參考文獻 |
[1] J. Dudley, G. Genty, A. Mussot, A. Chabchoub, and F. Dias, “Rogue waves and analogies in optics and oceanography.” Nat. Rev. Phys. 1, 675–689 (2019).
[2] A. N. Ganshin, V. B. Efimov, G. V. Kolmakov, L. P. Mezhov-Deglin, and P. V. E. McClintock, “Observation of an Inverse Energy Cascade in Developed Acoustic Turbulence in Superfluid Helium,” Phys. Rev. Lett. 101, 065303 (2008).
[3] D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[4] A. Montina, U. Bortolozzo, S. Residori, and F. T. Arecchi, “Non-gaussian statistics and extreme waves in a nonlinear optical cavity,” Phys. Rev. Lett. 103, 173901 (2009).
[5] Y. Y. Tsai, J. Y. Tsai, and L. I, “Generation of acoustic rogue waves in dusty plasmas through three-dimensional particle focusing by distorted waveforms.” Nature Phys 12, 573–577 (2016).
[6] P. C. Lin and L. I, “Synchronization of multiscale waveform focusing for rogue wave generation in dust acoustic wave turbulence,” Phys. Rev. Research 2, 023090 (2020).
[7] C. Kharif, E. Pelinovsky, and A. Slunyaev, Rogue Waves in the Ocean (Springer, 2009) Chap. 1.
[8] N. Akhmediev and E. Pelinovsky, “Editorial - introductory remarks on discussion and debate: Rogue waves - towards a unifying concept?” Eur. Phys. J. 185, 1–4 (2010).
[9] A. Chabchoub, N. P. Hoffmann, and N. Akhmediev, “Rogue wave observation in a water wave tank,” Phys. Rev. Lett. 106, 204502 (2011).
[10] M. Onorato, A. R. Osborne, M. Serio, and L. Cavaleri, “Modulational instability and non-gaussian statistics in experimental random water-wave trains,” Physics of Fluids 17, 078101 (2005).
[11] M. Shats, H. Punzmann, and H. Xia, “Capillary rogue waves,” Phys. Rev. Lett. 104, 104503 (2010).
[12] H. Xia, T. Maimbourg, H. Punzmann, and M. Shats, “Oscillon dynamics and rogue wave generation in faraday surface ripples,” Phys. Rev. Lett. 109, 114502 (2012).
[13] A. Toffoli, T. Waseda, H. Houtani, T. Kinoshita, K. Collins, D. Proment, and M. Onorato, “Excitation of rogue waves in a variable medium: An experimental study on the interaction of water waves and currents,” Phys. Rev. E 87, 051201(R) (2013).
[14] H. Y. Chen, C. Y. Liu, and L. I, “Identifying faraday rogue wave precursors from surrounding waveform information,” Phys. Rev. Fluids 3, 064401 (2018).
[15] M. Onorato, A. R. Osborne, and M. Serio, “Modulational instability in crossing sea states: A possible mechanism for the formation of freak waves,” Phys. Rev. Lett. 96, 014503 (2006).
[16] P. K. Shukla, I. Kourakis, B. Eliasson, M. Marklund, and L. Stenflo, “Instability and evolution of nonlinearly interacting water waves,” Phys. Rev. Lett. 97, 094501 (2006).
[17] M. Onorato, L. Cavaleri, S. Fouques, O. Gramstad, P. A. E. M. Janssen, J. Monbaliu, A. R. Osborne, C. Pakozdi, M. Serio, C. T. Stansberg, and et al., “Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a three-dimensional wave basin,” Journal of Fluid Mechanics 627, 235–257 (2009).
[18] M. Onorato, T. Waseda, A. Toffoli, L. Cavaleri, O. Gramstad, P. A. E. M. Janssen, T. Kinoshita, J. Monbaliu, N. Mori, A. R. Osborne, M. Serio, C. T. Stansberg, H. Tamura, and K. Trulsen, “Statistical properties of directional ocean waves: The role of the modulational instability in the formation of extreme events,” Phys. Rev. Lett. 102, 114502 (2009).
[19] T. Waseda, T. Kinoshita, and H. Tamura, “Evolution of a Random Directional Wave and Freak Wave Occurrence,” Journal of Physical Oceanography 39, 621–639 (2009).
[20] A. Toffoli, O. Gramstad, K. Trulsen, J. Monbaliu, E. Bitner-Gregersen, and M. Onorato, “Evolution of weakly nonlinear random directional waves: laboratory experiments and numerical simulations,” Journal of Fluid Mechanics 664, 313–336 (2010).
[21] Caulliez, G. and Guérin, C. A., “Higher-order statistical analysis of short wind wave fields,” Journal of Geophysical Research: Oceans 117 (2012).
[22] A. Slunyaev, M. Klein, and G. F. Clauss, “Laboratory and numerical study of intense envelope solitons of water waves: Generation, reflection from a wall, and collisions,” Physics of Fluids 29, 047103 (2017).
[23] A. Zavadsky and L. Shemer, “Investigation of statistical parameters of the evolving wind wave field using a laser slope gauge,” Physics of Fluids 29, 056602 (2017).
[24] Q. Zou and H. Chen, “Wind and Current Effects on Extreme Wave Formation and Breaking,” Journal of Physical Oceanography 47, 1817–1841 (2017).
[25] A. Toffoli, D. Proment, H. Salman, J. Monbaliu, F. Frascoli, M. Dafilis, E. Stramignoni, R. Forza, M. Manfrin, and M. Onorato, “Wind generated rogue waves in an annular wave flume,” Phys. Rev. Lett. 118, 144503 (2017).
[26] H. L. von Helmholtz, “On discontinuous movements of fluids,” Philosophical Magazine 36, 337–346 (1868).
[27] T. E. Faber, Fluid dynamics for physicists, 1st ed. (Cambridge, 1995) Chap. 1, 5, 7, and 8.
[28] J. Hoepffner, R. Blumenthal, and S. Zaleski, “Self-similar wave produced by local perturbation of the kelvin-helmholtz shear-layer instability,” Phys. Rev. Lett. 106, 104502 (2011).
[29] O. M. Phillips, “On the generation of waves by turbulent wind,” Journal of Fluid Mechanics 2, 417–445 (1957).
[30] I. R. Young, Wind Generated Ocean Waves, 1st ed. (Elsevier, 1999) Chap. 4 and 5.
[31] J. P. Matas, S. Marty, M. S. Dem, and A. Cartellier, “Influence of gas turbulence on the instability of an air-water mixing layer,” Phys. Rev. Lett. 115, 074501 (2015).
[32] S. Perrard, A. Lozano-Durán, M. Rabaud, M. Benzaquen, and F. Moisy, “Turbulent windprint on a liquid surface,” Journal of Fluid Mechanics 873, 1020–1054 (2019).
[33] J. W. Miles, “On the generation of surface waves by shear flows,” Journal of Fluid Mechanics 3, 185–204 (1957).
[34] P. B. Marc and F. Veron, “Structure of the airflow above surface waves,” Journal of Physical Oceanography 46, 1377–1397 (2016).
[35] M. Aulnette, M. Rabaud, and F. Moisy, “Wind-sustained viscous solitons,” Phys. Rev. Fluids 4, 084003 (2019).
[36] F. Collard and G. Caulliez, “Oscillating crescent-shaped water wave patterns,” Physics of Fluids 11, 3195–3197 (1999).
[37] A. Chabchoub, N. Hoffmann, H. Branger, C. Kharif, and N. Akhmediev, “Experiments on wind-perturbed rogue wave hydrodynamics using the peregrine breather model,” Physics of Fluids 25, 101704 (2013).
[38] N. J. M. Laxague, M. Curcic, J. Björkqvist, and B. K. Haus, “Gravitycapillary wave spectral modulation by gravity waves,” IEEE Transactions on Geoscience and Remote Sensing 55, 2477–2485 (2017).
[39] N. Takagaki, S. Komori, K. Iwano, N. Suzuki, and H. Kumamaru, “Generation method of wind waves under long-fetch conditions over a broad range of wind speeds,” Procedia IUTAM 26, 184 – 193 (2018), iUTAM Symposium on Wind Waves.
[40] W. Y. Zhang, W. X. Huang, and C. X. Xu, “Very large-scale motions in turbulent flows over streamwise traveling wavy boundaries,” Phys. Rev. Fluids 4, 054601 (2019).
[41] C. Jiang, Y. Yang, and B. Deng, “Study on the nearshore evolution of regular waves under steady wind,” Water 12, 686 (2020).
[42] W. B. Wright, R. Budakian, and S. J. Putterman, “Diffusing light photography of fully developed isotropic ripple turbulence,” Phys. Rev. Lett. 76, 4528–4531 (1996).
[43] J. L. Jou, W. S. Lo and L. I, “Rogue waves associated with resonant slow sloshing waves spontaneously excited in wind-driven water wave turbulence,” Physics of Fluids 32, 122120 (2020).
[44] J. L. Jou, W. S. Lo and L. I, “Rogue wave generation in wind-driven water wave turbulence through multiscale phase-amplitude coupling, phase synchronization, and self-focusing by curved crests,” Physics of Fluids 33, 102105 (2021).
[45] S. Nazarenko, Wave turbulence, 1st ed. (Springer, 2011) Chap. 1, 2, and 3.
[46] E. Falcon, C. Laroche, and S. Fauve, “Observation of gravity-capillary wave turbulence,” Phys. Rev. Lett. 98, 094503 (2007).
[47] H. Punzmann, M. G. Shats, and H. Xia, “Phase randomization of threewave interactions in capillary waves,” Phys. Rev. Lett. 103, 064502 (2009).
[48] P. Cobelli, A. Przadka, P. Petitjeans, G. Lagubeau, V. Pagneux, and A. Maurel, “Different regimes for water wave turbulence,” Phys. Rev. Lett. 107, 214503 (2011).
[49] L. Deike, D. Fuster, M. Berhanu, and E. Falcon, “Direct numerical simulations of capillary wave turbulence,” Phys. Rev. Lett. 112, 234501 (2014).
[50] Q. Aubourg and N. Mordant, “Nonlocal resonances in weak turbulence of gravity-capillary waves,” Phys. Rev. Lett. 114, 144501 (2015).
[51] A. Costa, A. R. Osborne, D. T. Resio, S. Alessio, E. Chrivì, E. Saggese, K. Bellomo, and C. E. Long, “Soliton turbulence in shallow water ocean surface waves,” Phys. Rev. Lett. 113, 108501 (2014).
[52] M. Derakhti, J. Thomson, and J. T. Kirby, “Sparse Sampling of Intermittent Turbulence Generated by Breaking Surface Waves,” Journal of Physical Oceanography 50, 867–885 (2020).
[53] P. H. Diamond, S.-I. Itoh, and K. Itoh, Modern Plasma Physics: Physical Kinetics of Turbulent Plasmas, 1st ed., Vol. 1 (Cambridge, 2010).
[54] Y. Y. Tsai, M. C. Chang, and L. I, “Observation of multifractal intermittent dust-acoustic-wave turbulence,” Phys. Rev. E 86, 045402(R) (2012).
[55] P. C. Lin and L. I, “Interacting multiscale acoustic vortices as coherent excitations in dust acoustic wave turbulence,” Phys. Rev. Lett. 120, 135004 (2018).
[56] Y. Kuramoto, D. Battogtokh, and H. Nakao, “Multiaffine chemical turbulence,” Phys. Rev. Lett. 81, 3543–3546 (1998).
[57] A. S. Mikhailov and K. Showalter, “Control of waves, patterns and turbulence in chemical systems,” Physics Reports 425, 79 – 194 (2006).
[58] D. Pierangeli, F. Di Mei, G. Di Domenico, A. J. Agranat, C. Conti, and E. DelRe, “Turbulent transitions in optical wave propagation,” Phys. Rev. Lett. 117, 183902 (2016).
[59] E. Falcon, S. Fauve, and C. Laroche, “Observation of intermittency in wave turbulence,” Phys. Rev. Lett. 98, 154501 (2007).
[60] G. Michel, F. Pétrélis, and S. Fauve, “Observation of thermal equilibrium in capillary wave turbulence,” Phys. Rev. Lett. 118, 144502 (2017).
[61] P. Denissenko, S. Lukaschuk, and S. Nazarenko, “Gravity wave turbulence in a laboratory flume,” Phys. Rev. Lett. 99, 014501 (2007).
[62] Q. Aubourg and N. Mordant, “Investigation of resonances in gravitycapillary wave turbulence,” Phys. Rev. Fluids 1, 023701 (2016).
[63] D. Eeltink, A. Lemoine, H. Branger, O. Kimmoun, C. Kharif, J. D. Carter, A. Chabchoub, M. Brunetti, and J. Kasparian, “Spectral up- and downshifting of Akhmediev breathers under wind forcing,” Physics of Fluids 29, 107103 (2017).
[64] A. Paquier, F. Moisy, and M. Rabaud, “Surface deformations and wave generation by wind blowing over a viscous liquid,” Physics of Fluids 27, 122103 (2015).
[65] C. Müller, P. Garrett and A. Osborne, “Rogue waves: The fourteenth ’aha huliko’a hawaiian winter workshop,” Oceanography 18, 66–70 (2005).
[66] W. Xiao, Y. Liu, G. Wu, and D. K. P. Yue, “Rogue wave occurrence and dynamics by direct simulations of nonlinear wave-field evolution,” Journal of Fluid Mechanics 720, 357–392 (2013).
[67] S. Stole-Hentschel, K. Trulsen, L. B. Rye, and A. Raustol, “Extreme wave statistics of counter-propagating, irregular, long-crested sea states,” Physics of Fluids 30, 067102 (2018).
[68] R. El Koussaifi, A. Tikan, A. Toffoli, S. Randoux, P. Suret, and M. Onorato, “Spontaneous emergence of rogue waves in partially coherent waves: A quantitative experimental comparison between hydrodynamics and optics,” Phys. Rev. E 97, 012208 (2018).
[69] A. Wang, A. Ludu, Z. Zong, L. Zou, and Y. Pei, “Experimental study of breathers and rogue waves generated by random waves over non-uniform bathymetry,” Physics of Fluids 32, 087109 (2020).
[70] C. Kharif and E. Pelinovsky, “Physical mechanisms of the rogue wave phenomenon,” European Journal of Mechanics - B/Fluids 22, 603 – 634 (2003).
[71] A. N. Pisarchik, R. Jaimes-Reátegui, R. Sevilla-Escoboza, G. HuertaCuellar, and M. Taki, “Rogue waves in a multistable system,” Phys. Rev. Lett. 107, 274101 (2011).
[72] U. Kanoglu, V. V. Titov, B. Aydin, C. Moore, T. S. Stefanakis, H. Zhou, M. Spillane, and C. E. Synolakis, “Focusing of long waves with finite crest over constant depth,” Proceedings of the Royal Society A 469, 20130015 (2013).
[73] A. Zavadsky, D. Liberzon, and L. Shemer, “Statistical Analysis of the Spatial Evolution of the Stationary Wind Wave Field,” Journal of Physical Oceanography 43, 65–79 (2013).
[74] W. S. Lo, “Percolating transition from weak to strong turbulence of windinduced water surface waves,” National Central University (2021), master’s thesis, National Central University.
[75] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A. 454, 903–995 (1998).
[76] N. E. Huang and S. S. P. Shen, Hilbert-Hung transform and its applications, 2nd ed. (World Scientific, 2014) Chap. 1, 2, 7, and 13.
[77] A. B. L. Tort, R. Komorowski, H. Eichenbaum, and N. Kopell, “Measuring phase-amplitude coupling between neuronal oscillations of different frequencies,” Journal of Neurophysiology 104, 1195–1210 (2010).
[78] R. A. Ibrahim, Liquid sloshing dynamics, 1st ed. (Cambridge, 2005) Chap. 1 and 2.
[79] F. Ardhuin, F. Collard, and B. Chapron, “Observation of swell dissipation across oceans.” Geophysical Research Letters 36, L06607 (2009).
[80] J. H. Jung, H. S. Yoon, and C. Y. Lee, “Effect of natural frequency modes on sloshing phenomenon in a rectangular tank,” International Journal of Naval Architecture and Ocean Engineering 7, 580 – 594 (2015).
[81] A. Toffoli and E. M. Bitner-Gregersen, “Types of ocean surface waves, wave classification,” in Encyclopedia of Maritime and Offshore Engineering (American Cancer Society, 2017) pp. 1–8.
[82] G. H. Keulegan, “Wind tides in small closed channels,” Journal of research of the National Bureau of Standards 46, 358 (1951).
[83] A. Paquier, “Generation and growth of wind waves over a viscous liquid,” (2016). |