博碩士論文 105226025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.144.48.228
姓名 李昆展(Kun-Chan Li)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 垂直式有機發光電晶體之面板設計與程式控制
(Study of the Panel Design and Program Control on Vertical Organic Light-emitting Transistors)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在顯示技術中,主動式矩陣有機發光二極體(Active matrix organic light-emitting diode, AMOLED)顯示器適合發展大尺寸的高解析度、低驅動電壓反應速度快的顯示器,因此成為現今技術主流。
本論文以製作垂直式有機發光電晶體(Vertical organic light-emitting transistors, VOLETs)陣列為目標,以傅立葉紅外線光譜儀(Fourier transform infrared spectroscopy ,FTIR)量測經不同表面預處理的表面鍵結,應用在膠體微影技術上以優化奈米球吸附在高介電常數的超薄介電層表面上,獲得大面積且高均勻性的單層奈米球膜遮罩,以此球膜遮罩得到高孔洞覆蓋率的開孔阻擋層/金屬源極,此開孔金屬源極為製作垂直式有機電晶體的重要需求。
最後設計及初步製作面板陣列,以 Arduino 對有機發光二極體顯示面板進行控制並成功演示指定圖案。
摘要(英) Nowadays, active matrix organic light-emitting diode (AMOLED) is a mainstream technology for displays, it is suitable for the development of large-size, high-resolution, reaction speed fast and low drive voltage displays.
To achieve the study objectives that fabricate the vertical organic light-emitting transistors (VOLETs) array, analyzing surface bonding with different surface pretreatment by Fourier transform infrared spectroscopy (FTIR) to improve colloidal lithography on ultra-thin high-k dielectric layer to prepare large area, highly uniform nanospheres monolayer as the evaporation mask, the patterned blocking/metal source with high perforations coverage was obtained. It’s an important requirement for fabricating vertical organic transistors.
Finally, designed and preliminary fabricated the organic light-emitting diode display panel, then control to image display by Arduino.
關鍵字(中) ★ 垂直式有機發光電晶體
★ 面板設計
★ 程式控制
★ 高介電常數介電層
★ 膠體微影
關鍵字(英) ★ Vertical Organic Light-emitting Transistors
★ Panel Design
★ Program Control
★ High-k Dielectric Layer
★ Colloidal Lithography
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.1.1 傳統有機薄膜電晶體 4
1.1.2 蕭特基基底垂直式電晶體 6
1.1.3 有機發光二極體 11
1.1.4 有機發光二極體顯示器 13
1.1.5 研究目的與動機 15
第二章 基本理論 17
2.1 膠體微影技術 17
2.1.1 無序排列自組裝之單層奈米球膜遮罩 18
2.1.2 界面活性劑之吸附運用 21
2.2 垂直式有機電晶體之工作機制 23
2.2.1 關狀態之工作機制 25
2.2.2 開狀態之工作機制 28
2.2.3 轉移特性曲線與開關電流比 32
2.3 有機發光二極體之工作機制 34
2.3.1 載子注入機制 36
2.3.2 載子傳輸機制 38
2.3.3 能量轉移機制 39
2.3.4 主客體放光機制 42
第三章 實驗方法與架構 44
3.1 實驗架構及材料介紹 44
3.1.1 介電層材料 45
3.1.2 主動層材料 46
3.1.3 界面活性劑之奈米球吸附 48
3.1.4 金屬電極材料與能階 49
3.2 實驗儀器 50
3.2.1 手套箱(Glove Box) 50
3.2.2 熱蒸鍍機(Thermal Evaporation Coater) 51
3.2.3 原子層沉積(Atomic Layer Deposition, ALD) 52
3.2.4 旋轉塗佈機(Spin Coater) 53
3.2.5 阻抗分析儀 (LF Impedance Analyzer) 53
3.2.5 紫外光臭氧清洗機(UV-Ozone) 54
3.2.6 半導體參數分析儀(Semiconductor Parameter Analyzer, SPA) 55
3.2.7 場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscopy, FE-SEM) 56
3.2.8 手動光罩接合對準器(Mask and Bond Aligner) 58
3.2.9 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectroscopy, FTIR) 59
3.2.10 Arduino 61
3.3 實驗方法與製備 63
3.3.1 垂直式有機電晶體元件製程 63
3.3.2 氧化銦錫導電玻璃圖案化 68
3.3.3 倒置結構有機發光二極體之陣列製程 71
第四章 實驗結果與討論 74
4.1 垂直式有機電晶體之開孔源極 74
4.1.1 介電層表面處理對於奈米球膜成長的影響 75
4.1.2 吸附奈米球與開孔源極 80
4.1.3 奈米級開孔源極結構之總結 86
4.2 垂直式有機電晶體之電性探討 87
4.2.1 高功函數金源極之垂直式有機電晶體 88
4.2.2 金源極上阻擋層之關電流密度抑制 89
4.2.3 垂直式有機電晶體之電性總結 91
4.3 面板設計與製作 92
4.3.1 氧化銦錫閘極之圖案化定義 92
4.3.2 金屬源極之光罩設計 95
4.3.3 光阻堤防層(Bank layer)之光罩設計 96
4.3.4 陣列製作測試 97
4.3.5 面板初步製作與設計之總結 100
4.4 矩陣面板之程式控制 101
4.4.1 程式碼編寫與測試 102
4.4.2 被動式矩陣面板之圖像顯示 107
4.4.3 矩陣面板之控制總結 108
第五章 結論與未來展望 109
參考文獻 112
參考文獻 [1]T. Sekitani, U. Zschieschang, H. Klauk, & T. Someya. (2010). Flexible organic transistors and circuits with extreme bending stability. Nature materials, 9, 1015-1022.
[2]C.-L. Fan, F.-P. Tseng, H.-L. Lai, B.-J. Sun, K.-C. Chao, Y.-C. Chen. (2013). A Novel LTPS-TFT Pixel Circuit to Compensate the Electronic Degradation for Active-Matrix Organic Light-Emitting Diode Displays. International Journal of Photoenergy, 30, 839301.
[3]K.-Y. Wu, Y.-T. Tao, C.-C. Ho, W.-L. Lee, & T.-P. Perng. (2011). High-performance space-charge-limited transistors with well-ordered nanoporous aluminum base electrode. Applied Physics Letters, 99, 093306.
[4]Y.-C. Chao, C.-H. Chung, H.-W. Zan, H.-F. Meng, & M.-C. Ku. (2011). High-performance vertical polymer nanorod transistors based on air-stable conjugated polymer. Applied Physics Letters, 99, 233308.
[5]Y.-C. Chao, M.-C. Ku, W.-W. Tsai, H.-W. Zan, H.-F. Meng. (2010). Polymer space-charge-limited transistor as a solid-state vacuum tube triode. Applied Physics Letters, 97, 223307.
[6]H.-C. Lin, H.-W. Zan, Y.-C. Chao, M.-Y. Chang, & H.-F. Meng. (2015). Review of a solution-processed vertical organic transistor as a solid-state vacuum tube. Semiconductor Science and Technology, 30, 054003.
[7]K. Fujimoto. (2005). Organic Static Induction Transistors with Nano-Hole Arrays Fabricated by Colloidal Lithography. e-Journal of Surface Science and Nanotechnology, 3, 327-331.
[8]K. Fujimoto, T. Hiroi, K. Kudo, & M. Nakamura. (2007). High-Performance, Vertical-Type Organic Transistors with Built-In Nanotriode Arrays. Advanced Materials, 19, 525-530.
[9]L. Ma, Y. Yang. (2004). Unique architecture and concept for high-performance organic transistors. Applied Physics Letters, 85, 5084.
[10]J.-F. Chang, Y.-C. Lai, R.-H. Yang, Y.-W. Yang, & C.-H. Wang. (2017). Improvement of vertical organic field-effect transistors by surface modification of metallic source electrodes. Applied Physics Express, 10, 11601.
[11]C.-Y. Chen, Y.-C. Chao, H.-F. Meng, & S.-F. Horng. (2008). Light-emitting polymer space-charge-limited transistor. Applied Physics Letters, 93, 223301.
[12]K. Nakamura, T. Hata, A. Yoshizawa, K. Obata, H. Endo, & K. Kudo. (2008). Improvement of Metal–Insulator–Semiconductor-Type Organic Light-Emitting Transistors. Japanese Journal of Applied Physics, 47, 1889-1893.
[13]K. Nakamura, T. Hata, A. Yoshizawa, K. Obata, H. Endo, & K. Kudo. (2006). Metal-insulator-semiconductor-type organic light-emitting transistor on plastic substrate. Applied Physics Letters, 89, 103525.
[14]B. Liu, M. A. McCarthy, Y. Yoon, D.-Y. Kim, Z.-C. Wu, F. So, P. H. Holloway, J. R. Reynolds, J.-G., & A. G. Rinzler. (2008). Carbon-Nanotube-Enabled Vertical Field Effect and Light-Emitting Transistors. Advanced Materials, 20, 3605-3609.
[15]M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler. (2011). Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays. Science, 332, 570-573.
[16]W. D. Gill. (1972). Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole. Journal of Applied Physics, 43, 5033.
[17]K. Horiuchi, S. Uchino, K. Nakada, N. Aoki, M. Shimizu, & Y. Ochiai. (2003). Low-temperature transport of C60 thin-film FET. Physica B, 329-333, 1538-1539.
[18]M. Kitamura, Y. Kuzumoto, M. Kamura, S. Aomori, & Y. Arakawa. (2007). High-performance fullerene C60 thin-film transistors operating at low voltages. Applied Physics Letters, 91, 183514.
[19]A. Facchetti, M. Musrush, H. E. Katz, & T. J. Marks. (2003). n-Type Building Blocks for Organic Electronics: A Homologous Family of Fluorocarbon-Substituted Thiophene Oligomers with High Carrier Mobility. Advanced Materials, 15(1), 33-38.
[20]B. Stadlober, M. Zirkl, M. Beutl, G. Leising, S. Bauer-Gogonea, & S. Bauer. (2005). High-mobility pentacene organic field-effect transistors with a high-dielectric-constant fluorinated polymer film gate dielectric. Applied Physics Letters, 86, 242902.
[21]R. Sarma, D. Saikia, P. Saikia, P. K. Saikia, & B. Baishya. (2010). Pentacene based Thin Film Transistors with High-k Dielectric Nd2O3 as a Gate Insulator. Brazilian Journal of Physics, 40(3), 357-360.
[22]M. Kitamura, Y. Arakawa. (2008). Pentacene-based organic field-effect transistors. Journal of Physics: Condensed Matter, 20, 184011.
[23]R. Hofmockel, U. Zschieschang, U. Kraft, R. Rödel, N. H. Hansen, M. Stolte, F. Würthner, K. Takimiya, K. Kern, J. Pflaum, & H. Klauk. (2013). High-mobility organic thin-film transistors basedon a small-molecule semiconductor deposited in vacuum and by solution shearing. Organic Electronics, 14, 3213-3221.
[24]D. M. Taylor, E. R. Patchett, A. Williams, Z. Ding, H. E. Assender, J. J. Morrison, & S. G. Yeates. (2015). Fabrication and simulation of organic transistors and functional circuits. Chemical Physics, 456, 85-92.
[25]A. J. Ben-Sasson, Z. Chen, A. Facchetti, & N. Tessler. (2012). Solution-processed ambipolar vertical organic field effect transistor. Applied Physics Letters, 100, 263306.
[26]O. Acton, M. Dubey, T. Weidner, K. M. O’Malley, T.-W. Kim, G. G. Ting, D. Hutchins, J. E. Baio, T. C. Lovejoy, A. H. Gage, D. G. Castner, H. Ma, & A. K.-Y. Jen. (2011). Simultaneous Modification of Bottom-Contact Electrode and Dielectric Surfaces for Organic Thin-Film Transistors Through Single-Component Spin-Cast Monolayers. Advanced Functional Materials, 21, 1476-1488.
[27]S.-Y. Yang, K. Shin, & C.-E. Park. (2005). The Effect of Gate-Dielectric Surface Energy on Pentacene Morphology and Organic Field-Effect Transistor Characteristics. Advanced Functional Materials, 15, 1806-1814.
[28]L.-L. Chua, J. Zaumseil1, J.-F. Chang, Eric C.-W. Ou, Peter K.-H. Ho, H. Sirringhaus, & R. H. Friend. (2005). General observation of n-type field-effect behaviour in organic semiconductors. Nature, 434, 194-199.
[29]A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G. L. Frey, & N. Tessler. (2009). Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates. Applied Physics Letters, 95, 213301.
[30]C.-M. Keum, I.-H. Lee, S.-H. Lee, G.-J. Lee, M.-H. Kim, & S.-D. Lee. (2014). Quasi-surface emission in vertical organic light-emitting transistors with network electrode. Optics Express, 22(12), 14750-14756.
[31]A. J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, & N. Tessler. (2015). Self-Assembled Metallic Nanowire-Based Vertical Organic Field-Effect Transistor. ACS Applied Materials & Interfaces, 7, 2149-2152.
[32]M. G. Lemaitre, E. P. Donoghue, M. A. McCarthy, B. Liu, S. Tongay, B. Gila, P. Kumar, R. K. Singh, B. R. Appleton, & A. G. Rinzler. (2012). Improved Transfer of Graphene for Gated Schottky-Junction, Vertical, Organic, Field-Effect Transistors. ACS Nano, 6(10), 9095-9102.
[33]W.-C. Chen, A. Rinzler, & J. Guo. (2013). Computational study of graphene-based vertical field effect transistor. Journal of Applied Physics, 113, 094057.
[34]H. Yu, Z. Dong, J. Guo, D.-Y. Kim, & F. So. (2016). Vertical Organic Field-Effect Transistors for Integrated Optoelectronic Applications. ACS Applied Materials & Interfaces, 8, 10430-10435.
[35]M. Pope, H. P. Kallmann, & P. Magnante. (1963). Electroluminescence in Organic Crystals. The Journal of Chemical Physics, 38, 2042.
[36]C. W. Tang, S. A. VanSlyke. (1987). Organic electroluminescent diodes. Applied Physics Letters, 51, 913.
[37]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns & A. B. Holmes. (1990). Light-emitting diodes based on conjugated polymers. Nature, 347, 539-541.
[38]C. C. Freudenrich, (2005, March 24). How OLEDs Work. HowStuffWorks. Retrieved November 27, 2018, from https://electronics.howstuffworks.com/oled.htm
[39]M. Greenman, A. J. Ben-Sasson, Z. Chen, A. Facchetti, & N. Tessler. (2013). Fast switching characteristics in vertical organic field effect transistors. Applied Physics Letters, 103, 073502.
[40]A. J. Ben-Sasson, N. Tessler. (2012). Unraveling the Physics of Vertical Organic Field Effect Transistors through Nanoscale Engineering of a Self-Assembled Transparent Electrode. Nano Letters, 12, 4729-4733.
[41]S.-M. Yang, S.-G. Jang, D.-G. Choi, S. Kim, & H.-K. Yu. (2006). Nanomachining by Colloidal Lithography. Small, 2(4), 458-475.
[42]X.-Z. Ye, L.-M. Qi. (2011). Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications. Nano Today, 4, 608-631.
[43]Y.-N. Xia, B. Gates, Y.-D. Yin, & Y. Lu. (2000). Monodispersed Colloidal Spheres: Old Materials with New Applications. Advanced Materials, 12(10),639-713.
[44]M. Semmler, J. Rička, M. Borkovec. (2000). Diffusional deposition of colloidal particles: electrostatic interaction and size polydispersity effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 165, 79-93.
[45]C. A. Johnson, A. M. Lenhoff. (1996). Adsorption of Charged Latex Particles on Mica Studied by Atomic Force Microscopy. Journal of Colloid and Interface Science, 179, 587-599.
[46]P. A. Kralchevskyt, K. Nagayama. (1993). Capillary Forces between Colloidal Particles. Langmuir, 10(1), 23-36.
[47]P. Hanarp, D. S. Sutherland, J. Gold, & B. Kasemo. (2002). Control of nanoparticle film structure for colloidal lithography. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214, 23-36.
[48]Q.-F. Yan, L. Gao, V. Sharma, Y.-M. Chiang, & C. C. Wong. (2008). Particle and Substrate Charge Effects on Colloidal Self-Assembly in a Sessile Drop. Langmuir, 24, 11518-11522.
[49]M. J. Rosen. (2004). Surfactants and Interfacial Phenomena. New York: John Wiley & Sons.
[50]A. J. Ben-Sasson, N. Tessler. (2011). Patterned electrode vertical field effect transistor: Theory and experiment. Journal of Applied Physics, 110, 044501.
[51]Y. Preezant, N. Tessler. (2003). Self-consistent analysis of the contact phenomena in low-mobility semiconductors. Journal of Applied Physics, 93, 2059.
[52]A. J. Ben-Sasson, M. Greenman, Y. Roichman, & N. Tessler. (2014). The Mechanism of Operation of Lateral and Vertical Organic Field Effect Transistors. Israel Journal of Chemistry, 54, 568-585.
[53]J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, & A. Stocking. (1996). Science, 273(5277), 884-888.
[54]J. G. Simmons. (1965). Richardsin-Schottky Effect in Solids. Physics Review Letters, 15, 967-968.
[55]R. H. Fowler, L. Nordheim. (1928). Electron Emission in Intense Electric Fields. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 119(781), 173-181.
[56]U. Wolf, V. I. Arkhipov, & H. Bässler. (1998). Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation. Physical Review B, 59(11), 7507-7513.
[57]I. D. Parker. (1994). Carrier tunneling and device characteristics in polymer light-emitting diodes. Journal of Applied Physics, 75(3), 1656-1666.
[58]C. E. Small, S.-W. Tsang, J. Kido, S. K. So, & F. So. (2012). Origin of Enhanced Hole Injection in Inverted Organic Devices with Electron Accepting Interlayer. Advanced Functional Materials, 22, 3261-3266.
[59]B. Wardle. (2009). Principles and Applications of Photochemistry. Manchester, England: John Wiley & Sons.
[60]Dexter Energy Transfer. (2017, May 31). In Chemistry LibreTexts. Retrieved December 6, 2018, from https://chem.libretexts.org/Textbook_Maps/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Fundamentals/Dexter_Energy_Transfer
[61]J. Daintith. (2008). A Dictionary of Chemistry. Oxford, England: Oxford University Press.
[62]R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, & R. M. Fleming. (1995). C60 thin film transistors. Applied Physics Letters, 67, 121-123.
[63]O. Acton, G. Ting, H. Ma, & A. K.-Y. Jen. (2008). Low-voltage high-performance thin film transistors via low-surface-energy phosphonic acid monolayer/hafnium oxide hybrid dielectric. Applied Physics Letters, 93, 083302.
[64]E. Itoh, Y. Higashimoto, & K. Miyairi. (2008). Electrical Properties of Heat-Treated C60 Field Effect Transistor Prepared on Polyimide Gate Insulator. Japanese Journal of Applied Physics, 47(1), 480-483.
[65]Th. B. Singh, N. S. Sariciftci, H. Yang, L. Yang, B. Plochberger, & H. Sitter. (2007). Correlation of crystalline and structural properties of thin films grown at various temperature with charge carrier mobility. Applied Physics Letters, 90, 213512.
[66]M. D. Groner, F. H. Fabreguette, J. W. Elam, & S. M. George. (2003). Low-Temperature Al2O3 Atomic Layer Deposition. Chemistry of Materials, 16, 639-645.
[67]G. Dingemans, W. M. M. Kessels. (2012). Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. Journal of Vacuum Science & Technology A, 30, 040802.
[68]H. Ron, S. Matlis, & I. Rubinstein. (1997). lf-Assembled Monolayers on Oxidized Metals. 2. Gold Surface Oxidative Pretreatment, Monolayer Properties, and Depression Formation. Langmuir, 14, 1116-1121.
[69]L.-P. Lu, D. Kabra, & R. H. Friend. (2012). Barium Hydroxide as an Interlayer Between Zinc Oxide and a Luminescent Conjugated Polymer for Light-Emitting Diodes. Advanced Functional Materials, 22, 4165-4171.
[70]G. Socrates. (2001). Infrared and Raman Characteristic Group Frequencies. London, England: John Wiley & Sons.
[71]M. Lawston. (2015). The Effect of Ultraviolet and Ultraviolet - Ozone Exposure on Polymers. Niskayuna High School, 1-13.
[72]M.-L. Sham, J.-K. Kim. (2005). Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments. Carbon, 44, 768-777.
[73]J. A. Ashenhurst, (2012, June 5). Nucleophiles and Electrophiles. Master Organic Chemistry. Retrieved December 21, 2018, from https://www.masterorganicchemistry.com/2012/06/05/nucleophiles-and-electrophiles/
[74]K. D. Dobson, A. D. Roddick-Lanzilotta, A. J. McQuillan. (2000). An in situ infrared spectroscopic investigation of adsorption of sodium dodecylsulfate and of cetyltrimethylammonium bromide surfactants to TiO2, ZrO2, Al2O3, and Ta2O5 particle films from aqueous solutions. Vibrational Spectroscopy, 24, 287-295.
[75]R. P. Sperline, Y. Song, & H. Freiser. (1992). Fourier Transform Infrared Attenuated Total Reflection Spectroscopy Linear Dichroism Study of Sodium Dodecyl Sulfate Adsorption at the Al2O3/Water Interface Using Al2O3-Coated Optics. Langmuir, 8, 2183-2191.
[76]Z.-Y. Hu, J. B. Hannon, H.-S. Park, S.-J. Han, G. S. Tulevski, A. Afzali, & M. Liehr. (2017). Photo-Chemically Directed Self-Assembly of Carbon Nanotubes on Surfaces. ArXiv Chemical Physics (physics.chem-ph), 1-12.
指導教授 張瑞芬(Jui-Fen Chang) 審核日期 2019-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明