參考文獻 |
1. Garcia, M. D.; Nouwens, A.; Lonhienne, T. G.; Guddat, L. W., Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families. Proceedings of the National Academy of Sciences 2017, 114 (7), E1091-E1100.
2. Arfin, S. M.; Umbarger, H. E., Purification and Properties of the Acetohydroxy Acid Isomeroreductase of Salmonella typhimurium. Journal of Biological Chemistry 1969, 244 (5), 1118-1127.
3. Chunduru, S. K.; Mrachko, G. T.; Calvo, K. C., Mechanism of ketol acid reductoisomerase. Steady-state analysis and metal ion requirement. Biochemistry 1989, 28 (2), 486-493.
4. Thomazeau, K.; Dumas, R.; Halgand, F.; Forest, E.; Douce, R.; Biou, V., Structure of spinach acetohydroxyacid isomeroreductase complexed with its reaction product dihydroxymethylvalerate, manganese and (phospho)-ADP-ribose. Acta Crystallographica Section D 2000, 56 (4), 389-397.
5. Proust-De Martin, F.; Dumas, R.; Field, M. J., A Hybrid-Potential Free-Energy Study of the Isomerization Step of the Acetohydroxy Acid Isomeroreductase Reaction. Journal of the American Chemical Society 2000, 122 (32), 7688-7697.
6. Mrachko, G. T.; Chunduru, S. K.; Calvo, K. C., The pH dependence of the kinetic parameters of ketol acid reductoisomerase indicates a proton shuttle mechanism for alkyl migration. Archives of Biochemistry and Biophysics 1992, 294 (2), 446-453.
7. Sonya, T.; M., P. M.; Volker, S.; A., L. J.; W., G. L.; Gerhard, S., Metal Ions Play an Essential Catalytic Role in the Mechanism of Ketol–Acid Reductoisomerase. Chemistry – A European Journal 2016, 22 (22), 7427-7436.
8. M., P. K.; David, T.; Shan, Z.; Ajit, K.; Mario, G.; You, L.; A., S. M.; P., M. R.; Gerhard, S.; W., G. L., Crystal Structures of Staphylococcus aureus Ketol?Acid Reductoisomerase in Complex with Two Transition State Analogues that Have Biocidal Activity. Chemistry – A European Journal 2017, 23 (72), 18289-18295.
9. Bartesaghi, A.; Merk, A.; Banerjee, S.; Matthies, D.; Wu, X.; Milne, J. L. S.; Subramaniam, S., 2.2 A resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science 2015, 348 (6239), 1147-1151.
10. Merk, A.; Bartesaghi, A.; Banerjee, S.; Falconieri, V.; Rao, P.; Davis, M. I.; Pragani, R.; Boxer, M. B.; Earl, L. A.; Milne, J. L. S.; Subramaniam, S., Breaking Cryo-EM Resolution Barriers to Facilitate Drug Discovery. Cell 2016, 165 (7), 1698-1707.
11. Best, R. B.; Zhu, X.; Shim, J.; Lopes, P. E. M.; Mittal, J.; Feig, M.; MacKerell, A. D., Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. Journal of chemical theory and computation 2012, 8 (9), 3257-3273.
12. Phillips James, C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel Robert, D.; Kale, L.; Schulten, K., Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 2005, 26 (16), 1781-1802.
13. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. Journal of Molecular Graphics 1996, 14 (1), 33-38.
14. Bender, B. J.; Cisneros, A.; Duran, A. M.; Finn, J. A.; Fu, D.; Lokits, A. D.; Mueller, B. K.; Sangha, A. K.; Sauer, M. F.; Sevy, A. M.; Sliwoski, G.; Sheehan, J. H.; DiMaio, F.; Meiler, J.; Moretti, R., Protocols for Molecular Modeling with Rosetta3 and RosettaScripts. Biochemistry 2016, 55 (34), 4748-4763.
15. Lindert, S.; Alexander, N.; Wotzel, N.; Karaka?, M.; Stewart, P. L.; Meiler, J., EM-Fold: De novo atomic-detail protein structure determination from medium resolution density maps. Structure(London, England:1993) 2012, 20 (3), 464-478.
16. DiMaio, F.; Song, Y.; Li, X.; Brunner, M. J.; Xu, C.; Conticello, V.; Egelman, E.; Marlovits, T. C.; Cheng, Y.; Baker, D., Atomic-accuracy models from 4.5-A cryo-electron microscopy data with density-guided iterative local refinement. Nature Methods 2015, 12, 361.
17. DiMaio, F.; Tyka, M. D.; Baker, M. L.; Chiu, W.; Baker, D., Refinement of Protein Structures into Low-Resolution Density Maps using Rosetta. Journal of molecular biology 2009, 392 (1), 181-190.
18. Lindert, S.; McCammon, J. A., Improved cryoEM-Guided Iterative Molecular Dynamics–Rosetta Protein Structure Refinement Protocol for High Precision Protein Structure Prediction. Journal of Chemical Theory and Computation 2015, 11 (3), 1337-1346.
19. Trabuco, L. G.; Villa, E.; Schreiner, E.; Harrison, C. B.; Schulten, K., Molecular Dynamics Flexible Fitting: A practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods (San Diego, Calif.) 2009, 49 (2), 174-180.
20. C., A. H., Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of Chemical Physics 1995, 103 (11), 4613-4621.
21. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J. C., Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics 1977, 23 (3), 327-341.
22. Becke, A. D., Density?functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics 1993, 98 (7), 5648-5652.
23. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 1988, 37 (2), 785-789.
24. Petersson, G. A.; Al-Laham, M. A., A Complete Basis Set Model Chemistry. II. Open-Shell Systems and the Total Energies of the First-Row Atoms. J. Chem. Phys. 1991, 94, 6081.
25. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. B.01, Wallingford, CT, 2016.
26. J., T.; M., P., Continuous surface charge polarizable continuum models of solvation. I. General formalism. The Journal of Chemical Physics 2010, 132 (11), 114110.
27. Trabuco, L. G.; Villa, E.; Mitra, K.; Frank, J.; Schulten, K., Flexible Fitting of Atomic Structures into Electron Microscopy Maps Using Molecular Dynamics. Structure (London, England : 1993) 2008, 16 (5), 673-683.
28. Singharoy, A.; Teo, I.; McGreevy, R.; Stone, J. E.; Zhao, J.; Schulten, K., Molecular dynamics-based refinement and validation for sub-5 A cryo-electron microscopy maps. eLife 2016, 5, e16105.
29. Vanommeslaeghe, K.; D Mackerell, A., Automation of the CHARMM general force field (CGenFF) I: Bond perception and atom typing. 2012; Vol. 52.
30. Vanommeslaeghe, K.; Raman, P.; D Mackerell, A., Automation of the CHARMM General Force Field (CGenFF) II: Assignment of bonded parameters and partial atomic charges. 2012; Vol. 52.
31. Chan, K.-Y.; Gumbart, J.; McGreevy, R.; Watermeyer, Jean M.; Sewell, B. T.; Schulten, K., Symmetry-Restrained Flexible Fitting for Symmetric EM Maps. Structure 2011, 19 (9), 1211-1218.
32. Brinkmann-Chen, S.; Flock, T.; Cahn, J. K.; Snow, C. D.; Brustad, E. M.; McIntosh, J. A.; Meinhold, P.; Zhang, L.; Arnold, F. H., General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH. Proceedings of the National Academy of Sciences of the United States of America 2013, 110 (27), 10946-51.
33. Cahn, J. K.; Brinkmann-Chen, S.; Spatzal, T.; Wiig, J. A.; Buller, A. R.; Einsle, O.; Hu, Y.; Ribbe, M. W.; Arnold, F. H., Cofactor specificity motifs and the induced fit mechanism in class I ketol-acid reductoisomerases. The Biochemical journal 2015, 468 (3), 475-84. |