博碩士論文 105226032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.137.150.203
姓名 王菘郁(Song-Yu Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 氮化銦鎵奈米量子井的表面增益拉曼散射分析
(Study of Surface-Enhanced Raman Scattering on Nano-structured InGaN Quantum wells)
相關論文
★ 影像式外差干涉術之建立★ 陶瓷基板上的高壓薄膜氮化鎵發光二極體之設計、製作與分析
★ 光譜解析單像素重建顯微術於雙光子激發螢光與拉曼造影之研究★ 矽基板上的氮化鎵異質磊晶術
★ 矽基板上的氮化物太陽能電池★ 矽摻雜氮化鎵之光伏特性:中間能帶太陽能電池的潛力評估
★ 以氧化鋅薄膜輔助成長於矽基板上的氮化鎵磊晶層★ 氮化物光伏元件之製程優化及硒化鎘量子點的應用
★ 矽基板上的氮化鎵磊晶術:以氧化鎵為緩衝★ 具穿隧結構之反向極化電場氮化銦鎵發光二極體
★ 強度敏感式影像橢圓儀及應用★ 成長於同調性基板的氮化鎵及氮化鋁磊晶層
★ 以奈米異質磊晶術在矽基板上成長的半極性氮化銦鎵量子井★ 以漸變銦含量的主動層增加氮化銦鎵光伏元件的載子收集率
★ 氧化鋅的熱分解對矽基板上氮化鎵奈米異質磊晶的影響★ 溫度效應對矽基板上的氮化鎵有機金屬氣相沉積法之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 表面電漿是一種電磁波,存在於金屬與介電質的介面,當表面電漿形成時,其電磁場的共振強度對周圍的折射率變化有極高的敏感度,我們可我們藉由量測電磁場的強度或波長變化,來判斷金屬表面的待測物濃度,此方法已廣泛應用在生物感測元件上。
在本研究中,我們利用有機金屬化學氣相沉積法(Metal Organic Chemical Vapor Deposition, MOCVD)成長氮化銦鎵奈米量子井,再以其上的金屬奈米顆粒形成局部性的表面電漿效應,並透過R6G螢光分子所產生的拉曼訊號,來分析此奈米結構在生物感測上的應用潛力。
氮化物半導體具有高折射率、高化學穩定性等優勢。本研究所提出的氮化銦鎵量子井,所產生的光子可作為一種增益介質,補償金屬吸收激發光所造成的能量損失,且金字塔型的奈米結構表面,能增加待測物的吸附面積,配合此獨特的奈米量子井結構,可有效增加表面增益拉曼散射(surface enhanced Raman scattering, SERS)的強度,可偵測最低達10-10M的R6G分子濃度,在單分子偵測上有令人期待的潛力。
摘要(英) Surface plasmon is an electro-magnetic wave, formed at the interface between metal and dielectric. Since the intensity of surface plasmon polaritons (SPP) is extremely sensitive to the change of ambient refractive index, one can determine the concentration of analytes by measuring the shifts of intensity or wavelength of SPP. This method has been widely employed in biosensing technologies.
In this study, nano-pyramidal InGaN quantum wells were grown by metal-organic chemical vapor deposition (MOCVD) on Si substrates, with the buffer layer made of ZnO nanorods. Au nanoparticles were then applied on the nanopyramidal surface to induce localized surface plasmon resonance. The Raman signals generated by Rhodamine 6G (R6G) fluorescent dye molecules were evaluated to investigate the biosensing performance of the nano-pyramidal quantum wells.
For the applications in biosensing, nitride semiconductors enjoy the advantages of high refractive index, and high chemical stability. Compared to the planar surface, the nano-pyramidal quantum wells are expected to adsorbed more biomolecules because of the increased surface area. Moreover, InGaN quantum well can serve as the gain medium, pumping energy to compensate the ohmic loss in the metal nanoparticles. It is found that the nano-pyramidal quantum wells, together with the Au nanoparticles, are effective in boosting the intensities of surface-enhanced Raman scattering (SERS) signals generated by the R6G molecules.The minimum detectable R6G concentration is 10-10M, showing promising potentials for single molecule detection.
關鍵字(中) ★ 氮化銦鎵
★ 磊晶
★ 表面增益拉曼散射
★ 量子井
關鍵字(英)
論文目次 目錄
論文摘要 V
Abstract VI
誌謝 VII
圖目錄 X
表目錄 XIII
第一章、緒論 1
1.1前言 1
1.2表面增益拉曼散射的源起與發展 2
1.3表面增益拉曼散射於氮化物的應用 3
1.4氮化銦鎵量子井應用在表面增益拉曼散射的優勢 5
1.5研究動機與章節架構 7
第二章、實驗原理、方法與儀器 9
2.1表面電漿共振原理 9
2.2金屬奈米顆粒耦合表面電漿原理 14
2.3表面增益拉曼散射原理 17
2.4實驗儀器介紹 23
2.5以五三比調控氮化鎵的微米化表面 26
2.6磊晶結構及製程步驟 29
第三章、分析與討論 34
3-1量子井發光波長調整 34
3.2金屬奈米顆粒介電常數比較 36
3.3入射光波長對拉曼光譜的影響 38
3.4光致激發及拉曼散射的光譜分析 40
3.5 R6G量測分析及拉曼強度比較 42
第四章、結論與未來發展 47

4.1結論 47
4.2未來發展 48
參考文獻 49
參考文獻 [1]林鼎晸,朱仁佑,“表面增強拉曼散射光譜的發展與應用”,工業材料雜誌261, 150-155(2008)。
[2]He Xiao-Guang(何?光), Zhao De-Gang, Jiang De-Sheng. Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression. Chin. Phys. B 24, No.6, 067301(2015).
[3] Thapa, R. et al. Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection. Appl. Phys. Lett. 100, 232109 (2012).
[4]Dick, L.A. et al. Metal Film over Nanosphere (MFON) Electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in Surface Nanostructure Stability and Suppression of Irreversible Loss. J. Phys. Chem. B 106, No.4, 853-860(2002).
[5] Bankowska, M. et al. Au–Cu Alloyed Plasmonic Layer on Nanostructured GaN for SERS Application. J. Phys. Chem. C 120, 1841-1846(2016).
[6]Traci, R.J. et al. Nanosphere Lithography:? Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles. J. Phys. Chem. B 104, 10549(2004).
[7] Wood, R.W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil. Mag 4, 396 (1902).
[8] Fano, U. The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces. J. Opt. Soc. Am. 31, 213 (1941).
[9]吳民耀,劉威志,“表面電漿子理論與模擬,”物理雙月刊 28, 486-496(2006)。
[10]邱國斌,蔡定平,“金屬表面簡介,”物理雙月刊 28, 486-496(2006)。
[11]P. K. Jain and M. A. El-Sayed. Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing.Nano Letters 8, 4347 (2008).
[12]Jain, P.K., El-Sayed, M.A. Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing. Nano Lett. 8, 4347(2008).
[13]Kelly, K.L., Coronado, E., Zhao, L.L., Schatz, G.C. The Optical Properties of Metal Nanoparticles:? The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 107, 668(2003).
[14]Kreibig, U., Vollmer, M. Optical Properties of Metal Clusters. Vol. 25. (Springer, Berlin, 1995.)
[15]V. G. Kravets et al. Cascaded Optical Field Enhancement in Composite Plasmonic Nanostructures. Nano Lett. 10, 874(2008).
[16] Garcia Vidal, F.J., Pendry, J.B. Collective Theory for Surface Enhanced Raman Scattering. Phys. Rev. Lett 77,1163-1166(1993).
[17]陳瑤真,“表面增強拉曼散射光譜應用於生物單分子偵測,” 國立交通大學,碩士論文,民國九十三年。
[18]Jiang, J.D., Burstein, E. & Kobayashi, H. Resonant raman-scattering by crystal-violet molecules adsorbed on a smooth gold surface - Evidence for a charge-transfer excitation. Phys. Rev. Lett. 57, 1793–1796 (1986).
[19]Juan, F.W. et al. The role of charge-transfer states of the metal-adsorbatecomplex in surface-enhanced Raman scattering. J. Chem. Phys, 112, 7669(2000).
[20] Campion, A. & Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–250 (1998)
[21]Catarina, M., Rahul, T., Richrd, O., Sumeet, M. Raman spectroscopy and coherent antiStokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. J. R. Soc. Interface 13(2016).
[22]Seshan, K., Handbook Of Thin Film Deposition Processes And Techniques(Noyes Publications/William Andrew Pub.,2002)
[23] 網路資料: Physics and Astronomy, Surface Enhanced Raman Spectroscopy Introduction. 取自https://newton.ex.ac.uk/research/biomedical-old/optics/sers.html
[24]Zhu, F.Y. et al. 3D nanostructure reconstruction based on the SEM imaging principle, and applications. Nanotech. Vol. 25, No. 8(2014).
[25] Kum, D., Byun, D. The effect of substrate surface roughness on GaN growth using MOCVD process. J. Electron. Mater.Vol. 26, No. 10(1997)
[26]Yang, T. et al. Control of Initial Nucleation by Reducing the V/III Ratio during the Early Stages of GaN Growth. Phys. Status Solidi A. 180, 45(2000)
[27] Cheng, Z. et al. High-Performance Doped Silver Films: Overcoming Fundamental Material Limits for Nanophotonic Applications. Adv. Mater.1605177(2017)
[28] McPeak, K.M. et al. Plasmonic films can easily be better: Rules and recipes. ACS., 326-333(2015)
[29] Mark, W.K., et al. Aluminum for Plasmonic. ACS Nano. Vol. 8, 834-840(2014)
[30] Bosi, M. et al. Compositional and optical uniformity of InGaN layers deposited on (0001) sapphire by metal–organic vapour phase epitaxy. Semicond. Sci. Technol.Vol. 19, No.2, 9932–9939(2003)
[31] Strommen, D. P., Nakamoto, K. Resonance raman spectroscopy., J. Chem. Educ., 54
(1977)
[32] Dieringer, J.A. et al. Surface-Enhanced Raman Excitation Spectroscopy of a Single Rhodamine 6G Molecule. J. Am. Chem. Soc. 131, 849–854(2009)
[33] Le Ru, E.C. et al. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C. 111, 13794-13803(2007)
指導教授 賴昆佑(Kun-Yu Lai) 審核日期 2018-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明