博碩士論文 105226017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.143.241.205
姓名 胡瑜庭(Yu-Ting Hu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 平移式追日聚光型太陽能系統
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 太陽能電池的發展是解決能源枯竭重要的趨勢,其中以三五族太陽能電池擁有最高光電轉換效率,但由於成本昂貴不易普及,因此時常搭配聚光光學系統,藉由大面積收光集中至小面積的太陽能電池上,如此得以降低成本。而聚光型光學系統為了隨時保持高效率的發電量,必須配合高精度的追日系統,但由於聚光系統結構體積及重量因素,搭載在向陽式追日系統時常受限於環境及地形影響,不易使太陽能系統輸出穩定的供電量。
本論文針對追日系統採用平移式追日,在聚光系統中利用反射面設計折疊式光學系統,縮小聚光系統間厚度減少重量,且藉由不同曲率消除場曲。而光點聚焦的位置介於折疊系統之間,將追日系統封裝至模組內部,提供較穩定發電。接著設計反射稜鏡使光線耦合入波導全反射傳遞至太陽能電池,分析稜鏡傾角對光效率的影響,最後利用平移波導移動達到追日的目的,再進而分析不同太陽波段的光效率以及其均勻性。
摘要(英) The development of solar cells is an important trend to solve energy depletion. III-V solar cell is the highest conversion efficiency solar cell. However the cost is too expensive to popular. Concentrating optical system is combined with the III-V solar cell to achieve the large area of sunlight converged to a small area of the solar cell. It can reduce the cost of the solar system. In order to maintain the high optical efficiency steady, it is necessary to keep the concentrating optical system with a high precision tracking system. However, due to the volume and weight of the concentrating optical system are too large, the precision of the solar tracker is limited by the environment to lead to the output power of the solar system unstable.
In this study, a planar-moving tracker was proposed as the tracking system of a solar system. A folded optical system was designed by using a reflective surface in the concentrating system to reduce weight. And a reflection prism was designed between the folded optical system to couple the sun light into a waveguide and collect the sun light into the solar cell. The optical efficiency was analyzed in the different angle of the reflective prism. Finally, the planar-moving tracker was optimized to achieve the best optical efficiency and uniformity of the different solar wavelengths.
關鍵字(中) ★ 平移式追日系統
★ 聚光型太陽能系統
★ 折疊式光學
★ 光波導
關鍵字(英) ★ Planar-moving tracker
★ Concentrated photovoltaic(CPV)
★ Folded optical system
★ Waveguide
論文目次 摘要.............................................I
Abstract.............................................II
致謝.............................................III
目錄.............................................IV
圖目錄.............................................VI
表目錄.............................................X
第一章 緒論.............................................1
1.1前言.............................................1
1.2 聚光型太陽能系統.............................................4
1.2.1 光學聚光系統.............................................4
1.2.2 LCPV與HCPV.............................................5
1.2.3 追日系統.............................................6
1.3 文獻回顧.............................................7
1.4 研究動機.............................................9
1.5 論文架構.............................................9
第二章 基本理論.............................................10
2.1 反射定律與折射定律.............................................10
2.2 近軸光線追跡.............................................13
2.3 像差導論.............................................14
2.3.1 球面像差(Spherical Aberration).............................................15
2.3.2 彗星像差(Coma).............................................16
2.3.3 斜射像散(Astigmatism).............................................16
2.3.4 場曲(Curvature).............................................17
2.3.5 畸變(Distortion).............................................17
2.4 非球面方程式.............................................18
2.5 太陽能電池簡介.............................................19
第三章 光學系統設計.............................................21
3.1 光學軟體介紹.............................................21
3.1.1 Zemax.............................................22
3.1.2 LightTools.............................................22
3.2 設計理念.............................................23
3.2.1 折疊式光學系統.............................................24
3.2.2 二次光學元件-稜鏡耦合波導.............................................26
3.3 光學系統接收角範圍.............................................28
3.4 太陽能光譜波段與中心波長設計.............................................29
3.5 設計流程.............................................33
第四章 模擬與效率分析.............................................34
4.1 光學系統與收光角度聚光倍率.............................................34
4.2 不同設計角度與效率模擬分析.............................................35
4.2.1 透鏡+反射面.............................................38
4.1.2 折疊式密合透鏡.............................................42
4.1.3 兩片透鏡系統.............................................45
4.1.4 小結.............................................49
4.2 二次光學元件.............................................50
4.2.1 雙斜面耦合波導.............................................51
4.2.2 單斜面耦合波導.............................................54
4.2.3 小結.............................................60
4.3 各波段太陽能效率分析.............................................61
4.4 均勻性和容忍值分析.............................................64
第五章 結論.............................................69
參考資料.............................................70
參考文獻 [1] 陳陵援、高惠蓉, “能與能源”,科學發展,373期,頁76-81(2004)。
[2] Geoffrey Jones, Loubna Bouamane, “Power from Sunshine: A Business History of Solar Energy” Harvard Business School Working Paper, No. 12–105 (2012).
[3] Web data: Circuit globe site, “Photovoltaic or Solar Cell”, from https://circuitglobe.com/photovoltaic-or-solar-cell.html
[4] Shruti Sharma, Kamlesh Kumar Jain, Ashutosh Sharma, “Solar Cells: In Research and Applications—A Review”, Journal of Scientific Research, Vol.6, No.12, pp.1145-1155 (2015).
[5] Christopher L. Martin, D. Yogi Goswami, “Solar energy pocket reference”, United Kingdom, Published by Routledge, 1 edition (2005).
[6] Web data: Environment impact assessment-scoping phase, “Prorosed construction of a concentrating solar power (CSP) plant and related infrastructure: northern cape province”, from http://www.eskom.co.za/OurCompany/SustainableDevelopment/EnvironmentalImpactAssessments/Documents/Appendix_C_-_Issues_Trail__16.08.061.pdf (2006).
[7] H. Muller-Steinhagen, F. Trieb, “Concentrating Solar Power: a Review of the Technology”, Ingenia Magazine, Vol 18, pp. 43-50 (2014).
[8] E. Zarza, L.Valenzuela, J. Leon, K. Hennecke, M. Eck, H.Weyers, M. Eickhoff, ”Direct steam generation in parabolic troughs: Final results and conclusions of the DISS project”, Energy, Vol. 29, pp. 635-644 (2004).
[9] M. Thirugnanasambandam, S.Iniyan, R.Goic, “A review of solar thermal technologies”, Renewable and Sustainable Energy Reviews, Issue 1, Vol. 14, pp. 312-322 (2010).
[10] R. Moore, M. Vernon, C. K. Ho, N. P. Siegel and G. J. Kolb, “Design Considerations for Concentrating Solar Power Tower Systems Employing Molten Salt”, Sandia National Laboratories, pp.1-50 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.2971&rep=rep1&type=pdf (2010).
[11] Web data: J. S. Florez, “DEWA signs MoU with Cleanergy and Al-Futtaim Carillion”, NewEnergyUpdate, from http://beta.csptoday.com/markets/dewa-signs-mou-cleanergy-and-al-futtaim-carillion (2014).
[12] Bahman Zohuri, “Compact Heat Exchangers- Chapter8: Compact Heat Exchangers Application in New Generation of CSP”, Switzerland, Springer International Publishing, pp. 339-354 (2017).
[13] Web data: Ella Morton, “Spain’s Stunning Solar Power Towers”, Atlas Obscura, from http://www.slate.com/blogs/atlas_obscura/2014/11/07/ps10_and_ps20_spain_s_solar_power_towers_near_seville.html (2014).
[14] Web data: M. Wiesenfarth, Dr. Simon P. Philipps, Dr. Andreas W. Bett, “CURRENT STATUS OF CONCENTRATOR PHOTOVOLTAIC (CPV) TECHNOLOGY”, Fraunhofer Institute for Solar Energy Systems, from https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/cpv-report-ise-nrel.pdf (2017).
[15] S. Abdallah, and O.O. Badran, “Sun Tracking System for Productivity Enhancement of Solar Still”, Journal of Desalination, Vol 220, pp. 669–676 (2008) .
[16] S. P. Philipps, M. Baudrit, K. Hillerich, V. Moreau, R. Parmesani, E. Roman, G. Sala, B. Schineller, G. Timo, A. W. Bett, “CPVMatch - Concentrating photovoltaic modules using advanced technologies and cells for highest efficiencies”, 12th International Conference on Concentrator Photovoltaic Systems, Freiburg, Germany, 25-27 April (2016).
[17] S. Cucco, R. Faranda, F. Invernizzi, S. Leva, “Analysis of a Fresnel Lenses Concentrator”, 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22-26 July (2012).
[18] Web data: J.C. Minana, P. Benitez, “High concentration photovoltaics: potential and challenges”, LPI-LLC, USA, from https://www.slideshare.net/fnuno/concentracion-fotovoltaica-2009-03-12-cpv-webinar-1306320 (2009).
[19] JAEGER-WALDAU Arnulf, “A Strategic Research Agenda for Photovoltaic Solar Energy Technology”, Belgium, EUR 22758 EN, OPOCE, Edition 2 (2007).
[20] Web data : GreenSource綠源科技, “單軸追日系統、雙軸追日系統”, from http://www.green-source.com.tw/tw/satrackers、http://www.green-source.com.tw/tw/datracker
[21] Y. Nakata, N. Shibuya, T. Kobe, K. Okamoto, A. Suzuki, and T. Tsuji, “Performance of circular Fresnel lens photovoltaic concentrator”, Japanese Journal of Applied Physics, vol. 19, pp.75–78 (1980).
[22] G. R. Whitfield, R. W. Bentley, C. K., Weatherby et al., “The development and testing of small concentrating PV systems”, Solar Energy, vol. 67, no. 1–3, pp. 23–34 (1999).
[23] S. J. Gallagher, B. Norton, and P. C. Eames, “Quantum dot solar concentrators: electrical conversion efficiencies and comparative concentrating factors of fabricated devices”, Solar Energy, vol. 81, no. 6, pp. 813–821 (2007).
[24] O. I., Mi’ci’c, H. M. Cheong, H. Fu et al., “Size-dependent spectroscopy of InP quantum dots”, Journal of Physical Chemistry B, vol. 101, no. 25, pp. 4904–4912 (1997).
[25] C.A.Mgbemene, J. Duffy,H. Sun, and S. O. Onyegegbu, “Electricity generation from a compound parabolic concentrator coupled to a thermoelectric module”, Solar Energy Engineering, vol. 132, no. 3, pp.031015-031015-8 (2010).
[26] S. Senthilkumar, K. Perumal,P. S. S. Srinivasan, “Construction and performance analysis of a three dimensional compound parabolic concentrator for a spherical absorber”, Scientific and Industrial Research, vol. 66, no. 7, pp. 558–564 (2007).
[27] N. Yehezkel, J. Appelbaum, A. Yogev, and M. Oron, “Losses in a three-dimensional compound parabolic concentrator as a second stage of a solar concentrator”, Solar Energy, vol. 51, no. 1, pp. 45–51 (1993).
[28] 幾何光學,耿繼業、何建娃著,全欣資訊圖書出版,P.138、P.161,P. 267~P. 282,(1991)。 [29] Web data:Geunyoung Yoon, Ph.D. , “Aberration theory”, from http://cfao.ucolick.org/pubs/presentations/eyedesign/05_aberrations_GY.pdf
[30] Eugene Hecht, “Optics”, pp. 206-210, Chapter 6 More on Geometrical Optics, Fifth Edition, Published by Pearson Education (2017).
[31] A.Ibrahim, “Analysis of Electrical Characteristics of Photovoltaic Single Crystal Silicon Solar Cells at Outdoor Measurements”, Journal of Smart Grid and Renewable Energy, Vol 2, pp.169-175 (2011).
[32] Web data: 許阿娟、何承舫、張國輝、陳志隆, “光學系統設計實作篇 第一章 光學模擬軟體介紹”, from http://www.phys.ncku.edu.tw/optics/book_1/b1_c1.pdf (2011).
[33] Web data: Zemax_Taiwan, “入門手冊-教學6:非序列光線追跡”, from https://forum.zemax.com/11170/6-Professional-Premium-6162
[34] Web data: Zemax官方介紹, from http://zemax.tw/zmx/company/about
[35] Rudolf Kingslake, “A History of the Photographic Lens”, pp. 4-5 Section B The Petzval Sum, USA, Published by Academic Press, 1 edition (1989).
[36] A.E.Conrady, “Applied Optics & Optical Design”, pp.288 Section Curvature of the field, USA, Published by Dover Publications (1992).
[37] P. Benitez, Juan C. Minano, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, M. Hernandez, “High performance Fresnel-based photovoltaic concentrator”, Optics Express, Vol. 18, No.S1, pp.A25-A40 (2010).
[38] C. A. Gueymard, D. Myers, and K. Emery, “Proposed Reference Irradiance Spectra for Solar Energy Systems Testing”, Solar Energy, Vol.73(5), pp.443-467 (2002).
[39] L.A.A. Bunthof, J. Bos-Coenraad, W.H.M. Corbeek, E. Vlieg, J.J. Schermer, “The illumination angle dependency of CPV solar cell electrical performance” Solar Energy, Vol.144, pp.166-174 (2017).
[40] Shaoguang Dong, Kanghua Chen, Guojie Chen, Xin Chen, “Solar Cells with InGaN/GaN and InP/InGaAsP and InGaP/GaAs Multiple Quantum Wells”, Chapter12, London, Published by IntechOpen (2015).
[41] R. Lin, E. Lien, “Effect of Light Distribution on the HCPV Solar Cell Performance for Ultra High Solar Concentration Applications”, CPV-10 Proceedings, 10th International Conference on Concentrator Photovoltaic Systems, Albuquerque, New Maxico, 7-10 April, pp.52-59 (2014).
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2018-8-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明