, S. B. A. Bukhari, S. J. Lee, M. K. Rafique, & C. H. Kim, "Energy Management Scheme for an EV Smart Charger V2G/G2V Application with an EV Power Allocation Technique and Voltage Regulation." Appl. Sci., 8, 2018, 648.
[616] T. Hai, J. Zhou, A. Rezvani, B.N. Le, & H. Oikawa, "Optimal Energy Management Strategy for a Renewable Based Microgrid with Electric Vehicles and Demand Response Program." Electr. Power Syst. Res., 221, 2023, 109370.
[617] W. Hou, L. Guo, & Z. Ning, “Local Electricity Storage for Blockchain Based Energy Trading in Industrial Internet of Things.” IEEE Trans. Ind. Inform., vol. 15, no. 6, Jun. 2019, pp. 3610–3619.
[618] M. S. H. Nizami, M. J. Hossain, K. Mahmud, & J. Ravishankar, “Energy Cost Optimization and DER Scheduling for Unified Energy Management System of Residential Neighborhood.” IEEE Int. Conf. Environ. Electr. Eng. 2018 IEEE Ind. Commer. Power Syst. Eur. (EEEIC/I&CPS Eur., 2018, 2018, pp. 1–6.
[619] M. S. H. Nizami, M. J. Hossain, B. M. R. Amin, M. Kashif, E. Fernandez, & K. Mahmud, “Transactive Energy Trading of Residential Prosumers Using Battery Energy Storage Systems.” IEEE Milan PowerTech, IEEE 2019, 2019, pp. 1–6.
[620] H.-C. Jo, G. Byeon, J.-Y. Kim, & S.-K. Kim, “Optimal Scheduling for a Zero Net Energy Community Microgrid with Customer-Owned Energy Storage Systems.” IEEE Trans. Power Syst., 36, 2021, pp. 2273–2280.
[621] S. W. Park & S. Y. Son, ‘‘Interaction-Based Virtual Power Plant Operation Methodology for Distribution System Operator’S Voltage Management.’’ Appl. Energy, vol. 271, Aug. 2020, Art. no. 115222.
[622] R. Morteza & B. Luis, “Stochastic Robust Mathematical Programming Model for Power System Optimization.” IEEE Trans. Power Syst., 31, 2016, pp. 821–822.
[623] S. Babaei, C. Zhao, & L. Fan, “A Data-Driven Model of Virtual Power Plants in Day-Ahead Unit Commitment.” IEEE Trans. Power Syst., vol. 34, no. 6, 2019, pp. 5125–5135.
[624] Z. Luo, S.H. Hong, & Y.M. Ding, “A Data Mining-Driven Incentive-Based Demand Response Scheme for a Virtual Power Plant.” Appl. Energy, 239, 2019, pp. 549–559.
[625] N. Pourghaderi, M. Fotuhi-Firuzabad, M. Moeini-Aghtaie, & M. Kabirifar, “Commercial Demand Response Programs in Bidding of a Technical Virtual Power Plant.” IEEE Trans. Ind. Inform., vol. 14, no. 11, 2018, pp. 5100–5111.
[626] Y. Gao, X. Zhou, J. Ren, X. Wang, & D. Li, “Double Layer Dynamic Game Bidding Mechanism Based on Multi-Agent Technology for Virtual Power Plant and Internal Distributed Energy Resource.” Energies, vol. 11, no. 11, 2018, 3072.
[627] B. Stott & E. Hobson, “Power System Security Control Calculations Using Linear Programming, Part I.” IEEE Trans. Power Appar. Syst., vol. 5, no. 7, 1978, pp. 1713–1720.
[628] F. Nazari, A. Zangeneh, & A. Shayegan-Rad, “A Bilevel Scheduling Approach for Modeling Energy Transaction of Virtual Power Plants in Distribution Networks.” Iranian J. Elect. Electron. Eng., vol. 13, no. 1, 2017, pp. 1–9.
[629] M. Peik-Herfeh, H. Seifi, & MK. Sheikh-El-Eslami, “Two-Stage Approach for Optimal Dispatch of Distributed Energy Resources in Distribution Networks Considering Virtual Power Plant Concept.” Int. Trans. Electr. Energy Syst., 24, 2014, pp. 43–63. http://dx.doi.org/10.1002/etep.1694.
[630] M. S. U. Zaman, S. B. A. Bukhari, K. M. Hazazi, Z. M. Haider, R. Haider, & C. H. Kim, “Frequency Response Analysis of a Single Area Power System with a Modified LFC Model Considering Demand Response and Virtual Inertia.” Energies, 11, 2018, 787.
[631] J. Hu, H. Morais, T. Sousa, S. You, & R. D’hulst, “Integration of Electric Vehicles into the Power Distribution Network with a Modified Capacity Allocation Mechanism.” Energies, vol. 10, no. 2, 2017, p. 200.
[632] N. Naval & J. M. Yusta, “Water-Energy Management for Demand Charges and Energy Cost Optimization of a Pumping Stations System Under a Renewable Virtual Power Plant Model.” Energies, vol. 13, no. 11, Jun. 2020, p. 2900.
[633] X. Han, M. Zhou, G. Li, & K. Lee, “Optimal Dispatching of Active Distribution Networks Based on Load Equilibrium.” Energies, vol. 10, no. 12, Dec. 2017, p. 2003.
[634] S. Fan, J. Liu, Q. Wu, M. Cui, H. Zhou, & G. He, “Optimal Coordination of Virtual Power Plant with Photovoltaics and Electric Vehicles: A Temporally Coupled Distributed Online Algorithm.” Appl. Energy, vol. 277, Nov. 2020, Art. no. 115583.
[635] A. Botterud, M. D. Ilic, & I. Wangensteen, “Optimal Investments in Power Generation Under Centralized and Decentralized Decision Making.” IEEE Trans. Power Syst., vol. 20, no. 1, Feb. 2005, pp. 254–263.
[636] R. R. Appino, H. Wang, J. A. Gonzalez Ordiano, T. Faulwasser, R. Mikut, V. Hagenmeyer, & P. Mancarella, “Energy-Based Stochastic MPC for Integrated Electricity-Hydrogen VPP in Real-Time Markets.” Electr. Power Syst. Res., vol. 195, Jun. 2021, Art. no. 106738.
[637] E. Handschin, F. Neise, H. Neumann, & R. Schultz, “Optimal Operation of Dispersed Generation Under Uncertainty Using Mathematical Programming.” Int. J. Electr. Power Energy Syst., vol. 28, no. 9, Nov. 2006, pp. 618–626.
[638] S. Arefi Ardakani & A. Badri, “Cooperative Decision Making of Ders in a Joint Energy and Regulation Market in Presence of Electric Vehicles.” Iranian J. Elect. Electron. Eng., vol. 13, no. 4, 2017, pp. 374–384.
[639] X. Cao, J. Wang, & B. Zeng, “A Chance Constrained Information-Gap Decision Model for Multi-Period Microgrid Planning.” IEEE Trans. Power Syst., vol. 33, no. 3, May 2018, pp. 2684–2695.
[640] M. Shafie-khah & J. P. Catalao, "A Stochastic Multi-Layer Agent-Based Model to Study Electricity Market Participants Behavior." IEEE Trans. Power Syst., vol. 30, no. 2, 2015, pp. 867-881.
[641] F. Fang, Z. Zhu, S. Jin, & S. Hu, “Two-Layer Game Theoretic Microgrid Capacity Optimization Considering Uncertainty of Renewable Energy.” IEEE Syst. J., vol. 15, no. 3, Sep. 2021, pp. 4260–4271.
[642] J. Xie, B. Guan, Y. Yao, R. Li, & Q. Shi, "Market Power Risk Prevention Mechanism of China’s Electricity Spot Market Based on Stochastic Evolutionary Game Dynamics." Front. Energy Res., 11, 2023, 1270681. doi: 10.3389/fenrg.2023.1270681.
[643] Y. Wang, N. Zhang, Z. Zhuo, C. Kang, & D. Kirschen, “Mixed-Integer Linear Programming-Based Optimal Configuration Planning for Energy Hub: Starting From Scratch.” Appl. Energy, vol. 210, 2018, pp. 1141–1150.
[644] F. Yang, X. Yuan, H. Bai, S. Yin, & H. Liu, “Collaborative Planning of Integrated Natural Gas and Power Supply System Considering P2G Technique.” in Proc. China Int. Conf. Electricity Distrib., 2018, pp. 2216–2220.
[645] W. Huang, N. Zhang, J. Yang, Y. Wang, & C. Kang, “Optimal Configuration Planning of Multi-Energy Systems Considering Distributed Renewable Energy.” IEEE Trans. Smart Grid, vol. 10, no. 2, Mar. 2019, pp. 1452–1464.
[646] M. Roustaei, et al., “A Scenario-Based Approach for the Design of Smart Energy and Water Hub.” Energy, vol. 195, 2020, Art. no. 116931.
[647] A. Ghanbari, H. Karimi, & S. Jadid, “Optimal Planning and Operation of Multi-Carrier Networked Microgrids Considering Multi-Energy Hubs in Distribution Network.” Energy, vol. 204, 2020, Art. no. 117936.
[648] S. Amiri & M. Honarvar, “Providing an Integrated Model for Planning and Scheduling Energy Hubs and Preventive Maintenance.” Energy, vol. 163, 2018, pp. 1093–1114.
[649] S. A. Mansouri, A. Ahmarinejad, M. Ansarian, M. S. Javadi, & J. P. S. Catalao, “Stochastic Planning and Operation of Energy Hubs Considering Demand Response Programs Using Benders Decomposition Approach.” Int. J. Elect. Power Energy Syst., vol. 120, 2020, Art. no. 106030.
[650] O. Rahbari, et al., “An Optimal Versatile Control Approach for Plug-In Electric Vehicles to Integrate Renewable Energy Sources and Smart Grids.” Energy, vol. 134, 2017, pp. 1053-1067.
[651] H. Zhou, S. Fan, Q. Wu, L. Dong, Z. Li, & G. He, "Stimulus-Response Control Strategy Based on Autonomous Decentralized System Theory for Exploitation of Flexibility by Virtual Power Plant." Appl. Energy, 285, 2021, 116424.
[652] W. Song, J. Wang, H. Zhao, X. Song, & L. I. Wei, "Research on Multi-Stage Bidding Strategy of Virtual Power Plant Considering Demand Response Market." Power Syst. Prot. Control, 2017.
[653] S. S. Mahdavi & M. H. Javidi, "VPP Decision Making in Power Markets Using Benders Decomposition." Int. Trans. Electr. Energy Syst., vol. 24, no. 7, Jul. 2014, pp. 960–975.
[654] M. Braun, "Virtual Power Plant Functionalities: Demonstrations in a Large Laboratory for Distributed Energy Resources." In Proceedings of the CIRED 2009-20th International Conference and Exhibition on Electricity Distribution-Part 1, Prague, Czech Republic, 8–11 June 2009.
[655] B.-C. Lai, W.-Y. Chiu, & Y.-P. Tsai, “Multiagent Reinforcement Learning for Community Energy Management to Mitigate Peak Rebounds Under Renewable Energy Uncertainty.” IEEE Trans. Emerg. Topics Comput. Intell., vol. 6, no. 3, Jun. 2022, pp. 568–579.
[656] 楊豐碩、陳詩豪、吳瑞明、林泓翰等:《整合分散式能源之虛擬電廠推動策略與模式示範研究完成報告》,台北:台灣電力股份有限公司,2022 年 7 月。
[657] 台灣電力公司電力調度處:《電力交易平台參考資料-電力交易市場概述》,台北:台灣電力公司,2024年09月23日。
[658] 台灣電力公司:〈負載管理專區〉,2024年10月13日,取自https://www.taipower.com.tw/2289/2406/2420/2427/12035/normalPost。
[659] 王耀庭:〈虛擬電廠資源之多元應用與前瞻發展〉,虛擬電廠發展趨勢及應用研討會,行政院能源及減碳辦公室,台北市,2024年10月28日。
[660] 經濟部:〈電力交易平台設置規則〉,2024年10月13日,取自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0130096。
[661] 台灣電力公司電力調度處:《電力交易平台參考資料-電力系統運轉與調度》,台北:台灣電力公司,2024年09月23日。
[662] 台灣電力公司電力調度處:《電力交易平台參考資料-日前輔助服務市場之交易商品規格》,台北:台灣電力公司,2024年09月23日。
[663] 台灣電力公司電力調度處:《電力交易平台參考資料-日前輔助服務市場之運作》,台北:台灣電力公司,2024年09月23日。
[664] 經濟部:〈電業法〉,2024年10月13日,取自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=J0030011。
[665] A. F. Siegel & M. R. Wagner. Practical Business Statistics (Eighth Edition). Massachusetts: Academic Press, 2022. ISBN 9780128200254, https://doi.org/10.1016/B978-0-12-820025-4.00012-9.
[666] R. J. Hyndman & G. Athanasopoulos, Forecasting: principles and practice, 2nd edition, Melbourne, Australia: OTexts. 2018.
[667] 林法正、左峻德、陳彥豪、盧思穎等:《2016台灣智慧電網技術產業介紹》,台北:台灣智慧型電網產業協會,2016年9月。
[668] 劉祐任等:《含綠能三相在線潮流分析之研究》,桃園:行政院原子能委員會核能研究所,2010年12月8日。
[669] 科技部:《第二期能源國家型科技計畫:總期程期末成果彙編》,台北:科技部,2018年。
[670] 姚毅前、盧思穎、陳彥豪:〈國內外永續產業園區推動做法與案例介紹〉,《台灣經濟研究月刊》,第46卷第12期,2023年12月,27~33頁。
[671] 盧思穎等:《112年度科學園區節能永續發展規劃委託專業服務案成果報告書》,台北:國家科學及技術委員會,2024年5月。
[672] 盧思穎、陳彥豪、陳思涵、楊恩弼:〈打造與電網和諧的綠色智慧工業園區推動做法與實踐〉,《台灣經濟研究月刊》,第44卷第3期,2021年3月,42~50頁。
[673] 陳彥豪、盧思穎、楊宏澤:〈智慧城市整合智慧電網推動模式研究〉,《台灣經濟研究月刊》,第39卷第4期,2016年4月,108-119頁。
[674] 陳彥豪、盧思穎、張哲輔、楊宏澤:〈以地方政府作為用戶群代表擴大都會區可抑低需量做法〉,《台灣經濟研究月刊》,第40卷第5期,2017年05月,51-59頁。
[675] Taipei City Government, Taiwan Institute of Economic Research, Chung-Hsin Electric and Machinery Manufacturing Corp., and NEP-II of MOST (2019), “Aggregate Smart Public Housings to Develop the First Virtual Power Plant in Taiwan.” APEC-The 4th ESCI Best Practices Awards Program.
[676] 洪幼倫、盧思穎、李庭官:〈以智慧公共住宅建構虛擬電廠示範案例之成效分析〉,《台電工程月刊》,第875期,2021年7月,53-63頁。
[677] 臺北市政府都市發展局:《臺北市公共住宅智慧社區建置規範手冊》,台北:臺北市政府,2016年。
[678] 臺北市政府都市發展局:《臺北市公共住宅智慧社區建置規範手冊(2.0版)》,台北:臺北市政府,2017年7月。
[679] 臺北市政府都市發展局:《臺北市公共住宅智慧社區建置參考手冊(2018年)》,台北:臺北市政府,2018年9月。
[680] 盧思穎、陳思涵、陳彥豪、吳奕信:〈智慧低碳城市之推動策略與實踐〉,《台灣經濟研究月刊》,第42卷第4期,2019年4月,100-111頁。
[681] 盧思穎、陳彥豪、郭昱賢:〈建構城市級虛擬電廠層級式能源管理系統芻議〉,第十七屆台灣電力電子研討會暨第四十一屆中華民國電力工程研討會,國立台灣大學,台北市,2020年9月3-4日。
[682] 盧思穎、陳彥豪、郭昱賢:〈建構城市級虛擬電廠層級式能源管理系統芻議〉,《台電工程月刊》,第876期,2021年8月,75-84頁。
[683] 陳彥豪、盧思穎等:《「112年臺北市智慧電網示範及實證計畫」委託專業服務案期末服務報告書》,台北:臺北市政府產業發展局,2024年4月。
[684] 陳玉芬、施政樟、蔡志祥、洪幼倫、盧思穎、徐銘均:〈電動車參與電力市場之用電管理級商業模式應用趨勢研析〉,《台電工程月刊》,第897期,2023年5月,62-72頁。
[685] 洪幼倫、盧思穎、郭昱賢:〈國內電動載具商業模式研究〉,《電力電子雙月刊》,第20期第3卷,2022年05月,63-68頁。
[686] 陳彥豪、盧思穎、李淑華、陳士麟:〈智慧城市之低碳載具與能源系統發展趨勢〉,《電力電子雙月刊》,第11卷第1期,2013年1月,47-61頁。
[687] 台灣電力公司:〈電力交易平台日前輔助服務市場:歷史投標容量〉,2024年10月13日,取自https://etp.taipower.com.tw/web/service_market/historical_trading。
[688] 台灣電力公司:〈電力交易平台日前輔助服務市場:歷史結清價格與交易量〉,2024年10月13日,取自https://etp.taipower.com.tw/web/service_market/historical_settlement_trading。
[689] 交通部中央氣象署:〈氣候觀測資料查詢服務〉,2024年10月13日,取自https://codis.cwa.gov.tw/StationData。
[690] 台灣電力公司:〈電力交易平台合格交易者資訊:民間合格交易者〉,2024年10月13日,取自https://etp.taipower.com.tw/web/qse_info/qse_list。
[691] 台灣電力公司:〈電力交易平台合格交易者資訊:國營發電業〉,2024年10月13日,取自https://etp.taipower.com.tw/web/qse_info/tpc_list。
[692] 台灣電力公司:〈電力交易平台日前輔助服務市場:需求量(未來7日)〉,2024年10月13日,取自https://etp.taipower.com.tw/web/service_market/demand。
[693] 交通部中央氣象署:〈縣市預報〉,2024年10月13日,取自https://www.cwa.gov.tw/V8/C/W/County/County.html?CID=63。
[694] The Weather Channel:〈十日天氣〉,2024年10月13日,取自https://weather.com/zh-TW/weather/today/l/TWXX0021:1:TW。
[695] A. Nuseibah & C. Wolff. "Business Ecosystem Analysis Framework." 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Warsaw, Poland, 2015, pp. 501-505, doi: 10.1109/IDAACS.2015.7341356.
[696] 柏雲昌、賴偉文:〈總體缺電成本估計-CGE模型之應用〉,《臺灣經濟預測與政策》,第48卷第2期,2018年,79-109頁。
[697] 台灣電力公司:〈調整前後各類用電電價對照表(自 112 年 4 月 1 日起實施) 〉,2024年10月13日,取自https://branch.taipower.com.tw/files/file_pool/1/0N100539887405701583/%E8%AA%BF%E6%95%B4%E5%89%8D%E5%BE%8C%E5%90%84%E9%A1%9E%E7%94%A8%E9%9B%BB%E9%9B%BB%E5%83%B9%E5%B0%8D%E7%85%A7%E8%A1%A8.pdf.
[698] J. Han, M. Kamber, & J. Pei. Data Mining (Third Edition). 2012, ISBN 9780123814791, https://doi.org/10.1016/B978-0-12-381479-1.00013-7.
[699] ENTSO-E, Study on Power and Heat Sectors: Interactions and Synergies, Brussels: ENTSO-E AISBL, February 2023.
[700] A. Shayegan-Rad, A. Badri, & A. Zangeneh, "Day-Ahead Scheduling of Virtual Power Plant in Joint Energy and Regulation Reserve Markets under Uncertainties," Energy, 2017, 121, pp. 114–125.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明