博碩士論文 104581010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.14.144.145
姓名 沈雨萱(Yu-Hsuan Shen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 多項式模糊系統之最佳化控制器設計: 基於描述形式表示之方法
(Optimum Control Design for Polynomial Fuzzy Systems: Descriptor Form Representation Based Methodology)
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 這篇論文提出了一系列基於描述形式的多項式模糊模型 (PFM) 最佳控制設計方法,旨在解決傳統模糊控制中保守性和設計靈活性不足的問題。這些方法的核心是將閉迴路系統結合模糊控制器,以平行分佈補償 (PDC) 的描述形式表示,從而使設計過程更加系統化和有效。第一種方法運用描述表示及共用的李雅普諾夫函數與多項式模糊鬆弛矩陣,達成降低保守性的效果。然而,由於多項式模糊鬆弛矩陣的應用,控制設計中出現雙模糊求和的挑戰。為此,論文中採用了共正定鬆弛方法來應對此問題,從而有效解決了設計過程中的複雜性。第二種方法聚焦於利用多重李雅普諾夫函數來實現更寬鬆的穩定性條件,這在系統動態複雜且非線性的情況下尤其重要,此方法將輸入約束納入考量,使控制設計更具實際適用性。論文還深入分析了在控制設計過程中考慮隸屬函數時間導數的必要性,以提高系統響應的準確性和穩定性。針對動力滑翔翼 (PPG) 的實際應用,第三種方法特別關注橫向控制設計,將輸入約束整合進設計中,以應對PPG飛行中的實際情況和限制。這一設計策略不僅提升了系統的可操作性,還確保了在不同飛行條件下的穩定性能。本論文的最終目標是透過這些控制設計方法,最小化給定目標函數的上限,以達成系統性能的優化。透過多個模擬實例,驗證了所提設計的可行性與有效性,這些實例充分證明了方法的理論合理性與實際應用的潛力。
摘要(英) This dissertation presents a series of optimum control design methodologies based on descriptor form for the polynomial fuzzy model (PFM). These methodologies begin by representing the closed-loop system of the PFM with a fuzzy controller, implemented using parallel distributed compensation (PDC) in descriptor form. The first methodology leverages the descriptor representation, employing a commonly used Lyapunov function and polynomial fuzzy slack matrices to achieve less conservative and more flexible results. The use of polynomial fuzzy slack matrices introduces the challenge of a double fuzzy summation issue in the control design. A copositive relaxation approach is adopted to address this complexity, effectively mitigating the issue. In the second methodology, a multiple Lyapunov function is utilized to obtain more relaxed conditions for stability analysis. This approach also incorporates input constraints into the optimum control design, addressing practical situations. By utilizing the multiple Lyapunov function, the time derivatives of membership functions are taken into account in the control design process. The third methodology focuses on lateral control for a powered paraglider (PPG) application, where input constraints are integrated to accommodate practical considerations specific to PPG. The overarching goal of these control design methodologies is to minimize the upper bound of a given objective function, thereby optimizing system performance. The validity of the proposed designs is demonstrated through a series of simulation examples, which confirm their theoretical soundness and showcase their potential for practical implementation.
關鍵字(中) ★ 多項式模糊模型
★ 最佳化控制設計
關鍵字(英)
論文目次 摘要 ...................................... I
Abstract .................................. II
誌謝 ...................................... III
Contents ...................................IV
List of Figures ..................................... VI
List of Tables ...................................... VII
List of Notations ....................................VIII
Chapter 1 Introduction................................. 1
1.1 Background and Motivation ......................... 1
1.2 Review of Previous Works ......................... 3
1.3 Organization and Main Tasks ....................... 7
Chapter 2 Theoretical Framework and Analytical Foundations ....................................................... 10
2.1 Introduction ...................................... 10
2.2 Descriptor-Based Representation of the Polynomial Fuzzy System ................................................ 11
2.3 Optimum Control and Input Constrain ............... 13
2.4 Commonly Used Lyapunov Function ................... 14
2.5 Multiple Lyapunov Function ........................ 15
2.6 Analysis for Time Derivatives of Membership Functions ....................................................... 16
2.7 Copositive Relaxation ............................. 17
2.8 Summary ........................................... 17
Chapter 3 Descriptor Representation-Based Optimum Control Design Methodology for Polynomial Fuzzy Systems ....... 19
3.1 Introduction ...................................... 19
3.2 Optimum Control Design ........................... 19
3.3 Overview of the Control Design Process ............ 25
3.4 Design Examples ................................... 27
3.4.1 Example 3-1 .................................... 28
3.4.2 Example 3-2 .................................... 29
3.5 Summary .................................... 31
Chapter 4 Descriptor-Form-Based Optimum Control Design Approach for the Polynomial Fuzzy Model with Input Constraints ........................................... 32
4.1 Introduction ...................................... 32
4.2 Optimum Control Design with Input Constraint ...... 33
4.3 Design Examples .................................. 44
4.3.1 Example 4-1 ..................................... 44
4.3.2 Example 4-2 ..................................... 48
4.3.3 Example 4-3 ..................................... 51
4.4 Summary .......................................... 54
Chapter 5 Fuzzy Descriptor-Form-Based Optimum Control Design for Lateral Control of a Powered Paraglider .......... 56
5.1 Introduction ...................................... 56
5.2 Lateral Kinematic Model ........................... 57
5.3 Optimum Control Design for Lateral Control of PPG.. 60
5.4 Simulated results ................................. 63
5.5 Summary .......................................... 65
Chapter 6 Conclusion and Future Works ................. 66
6.1 Conclusion ........................................ 66
6.2 Future Works ...................................... 67
References ............................................ 68
Publication List ...................................... 77
參考文獻 [1] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, pp. 338-353, 1965.
[2] T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," IEEE transactions on systems, man, and cybernetics, no. 1, pp. 116-132, 1985.
[3] H. O. Wang, K. Tanaka, and M. F. Griffin, "An approach to fuzzy control of nonlinear systems: Stability and design issues," IEEE transactions on fuzzy systems, vol. 4, no. 1, pp. 14-23, 1996.
[4] K. Tanaka, H. Ohtake, and H. O. Wang, "A descriptor system approach to fuzzy control system design via fuzzy Lyapunov functions," IEEE Transactions on Fuzzy systems, vol. 15, no. 3, pp. 333-341, 2007.
[5] A. Sala and C. Arino, "Polynomial fuzzy models for nonlinear control: A Taylor series approach," IEEE Transactions on Fuzzy Systems, vol. 17, no. 6, pp. 1284-1295, 2009.
[6] Y. J. Chen, M. Tanaka, K. Tanaka, H. Ohtake, and H. O. Wang, "Discrete polynomial fuzzy systems control," IET Control Theory & Applications, vol. 8, no. 4, pp. 288-296, 2014.
[7] M. Narimani and H.-K. Lam, "SOS-based stability analysis of polynomial fuzzy-model-based control systems via polynomial membership functions," IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 862-871, 2010.
[8] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, "A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems," IEEE Transactions on Fuzzy systems, vol. 17, no. 4, pp. 911-922, 2008.
[9] L. Li, Q. Zhang, and B. Zhu, "Fuzzy stochastic optimal guaranteed cost control of bio-economic singular Markovian jump systems," IEEE transactions on cybernetics, vol. 45, no. 11, pp. 2512-2521, 2015.
[10] S. H. Tsai, J. W. Wang, E. S. Song, and H. K. Lam, "Robust H∞ control for nonlinear hyperbolic PDE systems based on the polynomial fuzzy model," IEEE Transactions on Cybernetics, vol. 51, no. 7, pp. 3789-3801, 2019.
[11] W. Liu, Q. Ma, Y. Lu, and S. Xu, "Adaptive fixed-time event-triggered fuzzy control for time-delay nonlinear systems with disturbances and quantization," IEEE Transactions on Fuzzy Systems, vol. 31, no. 8, pp. 2848-2860, 2023.
[12] H. Wang, W. Bai, X. Zhao, and P. X. Liu, "Finite-time-prescribed performance-based adaptive fuzzy control for strict-feedback nonlinear systems with dynamic uncertainty and actuator faults," IEEE transactions on Cybernetics, vol. 52, no. 7, pp. 6959-6971, 2021.
[13] J. Sun, H. Zhang, Y. Wang, and S. Sun, "Fault-tolerant control for stochastic switched IT2 fuzzy uncertain time-delayed nonlinear systems," IEEE Transactions on Cybernetics, vol. 52, no. 2, pp. 1335-1346, 2020.
[14] S. Fu, J. Qiu, L. Chen, and M. Chadli, "Adaptive fuzzy observer-based fault estimation for a class of nonlinear stochastic hybrid systems," IEEE Transactions on Fuzzy Systems, vol. 30, no. 1, pp. 39-51, 2020.
[15] V. P. Vu and W. J. Wang, "Robust observer synthesis for the uncertain large?scale T–S fuzzy system," IET Control Theory & Applications, vol. 13, no. 1, pp. 134-145, 2019.
[16] Y. J. Chen, H. Ohtake, K. Tanaka, W. J. Wang, and H. O. Wang, "Relaxed stabilization criterion for T–S fuzzy systems by minimum-type piecewise-Lyapunov-function-based switching fuzzy controller," IEEE Transactions on Fuzzy Systems, vol. 20, no. 6, pp. 1166-1173, 2012.
[17] H. N. Wu and H. X. Li, "Finite-dimensional constrained fuzzy control for a class of nonlinear distributed process systems," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 5, pp. 1422-1430, 2007.
[18] X. Xie, C. Wei, Z. Gu, and K. Shi, "Relaxed resilient fuzzy stabilization of discrete-time Takagi–Sugeno systems via a higher order time-variant balanced matrix method," IEEE Transactions on Fuzzy Systems, vol. 30, no. 11, pp. 5044-5050, 2022.
[19] L. Li, M. Chadli, S. X. Ding, J. Qiu, and Y. Yang, "Diagnostic observer design for t–s fuzzy systems: Application to real-time-weighted fault-detection approach," IEEE Transactions on Fuzzy Systems, vol. 26, no. 2, pp. 805-816, 2017.
[20] H. Li, Y. Gao, P. Shi, and H.-K. Lam, "Observer-based fault detection for nonlinear systems with sensor fault and limited communication capacity," IEEE Transactions on Automatic Control, vol. 61, no. 9, pp. 2745-2751, 2015.
[21] K. Tanaka and H. O. Wang, Fuzzy control systems design and analysis: a linear matrix inequality approach. John Wiley & Sons, 2004.
[22] S. Aouaouda, M. Chadli, and H. R. Karimi, "Robust static output?feedback controller design against sensor failure for vehicle dynamics," IET Control Theory & Applications, vol. 8, no. 9, pp. 728-737, 2014.
[23] Z. Zhong, Y. Zhu, and T. Yang, "Robust decentralized static output-feedback control design for large-scale nonlinear systems using Takagi-Sugeno fuzzy models," IEEE Access, vol. 4, pp. 8250-8263, 2016.
[24] M. Wang, G. Feng, and J. Qiu, "Finite-frequency fuzzy output feedback controller design for Roesser-type two-dimensional nonlinear systems," IEEE Transactions on Fuzzy Systems, vol. 29, no. 4, pp. 861-873, 2020.
[25] A. Ferjani, M. Kharrat, M. Ghamgui, and M. Chaabane, "Robust Static Output Feedback Control with Input Constraints for fuzzy systems: Descriptor Approach," in 2022 IEEE 21st international Ccnference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), 2022, pp. 171-176: IEEE.
[26] M. Chadli, S. Aouaouda, H. R. Karimi, and P. Shi, "Robust fault tolerant tracking controller design for a VTOL aircraft," Journal of the Franklin Institute, vol. 350, no.9, pp. 2627-2645, 2013.
[27] K. Guelton, T. Bouarar, and N. Manamanni, "Robust dynamic output feedback fuzzy Lyapunov stabilization of Takagi–Sugeno systems—A descriptor redundancy approach," Fuzzy sets and systems, vol. 160, no. 19, pp. 2796-2811, 2009.
[28] F. N. Yu, Y. J. Chen, M. Tanaka, K. Tanaka, and S. H. Tsai, "Descriptor form design methodology for polynomial fuzzy-model-based control systems," International Journal of Fuzzy Systems, pp. 1-14, 2022.
[29] H. Zhou, H. K. Lam, B. Xiao, and Z. Zhong, "Dissipativity-based filtering of time-varying delay interval type-2 polynomial fuzzy systems under imperfect premise matching," IEEE Transactions on Fuzzy Systems, vol. 30, no. 4, pp. 908-917, 2021.
[30] L. Fu, H. K. Lam, F. Liu, B. Xiao, and Z. Zhong, "Static output-feedback tracking control for positive polynomial fuzzy systems," IEEE Transactions on Fuzzy Systems, vol. 30, no. 6, pp. 1722-1733, 2021.
[31] B. Xiao, H. K. Lam, H. Zhou, and J. Gao, "Analysis and design of interval type-2 polynomial-fuzzy-model-based networked tracking control systems," IEEE Transactions on Fuzzy Systems, vol. 29, no. 9, pp. 2750-2759, 2020.
[32] F. Sabbghian-Bidgoli and M. Farrokhi, "Polynomial fuzzy observer-based integrated fault estimation and fault-tolerant control with uncertainty and disturbance," IEEE Transactions on Fuzzy Systems, vol. 30, no. 3, pp. 741-754, 2020.
[33] A. Meng, H. K. Lam, F. Liu, C. Zhang, and P. Qi, "Output feedback and stability analysis of positive polynomial fuzzy systems," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 12, pp. 7707-7718, 2020.
[34] B. Xiao, H. K. Lam, Y. Yu, and Y. Li, "Sampled-data output-feedback tracking control for interval type-2 polynomial fuzzy systems," IEEE Transactions on Fuzzy Systems, vol. 28, no. 3, pp. 424-433, 2019.
[35] J. M. Saenz, M. Tanaka, and K. Tanaka, "Relaxed stabilization and disturbance attenuation control synthesis conditions for polynomial fuzzy systems," IEEE Transactions on Cybernetics, vol. 51, no. 4, pp. 2093-2106, 2019.
[36] M. Rakhshan, N. Vafamand, M. H. Khooban, and F. Blaabjerg, "Maximum power point tracking control of photovoltaic systems: A polynomial fuzzy model-based approach," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 1, pp. 292-299, 2017.
[37] A. Chibani, M. Chadli, and N. B. Braiek, "A sum of squares approach for polynomial fuzzy observer design for polynomial fuzzy systems with unknown inputs," International Journal of Control, Automation and Systems, vol. 14, pp. 323-330, 2016.
[38] Y. Zhao, Y. He, Z. Feng, P. Shi, and X. Du, "Relaxed sum-of-squares based stabilization conditions for polynomial fuzzy-model-based control systems," IEEE Transactions on Fuzzy Systems, vol. 27, no. 9, pp. 1767-1778, 2018.
[39] H. K. Lam and J. C. Lo, "Output regulation of polynomial-fuzzy-model-based control systems," IEEE Transactions on Fuzzy Systems, vol. 21, no. 2, pp. 262-274, 2012.
[40] M. Han, H. K. Lam, Y. Li, F. Liu, and C. Zhang, "Observer-based control of positive polynomial fuzzy systems with unknown time delay," Neurocomputing, vol. 349, pp. 77-90, 2019.
[41] M. H. Khooban, N. Vafamand, T. Dragi?evi?, and F. Blaabjerg, "Polynomial fuzzy model?based approach for underactuated surface vessels," IET Control Theory & Applications, vol. 12, no. 7, pp. 914-921, 2018.
[42] J. Ding, Y. Liu, J. Yu, and X. Yang, "Dissipativity-based integrated fault estimation and fault tolerant control for IT2 polynomial fuzzy systems with sensor and actuator faults," IEEE Transactions on Fuzzy Systems, vol. 31, no. 9, pp. 2956-2965, 2023.
[43] A. Chibani, M. Chadli, S. X. Ding, and N. B. Braiek, "Design of robust fuzzy fault detection filter for polynomial fuzzy systems with new finite frequency specifications," Automatica, vol. 93, pp. 42-54, 2018.
[44] A. Meng, H. K. Lam, F. Liu, and Y. Yang, "Membership-Function-Dependent Design of L1-Gain Output-Feedback Controller for Stabilization of Positive Polynomial Fuzzy Systems," IEEE Transactions on Fuzzy Systems, vol. 30, no. 6, pp. 2086-2100, 2021.
[45] T. S. Peng, H. B. Zeng, W. Wang, X. M. Zhang, and X.-G. Liu, "General and less conservative criteria on stability and stabilization of T–S fuzzy systems with time-varying delay," IEEE Transactions on Fuzzy Systems, vol. 31, no. 5, pp. 1531-1541, 2022.
[46] Y. Mu, H. Zhang, Z. Gao, and S. Sun, "Fault estimation for discrete-time T–S fuzzy systems with unmeasurable premise variables based on fuzzy Lyapunov functions," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 1297-1301, 2021.
[47] X. Fan and Z. Wang, "A fuzzy Lyapunov function method to stability analysis of fractional-order T–S fuzzy systems," IEEE Transactions on Fuzzy Systems, vol. 30, no. 7, pp. 2769-2776, 2021.
[48] A. U. Ashar, M. Tanaka, and K. Tanaka, "Stabilization and robust stabilization of polynomial fuzzy systems: A piecewise polynomial Lyapunov function approach," International Journal of Fuzzy Systems, vol. 20, pp. 1423-1438, 2018.
[49] Y. J. Chen, M. Tanaka, K. Tanaka, and H. O. Wang, "Stability analysis and region-of-attraction estimation using piecewise polynomial Lyapunov functions: Polynomial fuzzy model approach," IEEE Transactions on Fuzzy Systems, vol. 23, no. 4, pp. 1314-1322, 2014.
[50] T. M. Guerra, H. Kerkeni, J. Lauber, and L. Vermeiren, "An efficient Lyapunov function for discrete T–S models: observer design," IEEE Transactions on Fuzzy Systems, vol. 20, no. 1, pp. 187-192, 2011.
[51] Y. Zhu and W. X. Zheng, "Multiple Lyapunov functions analysis approach for discrete-time-switched piecewise-affine systems under dwell-time constraints," IEEE Transactions on Automatic Control, vol. 65, no. 5, pp. 2177-2184, 2019.
[52] B. Niu, Y. Liu, W. Zhou, H. Li, P. Duan, and J. Li, "Multiple Lyapunov functions for adaptive neural tracking control of switched nonlinear nonlower-triangular systems," IEEE Transactions on Cybernetics, vol. 50, no. 5, pp. 1877-1886, 2019.
[53] Y. Li, W. Xiang, H. Zhang, J. Xia, and Q. Zheng, "New stability conditions for switched linear systems: A reverse-timer-dependent multiple discontinuous Lyapunov function approach," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 10, pp. 6564-6575, 2020.
[54] L. Long, F. Wang, and Z. Chen, "Global Event-Triggered Funnel Control of Switched Nonlinear Systems via Switching Multiple Lyapunov Functions," IEEE Transactions on Cybernetics, 2024.
[55] R. Abolpour, P. Moradi, and M. H. Asemani, "Advanced stability conditions for TS fuzzy systems via minimum-type multiple switching Lyapunov function," IEEE Transactions on Fuzzy Systems, vol. 30, no. 10, pp. 4484-4493, 2022.
[56] D. J. Singh, N. K. Verma, A. K. Ghosh, and A. Malagaudanavar, "An approach towards the design of interval type-3 T–S fuzzy system," IEEE Transactions on Fuzzy Systems, vol. 30, no. 9, pp. 3880-3893, 2021.
[57] W. Li, Z. Xie, Y. Cao, P. K. Wong, and J. Zhao, "Sampled-data asynchronous fuzzy output feedback control for active suspension systems in restricted frequency domain," IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 5, pp. 1052-1066, 2020.
[58] R. Lu, H. Cheng, and J. Bai, "Fuzzy-model-based quantized guaranteed cost control of nonlinear networked systems," IEEE Transactions on Fuzzy Systems, vol. 23, no. 3, pp. 567-575, 2014.
[59] B. S. Chen, M. Y. Lee, T. H. Lin, and W. Zhang, "Robust state/fault estimation and fault-tolerant control in discrete-time T–S fuzzy systems: An embedded smoothing signal model approach," IEEE Transactions on Cybernetics, vol. 52, no. 7, pp. 6886-6900, 2021.
[60] L. Teng, Y. Wang, W. Cai, and H. Li, "Robust fuzzy model predictive control of discrete-time Takagi–Sugeno systems with nonlinear local models," IEEE Transactions on Fuzzy Systems, vol. 26, no. 5, pp. 2915-2925, 2018.
[61] X. Zhang, W. Huang, and Q. G. Wang, "Robust H∞ adaptive sliding mode fault tolerant control for TS fuzzy fractional order systems with mismatched disturbances," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 3, pp. 1297-1307, 2020.
[62] J. Liu, L. Wei, J. Cao, and S. Fei, "Hybrid-driven H∞ filter design for T–S fuzzy systems with quantization," Nonlinear Analysis: Hybrid Systems, vol. 31, pp. 135-152, 2019.
[63] S. H. Tsai and C. Y. Jen, " H∞ Stabilization for Polynomial Fuzzy Time-Delay System: A Sum-of-Squares Approach," IEEE Transactions on Fuzzy Systems, vol. 26, no. 6, pp. 3630-3644, 2018.
[64] L. Wang, Q. Wang, and G. Zhang, "Adaptive Intermittent Stabilization of Memristive Chaotic System via TS Fuzzy Model," IEEE Transactions on Circuits and Systems II: Express Briefs, 2023.
[65] X. Zhang, X. Xu, J. Li, Z. Zhang, Z. Zhang, and G. Brunauer, "Observer-based fuzzy adaptive fault-tolerant control for NSC system of USV with sideslip angle and steering machine fault," IEEE Transactions on Intelligent Vehicles, 2023.
[66] J. J. Yan, G. H. Yang, and X. J. Li, "Adaptive fault-tolerant compensation control for T–S fuzzy systems with mismatched parameter uncertainties," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 9, pp. 3412-3423, 2018.
[67] X. Sun and Q. Zhang, "Observer-based adaptive sliding mode control for T–S fuzzy singular systems," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 11, pp. 4438-4446, 2018.
[68] H. Li, J. Wang, H. Du, and H. R. Karimi, "Adaptive sliding mode control for Takagi–Sugeno fuzzy systems and its applications," IEEE Transactions on Fuzzy Systems, vol. 26, no. 2, pp. 531-542, 2017.
[69] M. Y. Qiao and X. H. Chang, "Quantified Guaranteed Cost Fault-Tolerant Control for Continuous-Time Fuzzy Singular Systems With Sensor and Actuator Faults," IEEE Transactions on Fuzzy Systems, 2023.
[70] T. Zeng, X. Ren, Y. Zhang, G. Li, and J. Na, "An integrated optimal design for guaranteed cost control of motor driving system with uncertainty," IEEE/ASME Transactions on Mechatronics, vol. 24, no. 6, pp. 2606-2615, 2019.
[71] H. Yan, H. Zhang, F. Yang, X. Zhan, and C. Peng, "Event-triggered asynchronous guaranteed cost control for Markov jump discrete-time neural networks with distributed delay and channel fading," IEEE transactions on neural networks and learning systems, vol. 29, no. 8, pp. 3588-3598, 2017.
[72] H. Zhang, Y. Liang, H. Su, and C. Liu, "Event-driven guaranteed cost control design for nonlinear systems with actuator faults via reinforcement learning algorithm," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 50, no. 11, pp. 4135-4150, 2019.
[73] H. Y. Zhu, H. N. Wu, and J. W. Wang, "Fuzzy control with guaranteed cost for nonlinear coupled parabolic PDE-ODE systems via PDE static output feedback and ODE state feedback," IEEE Transactions on Fuzzy Systems, vol. 26, no. 4, pp. 1844-1853, 2017.
[74] Y. Zhao, C. Zhang, and H. Gao, "A new approach to guaranteed cost control of TS fuzzy dynamic systems with interval parameter uncertainties," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 6, pp. 1516-1527, 2009.
[75] H. Zhang, D. Yang, and T. Chai, "Guaranteed cost networked control for T–S fuzzy systems with time delays," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 2, pp. 160-172, 2007.
[76] S. Kuppusamy and Y. H. Joo, "Memory-based integral sliding-mode control for T–S fuzzy systems with PMSM via disturbance observer," IEEE Transactions on Cybernetics, vol. 51, no. 5, pp. 2457-2465, 2019.
[77] T. V. Tran, K. H. Kim, and J. S. Lai, "H 2/ H∞ robust observed-state feedback control based on slack lmi-lqr for LCL-filtered inverters," IEEE Transactions on Industrial Electronics, vol. 70, no. 5, pp. 4785-4798, 2022.
[78] P. Selvaraj, O. M. Kwon, S. H. Lee, and R. Sakthivel, "Robust fault-tolerant control design for polynomial fuzzy systems," Fuzzy Sets and Systems, vol. 464, p. 108406, 2023.
[79] Y. Huang, Z. Liu, W. Huang, and S. Chen, "Robust H∞ control for nonlinear course system of unmanned surface vessel with polytopic uncertainty based on sum of squares," Transactions of the Institute of Measurement and Control, vol. 43, no. 2, pp. 390-399, 2021.
[80] C. Chen, J. Xu, G. Lin, Y. Sun, and D. Gao, "Fuzzy adaptive control particle swarm optimization based on TS fuzzy model of maglev vehicle suspension system," Journal of Mechanical Science and Technology, vol. 34, pp. 43-54, 2020.
[81] Y. C. Lin and H. L. T. Nguyen, "Adaptive neuro-fuzzy predictor-based control for cooperative adaptive cruise control system," IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 3, pp. 1054-1063, 2019.
[82] S. Sun, H. Zhang, Z. Qin, and R. Xi, "Delay-Dependent H∞ Guaranteed Cost Control for Uncertain Switched T–S Fuzzy Systems With Multiple Interval Time-Varying Delays," IEEE Transactions on Fuzzy Systems, vol. 29, no. 5, pp. 1065-1080, 2020.
[83] M. Xue, H. Yan, H. Zhang, Z. Li, S. Chen, and C. Chen, "Event-triggered guaranteed cost controller design for TS fuzzy Markovian jump systems with partly unknown transition probabilities," IEEE Transactions on Fuzzy Systems, vol. 29, no. 5, pp. 1052-1064, 2020.
[84] Z. G. Wu, S. Dong, P. Shi, H. Su, T. Huang, and R. Lu, "Fuzzy-model-based nonfragile guaranteed cost control of nonlinear Markov jump systems," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 8, pp. 2388-2397, 2017.
[85] K. Tanaka, H. Ohtake, and H. O. Wang, "Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 2, pp. 561-567, 2008.
[86] C. H. Sun, W. J. Wang, and Y. J. Chen, "A descriptor system approach to fuzzy guaranteed cost control system design," in 2009 IEEE International Conference on Fuzzy Systems, 2009, pp. 1288-1293: IEEE.
[87] N. S. Nise, Control systems engineering. John Wiley & Sons, 2020.
[88] S. Prajna, A. Papachristodoulou, and F. Wu, "Nonlinear control synthesis by sum of squares optimization: A Lyapunov-based approach," in 2004 5th Asian control conference (IEEE Cat. No. 04EX904), 2004, vol. 1, pp. 157-165: IEEE.
[89] Y. J. Chen, K. Tanaka, M. Tanaka, S. H. Tsai, and H. O. Wang, "A novel path-following-method-based polynomial fuzzy control design," IEEE Transactions on Cybernetics, vol. 51, no. 6, pp. 2993-3003, 2019.
[90] Y. H. Shen, Y. J. Chen, F. N. Yu, W. J. Wang, and K. Tanaka, "Descriptor Representation-Based Guaranteed Cost Control Design Methodology for Polynomial Fuzzy Systems," Processes, vol. 10, no. 9, p. 1799, 2022.
[91] F. N. Yu, Y. J. Chen, K. Tanaka, M. Tanaka, and S. H. Tsai, "A Descriptor System Approach for Polynomial Fuzzy-Model-Based Control Design," presented at the 2020 International Conference on System Science and Engineering (ICSSE), 2020.
[92] F. Mohammed, A. Idries, N. Mohamed, J. Al-Jaroodi, and I. Jawhar, "UAVs for smart cities: Opportunities and challenges," in 2014 international conference on unmanned aircraft systems (ICUAS), 2014, pp. 267-273: IEEE.
[93] G. Cai, J. Dias, and L. Seneviratne, "A survey of small-scale unmanned aerial vehicles: Recent advances and future development trends," Unmanned Systems, vol. 2, no. 02, pp. 175-199, 2014.
[94] H. M. Omar, "Optimal geno-fuzzy lateral control of powered parachute flying vehicles," Aerospace, vol. 8, no. 12, p. 400, 2021.
[95] P. Kumar, S. Sonkar, A. Ghosh, and D. Philip, "Dynamic waypoint navigation and control of light weight powered paraglider," in 2020 IEEE Aerospace Conference, 2020, pp. 1-8: IEEE.
[96] M. Tanaka, H. Kawai, K. Tanaka, and H. O. Wang, "Development of an autonomous flying robot and its verification via flight control experiment," in 2013 IEEE International Conference on Robotics and Automation, 2013, pp. 4439-4444: IEEE.
[97] K. Tanaka, M. Tanaka, Y. Takahashi, and H. O. Wang, "A waypoint following control design for a paraglider model with aerodynamic uncertainty," IEEE/ASME Transactions on Mechatronics, vol. 23, no. 2, pp. 518-523, 2017.
[98] M. Tanaka, K. Tanaka, and H. O. Wang, "Practical model construction and stable control of an unmanned aerial vehicle with a parafoil-type wing," IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 6, pp. 1291-1297, 2017.
[99] Y. Takahashi, K. Y. Wong, M. Tanaka, and K. Tanaka, "Serret-Frenet frame-based path tracking stabilization of a powered paraglider type UAV with input constraints," in 2021 International Conference on Fuzzy Theory and Its Applications (iFUZZY), 2021, pp. 1-6: IEEE.
[100] Y. Takahashi, M. Yamamoto, K. Y. Wong, Y. J. Chen, and K. Tanaka, "Guaranteed Cost-based Disturbance Observer and Controller Design for Path Tracking Control of a Powered Paraglider Under Unknown Rudder Trim and Wind Disturbances," IEEE Access, 2024.
指導教授 王文俊 審核日期 2025-1-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明