博碩士論文 105226013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.221.90.184
姓名 ??懋軒(Mao-Xuan Tu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以漸變折射率高分子聚合物光波導設計4通道 × 25-Gbps單模光連接收發模組
(Design of 4-Channel × 25-Gbps Single-Mode Optical Interconnect Module Based on Graded-Index Polymer Optical Waveguide)
相關論文
★ 以高分子聚合物步階式折射率波導設計適用於4通道 × 25 Gbps 單模光連接收發模組之光學系統★ 以光學軟性電路板整合印刷電路板之高頻電路架構設計適用於高畫質多媒體介面光學連接收發模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 摘要
本論文介紹以蚊子法(mosquito method)製成之漸變式折射率高分子聚合物光波導設計4通道 × 25-Gbps單模光學連接收發模組之光學系統。本系統整合了雷射驅動晶片、轉組放大晶片、分散式回饋雷射與光檢測器於陶瓷基板,並覆晶封裝於印刷電路板,且以主動式對位法連接光學主動元件與高分子聚合物波導,再以PMT connector連接高分子聚合物波導與單模光纖。
本高分子聚合物波導之設計,包含漸變折射率圓柱波導、對單模光纖耦合之波導橢球結構、主被動元件間距匹配彎曲波導結構、45度微反射面與圓拱形波導截面聚光結構等,藉此達到設計適用於遠距離傳輸之單模光學連接收發模組。
此設計之光學模擬結果為:發射端之4通道平均光學插入損耗 3.30 dB,接收端之光學插入損耗 1.50 dB,由發射端到接收端之4通道平均總光學插入損耗 4.80 dB。光學主動元件在錯位損耗增加 1 dB情況下,在光軸上平均錯位容忍度為4微米(遠離波導),非光軸上平均錯位容忍度為±4.2微米,單模光纖光軸上錯位容忍度大於+20微米(遠離波導),非光軸上錯位容忍度為±2.1微米。由上述可知主動式封裝之精準度滿足此設計之要求。
摘要(英) Abstract
The design of the optical system for 4-channel × 25-Gbps single-mode optical interconnect module based on mosquito-method-made graded-index polymer optical waveguide is proposed. The diver IC, transimpedance amplifier (TIA), DFB lasers, and photodetectors were integrated on the ceramic substrate, which was flip-chip mounted on the printed circuit board. The DFB lasers/photodetectors, and polymer waveguide were connected by active alignment process. Furthermore, PMT connector was using to connect the polymer waveguide with the single-mode fiber (SMF).
The graded-index circular single-mode waveguide (GI-CSMWG) design of single-mode optical interconnect module include the ellipsoid structure for WG-SMF coupling, the bending waveguide for separation-matching, and the 45° micro-reflector with cambered-surface focusing design of core. These designs of the single-mode optical interconnect module made longer transmission distance.
The optical simulation result of optical insertion loss for transmitting part is -3.30 dB, for receiving part is -1.50 dB, and for whole optical interconnect module is -4.80 dB. The average 1-dB optical-axis-parallel alignment tolerances of DFB laser and photodetector are ±4 micron, and optical-axis-perpendicular part are ±4.2 micron. The 1-dB optical-axis-parallel alignment tolerance of SMF is more than +20 micron (to be remove from WG), and optical-axis-perpendicular part is ±2.1 micron. As a result, the design can meet the variability of the active alignment process.
關鍵字(中) ★ 單模光學連接收發模組
★ 高分子聚合物波導
★ 蚊子法
★ 漸變式折射率波導
關鍵字(英)
論文目次 目錄
中文摘要 I
英文摘要 II
誌謝 III
目錄 IV
圖索引 VVII
表索引 XIX
第一章 緒論 1
1-1前言 1
1-2研究動機與研究目的 3
1-3蚊子法高分子漸變式折射率波導發展現況 5
1-4以GI-CSMW設計之4通道單模光學收發模組 11
第二章 模擬方法與基本假設 13
2-1時域有限差分法與分分段模擬研究方法介紹 13
2-1-1時域有限差分法(finite-difference time-domain, FDTD) 13
2-1-2分段模擬與模態分析研究方法介紹 13
2-2 DFB雷射與單模光纖光源設定介紹 18
2-3 GI-CSMWG之漸變折射率設計既波導彎區損耗探討 24
2-3-1 GI-CSMWG之漸變折射率設計 24
2-3-2 GI-CSMWG彎曲損耗探討 25
2-2 GI-CSMWG在不同芯半徑下之模態分析結果 28
第三章 光連接收發模組結構與光路設計 35
3-1光學系統組裝架構 35
3-2發射端模組光路設計之依據及結果 37
3-2-1 選定GI-CSMWG芯半徑 37
3-2-2 GI-CSMWG與光纖耦合端橢球設計 44
3-3接收端模組光路設計之依據及結果 48
3-4間距匹配彎曲波導設計之依據及結果 54
3-5光學連接收發模組結構 58
第四章 光連接收發模組之波動光學模擬結果 63
4-1發射端之光場分布及光學耦合效率模擬 63
4-2發射端光學元件錯位容忍度模擬 66
4-3接收端之光場分布及光學耦合效率模擬 69
4-4接收端光學元件錯位容忍度模擬 72
第五章 結論與未來展望 75
5-1結論 75
5-2未來展望 76
參考文獻 77
參考文獻 參考文獻
[1] D. Reinsel, J. Gantz, and J. Rydning,Data age2025: The Evolution of Data to Life-Critical, An IDC White Paper, Sponsored by SEAGATE, April 2017.
[2] T. Tekin, R. Pitwon, A. Hakansson, and N. Pleros, Optical Interconnects for Data Centers, Woodhead Publishing, 2017.
[3] L. Brusberg, H. Schroder, R. Pitwon, S. Whalley, C. Herbst, A. Miller, M. Neitz, J. Roder, and K.-D. Lang, “Optical Backplane for board-to-board Interconnection Based on a Glass Panel Gradient-Index Multimode Waveguide Technology,” in Proc. Electronic Components & Technology Conference, 2013, pp. 260-267.
[4] IntelR. (2017). Silicon Photonics 100G PSM4 Optical Transceiver Brief [Online].
[5] T. Suzuki, K. Adachi, A. Takei, Y. Wakayama, A. Nakanishi, K. Naoe, K. Nakahara, S. Tanaka, and K. Uomi. (2015). Capability of High Optical-Feedback Tolerance and Non-Hermetic-Packaging for Low-Cost Interconnections Using Lens-Integrated Surface-Emitting Laser. OFC 2015 c OSA 2015
[6] S. Ristic, M. Florjanczyk, and M. Lebby, (2014). Optoelectronic Integrated Circuits (OEICs) for 100G Ethernet and Coherent Networks Based on Multi-GuideVertical Integration Platform. OFC 2014 c OSA 2014
[7] T. Yagisawa, T. Mori, R. Gappa, K. Tanaka, O. Daikuhara, T. Komiyama, and S. Ide, “Structure of 25-Gb/s Optical Engine for QSFP Enabling High-Precision Passive Alignment of Optical Assembly,” in Proc. IEEE 66th Electronic Components & Technology Conference, 2016, pp. 1099-1104.
[8] 李軍,“以光學軟性電路板設計適用於4通道 × 25-Gbps光學連接收發模組光學系統”,(中央大學光電所碩士論文,台灣,2017)
[9] M. U. Khan, J. Justice, J. Petaja, T. Korhonen, A. Boersma, S. Wiegersma,3 M. Karppinen, and B. Corbett, “Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography,” 2015 OSA, Vol. 23, No. 11, June 2015.
[10] E. Zgraggen, I. M. Soganci, F. Horst, A. L. Porta, R. Dangel, B. J. Offrein, S. A. Snow, J. K. Young, B. W. Swatowski, C. M. Amb, O. Scholder, R. Broennimann, U. Sennhauser, and G.-L. Bona, “Laser Direct Writing of Single-Mode Polysiloxane Optical Waveguides and Devices,” Journal of Lightwave Technology, Vol. 32, No. 17, Sep 1, 2014.
[11] K. Soma and T. Ishigure, “Fabrication of a Graded-Index Circular-Core Polymer Parallel Optical Waveguide Using a Microdispenser for a High-Density Optical Printed Circuit Board,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, No. 2, Mar/Apr 2013.
[12] K. Yasuhara, F. Yu, and T. Ishigure, “Circular core single-mode polymer optical waveguide fabricated using the Mosquito method with low loss at 1310/1550 nm,” Optics Express, Vol. 25, No. 8, 17 Apr 2017
[13] X. Xu, L. Ma, and Z. He, (2017). Single-mode polymer waveguide with circular core operating at 1550 nm for high-density and highspeed optical interconnect applications. 2017 IEEE. pp. 177-180
[14] A. Takahashi, and T. Ishigure, (2014). Fabrication for Low-Loss Polymer Optical Waveguides with 90 o Bending Using the Mosquito Method. 2014 IEEE. pp. 162-165
[15] D. Suganuma, and T. Ishigure, “Fan-in/out polymer optical waveguide for a multicore fiber fabricated using the Mosquito method,” 2015 OSA, Vol. 23, No. 2, 26 Jan 2015
[16] T. Ishigure, K. Katori, H. Toda, and K. Yasuhara, “Axially Tapered Circular Core Polymer Optical Waveguides Enabling Highly Efficient Light Coupling,” in Proc. IEEE 67th Electronic Components & Technology Conference, 2017, pp. 1600-1605.
[17] J. Chen, N. Bamiedakis, P. Vasil’ev, R. V. Penty, and I. H. White. (2016). Low-Loss and High-Bandwidth Multimode Polymer Waveguide Components Using Refractive Index Engineering. 2016 c OSA 2016
指導教授 張正陽 伍茂仁 審核日期 2018-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明