參考文獻 |
M. Filonchyk, M.P. Peterson, H. Yan, A. Gusev, L. Zhang, Y. He, and S. Yang. “Greenhouse Gas Emissions and Reduction Strategies for the World′s Largest Greenhouse Gas Emitters,” Science of The Total Environment, 944, 2024, 173895.
[2] P. Achakulwisut, P. Erickson, C. Guivarch, R. Schaeffer, E. Brutschin, and S. Pye. “Global Fossil Fuel Reduction Pathways Under Different Climate Mitigation Strategies and Ambitions,” Nature Communications, 14, 1, 2023, 5425.
[3] R. Singh, S. Dogra, S. Dixit, N.I. Vatin, R. Bhardwaj, A.K. Sundramoorthy, H. Perera, S.P. Patole, R.K. Mishra, and S. Arya. “Advancements in Thermoelectric Materials for Efficient Waste Heat Recovery and Renewable Energy Generation,” Hybrid Advances, 5, 2024, 100176.
[4] A. Olabi, M. Al-Murisi, H.M. Maghrabie, B.A. Yousef, E.T. Sayed, A.H. Alami, and M.A. Abdelkareem. “Potential Applications of Thermoelectric Generators (TEGs) in Various Waste Heat Recovery Systems,” International Journal of Thermofluids, 16, 2022, 100249.
[5] H. Xie, Y. Zhang, P. Gao, “Thermoelectric-powered Sensors for Internet of Things.” Micromachines, 14 ,1, 2022, 31.
[6] N. V. Toan; T. T. K. Tuoi, N. Van Hieu, T. Ono, “Thermoelectric Generator with a High Integration Density for Portable and Wearable Self-Powered Electronic Devices.” Energy Conversion and Management, , 245, 2021,114571.
[7] Schubert, E. Fred. Doping in III-V Semiconductors. E. Fred Schubert, 2015.
[8] B. Zhou, S. Li, W. Li, J. Li, X. Zhang, S. Lin, Z. Chen, and Y. Pei. “Thermoelectric Properties of SnS with Na-Doping,” ACS Applied Materials & Interfaces, 9, 39, 2017, 34033-34041.
[9] J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder. “Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States,” Science, 321, 5888, 2008, 554-557.
[10] A. Banik, B. Vishal, S. Perumal, R. Datta, and K. Biswas. “The Origin of Low Thermal Conductivity in Sn1?xSbxTe: Phonon Scattering via Layered Intergrowth Nanostructures,” Energy & Environmental Science, 9, 6, 2016, 2011-2019.
[11] J. L. Lensch-Falk, J.D. Sugar, M.A. Hekmaty, and D.L. Medlin. “Morphological Evolution of Ag2Te Precipitates in Thermoelectric PbTe,” Journal of Alloys and Compounds, 504, 1, 2010, 37-44.
[12] S.H. Lo, J. He, K. Biswas, M.G. Kanatzidis, and V.P. Dravid. “Phonon Scattering and Thermal Conductivity in p-Type Nanostructured PbTe-BaTe Bulk Thermoelectric Materials,” Advanced Functional Materials, 22, 24, 2012, 5175-5184.
[13] R. Biswas, S. Mukherjee, R. Mallik, S. Vitta, and T. Dasgupta. “Ultralow Thermal Conductivity and Low Charge Carrier Scattering Potential in Zn1?xCdxSb Solid Solutions for Thermoelectric Application,” Materials Today Energy, 12, 2019, 107-113.
[14] Y. Pei, and D.T. Morelli. “Vacancy Phonon Scattering in Thermoelectric In2Te3–InSb Solid Solutions,” Applied Physics Letters, 94, 12, 2009, 122112.
[15] S. Wang, C. Chang, S. Bai, B. Qin, Y. Zhu, S. Zhan, J. Zheng, S. Tang, and L. D. Zhao. “Fine Tuning of Defects Enables High Carrier Mobility and Enhanced Thermoelectric Performance of n-Type PbTe,” Chemistry of Materials, 35, 2, 2023, 755-763.
[16] S. Sumithra, N.J. Takas, D.K. Misra, W.M. Nolting, P. Poudeu, and K.L. Stokes. “Enhancement in Thermoelectric Figure of Merit in Nanostructured Bi2Te3 with Semimetal Nanoinclusions,” Advanced Energy Materials, 1, 6, 2011, 1141-1147.
[17] C. Prajapati, S. Muthiah, N.K. Upadhyay, S. Bathula, D.K. Kedia, and S. Dhakate. “Nanostructured Inclusions Enhancing the Thermoelectric Performance of Higher Manganese Silicide by Modulating the Transport Properties,” Ceramics International, 50, 20, 2024, 40087-40095.
[18] P. Peng, C. Wang, J. Chen, P. Fan, R. Du, H. Si, Z. Cheng, and J. Wang. “Enhanced Thermoelectric Properties of SnTe through Core-Shell Structures and Band Engineering,” Journal of Alloys and Compounds, 942, 2023, 169010.
[19] S. Wei, B. Wang, Z. Zhang, W. Li, L. Yu, S. Wei, Z. Ji, W. Song, and S. Zheng. “Achieving High Thermoelectric Performance through Carrier Concentration Optimization and Energy Filtering in Cu3SbSe4-Based Materials,” Journal of Materiomics, 8, 5, 2022, 929-936.
[20] G. Tan, F. Shi, S. Hao, H. Chi, L.-D. Zhao, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis. “Codoping in SnTe: Enhancement of Thermoelectric Performance through Synergy of Resonance Levels and Band Convergence,” Journal of the American Chemical Society, 137, 15, 2015, 5100-5112.
[21] X. L. Shi, J. Zou, and Z. G. Chen. “Advanced Thermoelectric Design: From Materials and Structures to Devices,” Chemical Reviews, 120, 15, 2020, 7399-7515.
[22] Rowe, D. M. et. al., Handbook of Thermoelectrics, Macro to Nano, 1st edition, Boca Raton: CRC Press, 2006.
[23] Goldsmid, H. J. et. al., Introduction to Thermoelectricity, 2nd edition, Berlin: Springer, 2016.
[24] P. Zhang, Z. Lou, L. Gong, Z. Wu, X. Chen, W. Xu, Y. Wang, J. Xu, Z. Dashevsky, and F. Gao. “Development and Applications of Thermoelectric Oxide Ceramics and Devices,” Energies, 16, 11, 2023, 4475.
[25] Rowe, D. M. et. al., CRC Handbook of Thermoelectrics, 1st edition, Boca Raton, FL: CRC Press, 1995.
[26] L. Borgsmiller, D. Zavanelli, and G. J. Snyder. “Phase-Boundary Mapping to Engineer Defects in Thermoelectric Materials,” PRX Energy, 1, 2, 2022, 022001.
[27] S. N. F. Mott and H. Jones. “The Theory of the Properties of Metals and Alloys,” 1936.
[28] Y. Pei, H. Wang, and G. J. Snyder. “Band Engineering of Thermoelectric Materials,” Advanced Materials, 24, 46, 2012, 6125-6135.
[29] V. Devanathan. “The Wiedemann-Franz Law for Electrical and Thermal Conduction in Metals,” Journal of Chennai Academy of Sciences, 4, 2021, 1-26.
[30] P. Pichanusakorn, P. Bandaru, “Nanostructured Thermoelectrics”, Materials Science and Engineering R: Reports, 67 , 2010, 19-63.
[31] W. Lu, S. Li, R. Xu, J. Zhang, D. Li, Z. Feng, Y. Zhang, G. Tang, “Boosting Thermoelectric Performance of SnSe via Tailoring Band Structure, Suppressing Bipolar Thermal Conductivity, and Introducing Large Mass Fluctuation,” ACS Applied Materials & Interfaces, 11, 2019, 45133-4514.
[32] G. J. Snyder and E. S. Toberer. “Complex Thermoelectric Materials,” Nature Materials, 7, 2, 2008, 105-114.
[33] L. E. Bell. “Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems,” Science, 321, 5895, 2008, 1457-1461.
[34] N. V. Burnete, F. Mariasiu, D. Moldovanu, and C. Depcik. “Simulink Model of a Thermoelectric Generator for Vehicle Waste Heat Recovery,” Applied Sciences, 11, 3, 2021, 1340.
[35] C. Wood. “Materials for Thermoelectric Energy Conversion,” Reports on Progress in Physics, 51, 4, 1988, 459.
[36] N. Abishek and K. G. Naik. “Influence of Gallium Doping on Structural and Thermoelectric Properties of Bismuth Telluride,” Journal of Crystal Growth, 565, 2021, 126141.
[37] W . Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt. “High Thermoelectric Performance BiSbTe Alloy with Unique Low-Dimensional Structure,” Journal of Applied Physics, 105, 11, 2009, 113713.
[38] R. Zhai, L. Hu, H. Wu, Z. Xu, T. J. Zhu, and X. B. Zhao. “Enhancing Thermoelectric Performance of n-Type Hot Deformed Bismuth-Telluride-Based Solid Solutions by Nonstoichiometry-Mediated Intrinsic Point Defects,” ACS Applied Materials & Interfaces, 9, 34, 2017, 28577-28585.
[39] X. Zhang, Z. Bu, S. Lin, Z. Chen, W. Li, and Y. Pei. “GeTe Thermoelectrics,” Joule, 4, 5, 2020, 986-1003.
[40] H. Wu, L.-D. Zhao, F. Zheng, D. Wu, Y. Pei, X. Tong, M. Kanatzidis, and J. He. “Broad Temperature Plateau for Thermoelectric Figure of Merit ZT > 2 in Phase-Separated PbTe0.7S0.3,” Nature Communications, 5, 1, 2014, 4515.
[41] Y. Tang, Z. M. Gibbs, L. A. Agapito, G. Li, H.-S. Kim, M. B. Nardelli, S. Curtarolo, and G. J. Snyder. “Convergence of Multi-Valley Bands as the Electronic Origin of High Thermoelectric Performance in CoSb3 Skutterudites,” Nature Materials, 14, 12, 2015, 1223-1228.
[42] Z. Zhou, G. Han, X. Lu, G. Wang, and X. Zhou. “High-Performance Magnesium-Based Thermoelectric Materials: Progress and Challenges,” Journal of Magnesium and Alloys, 10, 7, 2022, 1719-1736.
[43] S. M. Kauzlarich, S. R. Brown, and G. J. Snyder. “Zintl Phases for Thermoelectric Devices,” Dalton Transactions, 21, 2007, 2099-2107.
[44] J. Shuai, J. Mao, S. Song, Q. Zhang, G. Chen, and Z. Ren. “Recent Progress and Future Challenges on Thermoelectric Zintl Materials,” Materials Today Physics, 1, 2017, 74-95.
[45] R. Moshwan, L. Yang, J. Zou, and Z. G. Chen. “Eco-Friendly SnTe Thermoelectric Materials: Progress and Future Challenges,” Advanced Functional Materials, 27, 43, 2017, 1703278.
[46] R. Basu and A. Singh. “High Temperature Si-Ge Alloy Towards Thermoelectric Applications: A Comprehensive Review,” Materials Today Physics, 21, 2021, 100468.
[47] W. Li, S. Ghosh, N. Liu, and B. Poudel. “Half-Heusler Thermoelectrics: Advances from Materials Fundamental to Device Engineering,” Joule, 8, 5, 2024, 1274-1311.
[48] J. E. Boschker, R. Wang, and R. Calarco. “GeTe: A Simple Compound Blessed with a Plethora of Properties,” CrystEngComm, 19, 36, 2017, 5324-5335.
[49] V. Ranganayakulu, C. L. Chen, M. N. Ou, C. H. Lee, Y. Y. Chen. “Boosting the Thermoelectric Performance of GeTe via Vacancy Control and Engineering Sintering Parameters,” Materials Today Communications, 33, 2022, 104411.
[50] Z. Liu, N. Sato, Q. Guo, W. Gao, T. Mori. “Realizing the Role of Germanium Vacancies in Germanium Telluride: Metastable Cubic Structure Stabilization, Band Structure Modification, and Stable n-Type Conduction,” NPG Asia Materials, 12, 1, 2020, 66.
[51] A. Kolobov, J. Tominaga, P. Fons, and T. Uruga. “Local Structure of Crystallized GeTe Films,” Applied Physics Letters, 82, 3, 2003, 382-384.
[52] M. Hong, Z. G. Chen, L. Yang, Y. C. Zou, M. S. Dargusch, H. Wang, and J. Zou. “Realizing zT of 2.3 in Ge1-x-ySbxInyTe via Reducing the Phase-Transition Temperature and Introducing Resonant Energy Doping,” Advanced Materials, 30, 11, 2018, 1705942.
[53] J. Li, Z. Chen, X. Zhang, Y. Sun, J. Yang, Y. Pei, “Electronic Origin of the High Thermoelectric Performance of GeTe among the p-type Group IV Monotellurides,” NPG Asia Materials, 9 ,2017, 353-353.
[54] W. Y. Lyu, W. D. Liu, M. Li, X. L. Shi, M. Hong, T. Cao, K. Guo, J. Luo, J. Zou, and Z. G. Chen. “Condensed Point Defects Enhance Thermoelectric Performance of Rare-Earth Lu-Doped GeTe,” Journal of Materials Science & Technology, 151, 2023, 227-233.
[55] W. Lyu, W. Liu, M. Li, X. Shi, M. Hong, W. Chen, T. Cao, B. Hu, Y. Chen, and K. Guo. “Efficient Stepwise Carrier Concentration Optimization in Ge(1+x)-ySbyTe,” Journal of Materials Chemistry C, 12, 2024, 18004-18008.
[56] J. Li, Z. Chen, X. Zhang, H. Yu, Z. Wu, H. Xie, Y. Chen, and Y. Pei. “Simultaneous Optimization of Carrier Concentration and Alloy Scattering for Ultrahigh Performance GeTe Thermoelectrics,” Advanced Science, 4, 12, 2017, 1700341.
[57] M. Samanta and K. Biswas. “Low Thermal Conductivity and High Thermoelectric Performance in (GeTe)1-2x(GeSe)x(GeS)x: Competition Between Solid Solution and Phase Separation,” Journal of the American Chemical Society, 139, 27, 2017, 9382-9391.
[58] D. Z. Wang, W. D. Liu, X. L. Shi, H. Gao, H. Wu, L. C. Yin, Y. Zhang, Y. Wang, X. Wu, and Q. Liu. “Se-Alloying Reducing Lattice Thermal Conductivity of Ge0.95Bi0.05Te,” Journal of Materials Science & Technology, 106, 2022, 249-256.
[59] H. Kim, S. K. Kihoi, U. S. Shenoy, J. N. Kahiu, D. H. Shin, D. K. Bhat, H. S. Lee. “High Thermoelectric and Mechanical Performance Achieved by a Hyperconverged Electronic Structure and Low Lattice Thermal Conductivity in GeTe Through CuInTe2 Alloying,” Journal of Materials Chemistry A, 11, 15, 2023, 8119-8130.
[60] R. Basu and A. Singh. “A Comprehensive Review on Entropy Engineered GeTe: Antidote for Phase Transformation,” Energy Advances, 3, 2024, 689-711.
[61] K. S. Bayikadi, R. Sankar, C. T. Wu, C. Xia, Y. Chen, L. C. Chen, K.-H. Chen, and F. C. Chou. “Enhanced Thermoelectric Performance of GeTe Through in-Situ Microdomain and Ge-Vacancy Control,” Journal of Materials Chemistry A, 7, 25, 2019, 15181-15189.
[62] H. Liu, X. Zhang, J. Li, Z. Bu, X. Meng, R. Ang, and W. Li. “Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe,” ACS Applied Materials & Interfaces, 11, 34, 2019, 30756-30762.
[63] Z. Zheng, X. Su, R. Deng, C. Stoumpos, H. Xie, W. Liu, Y. Yan, S. Hao, C. Uher, and C. Wolverton. “Rhombohedral to Cubic Conversion of GeTe via MnTe Alloying Leads to Ultralow Thermal Conductivity, Electronic Band Convergence, and High Thermoelectric Performance,” Journal of the American Chemical Society, 140, 7, 2018, 2673-2686.
[64] Z. Liu, J. Sun, J. Mao, H. Zhu, W. Ren, J. Zhou, Z. Wang, D. J. Singh, J. Sui, and C.-W. Chu. “Phase-Transition Temperature Suppression to Achieve Cubic GeTe and High Thermoelectric Performance by Bi and Mn Codoping,” Proceedings of the National Academy of Sciences of the United States of America, 115, 21, 2018, 5332-5337.
[65] S. Zhi, J. Li, L. Hu, J. Li, N. Li, H. Wu, F. Liu, C. Zhang, W. Ao, and H. Xie. “Medium Entropy-Enabled High Performance Cubic GeTe Thermoelectrics,” Advanced Science, 8, 12, 2021, 2100220.
[66] S. Schwarzmuller, M. Jakob, M. Nentwig, T. Schroder, A. Kuhn, A. Duvel, P. Heitjans, O. Oeckler. “Tuning the Vacancy Concentration in Lithium Germanium Antimony Tellurides—Influence on Phase Transitions, Lithium Mobility, and Thermoelectric Properties,” Chemistry of Materials, 30, 21, 2018, 7970-7978.
[67] M. Liu, J. Zhu, B. Cui, F. Guo, Z. Liu, Y. Zhu, M. Guo, Y. Sun, Q. Zhang, and Y. Zhang. “High-Performance Lead-Free Cubic GeTe-Based Thermoelectric Alloy,” Cell Reports Physical Science, 3, 6, 2022, 100902.
[68] S. Abbas, B. Jarwal, T.-T. Ho, S. M. Valiyaveettil, C. R. Hsing, T. L. Chou, C. M. Wei, L. C. Chen, K. H. Chen. “Synergistic Effect of Indium Doping on Thermoelectric Performance of Cubic GeTe-Based Thin Films,” Materials Today Physics, 49, 2024, 101581.
[69] Y. Pei, A. F. May, and G. J. Snyder. “Self-Tuning the Carrier Concentration of PbTe/Ag2Te Composites with Excess Ag for High Thermoelectric Performance,” Advanced Energy Materials, 1, 2, 2011, 291-296.
[70] S. Meledath Valiyaveettil, D. L. Nguyen, D. P. Wong, C. R. Hsing, L. Paradis-Fortin, M. Qorbani, A. Sabbah, T. L. Chou, K. K. Wu, and V. Rathinam. “Enhanced Thermoelectric Performance in Ternary Skutterudite Co(Ge0.5Te0.5)3 via Band Engineering,” Inorganic Chemistry, 61, 10, 2022, 4442-4452.
[71] Y. Kawajiri, S. Tanusilp, M. Kumagai, M. Ishimaru, Y. Ohishi, J. Tanaka, and K. Kurosaki. “Enhancement of Thermoelectric Properties of n-Type Bi2Te3-xSex by Energy Filtering Effect,” ACS Applied Energy Materials, 4, 10, 2021, 11819-11826.
[72] B. Jarwal, S. Abbas, T.-L. Chou, S. M. Valiyaveettil, A. Kumar, S. Quadir, T. T. Ho, D. P. Wong, L. C. Chen, and K. H. Chen. “Boosting Thermoelectric Performance in Nanocrystalline Ternary Skutterudite Thin Films Through Metallic CoTe2 Integration,” ACS Applied Materials & Interfaces, 16, 12, 2024, 14770-14780.
[73] Y. Zhong, F. Lv, X. Zhao, Q. Deng, X. An, Z. He, L. Gan, R. Ang. “Extraordinary Role of Resonant Dopant Vanadium for Improving Thermoelectrics in n-Type PbTe,” Materials Today Physics, 30, 2023, 100955.
[74] S. N. Girard, J. He, C. Li, S. Moses, G. Wang, C. Uher, V. P. Dravid, and M. G. Kanatzidis. “In Situ Nanostructure Generation and Evolution Within a Bulk Thermoelectric Material to Reduce Lattice Thermal Conductivity,” Nano Letters, 10, 8, 2010, 2825-2831.
[75] L. Huang, J. Liao, G. Yuan, T. Liu, X. Lei, C. Wang, and Q. Zhang. “Tuning the Carrier Scattering Mechanism to Improve the Thermoelectric Performance of p-Type Mg3Sb1.5Bi0.5-Based Material by Ge Doping,” Materials Today Energy, 25, 2022, 100977.
[76] M. Dutta, M. Samanta, T. Ghosh, D. J. Voneshen, and K. Biswas. “Evidence of Highly Anharmonic Soft Lattice Vibrations in a Zintl Rattler,” Angewandte Chemie, 133, 8, 2021, 4305-4311.
[77] T. Wang, K. Dou, H. Wang, J. Kim, X. Wang, W. Su, T. Chen, W. Kim, and C. Wang. “Higher-Order Anharmonicity Leads to Ultra-Low Thermal Conductivity and High Output Power Density of SnTe-Based Thermoelectric Materials and Modules,” Materials Today Physics, 26, 2022, 100748.
[78] L. Wu, X. Li, S. Wang, T. Zhang, J. Yang, W. Zhang, L. Chen, and J. Yang. “Resonant Level-Induced High Thermoelectric Response in Indium-Doped GeTe,” NPG Asia Materials, 9, 1, 2017, 343.
[79] T. R. Bhandari, R. P. Bhattarai, and R. Adhikari. “A Review on Synthesis, Structural Properties and Applications of Metal Oxide-Based Thin Film Thermoelectric Materials,” Journal of Materials Science, 59, 2024, 20204-20220.
[80] Z. Wang, J. E. Alaniz, W. Jang, J. E. Garay, and C. Dames. “Thermal Conductivity of Nanocrystalline Silicon: Importance of Grain Size and Frequency-Dependent Mean Free Paths,” Nano Letters, 11, 6, 2011, 2206-2213.
[81] G. Kogo, B. Xiao, S. Danquah, H. Lee, J. Niyogushima, K. Yarbrough, A. Candadai, A. Marconnet, S. K. Pradhan, and M. Bahoura. “A Thin Film Efficient pn-Junction Thermoelectric Device Fabricated by Self-Align Shadow Mask,” Scientific Reports, 10, 1, 2020, 1067.
[82] D. Ao, F. Li, Y. Chen, J. Luo, G. Liang, Z. Zheng, X.-H. Zhang, and P. Fan. “CoSb3-Based Thin-Film Thermoelectric Devices with High Performance via Electrode Optimization,” ACS Applied Energy Materials, 4, 5, 2021, 5265-5273.
[83] K.S. Bayikadi, C.T. Wu, L.-C. Chen, K.-H. Chen, F.-C. Chou, R. Sankar, “Synergistic Optimization of Thermoelectric Performance of Sb doped GeTe with a Strained Domain and Domain Boundaries,” Journal of Materials Chemistry A, 8, 2020, 5332-5341.
[84] P. V. Medeiros, S. Stafstrom, and J. Bjork. “Effects of Extrinsic and Intrinsic Perturbations on the Electronic Structure of Graphene: Retaining an Effective Primitive Cell Band Structure by Band Unfolding,” Physical Review B, 89, 4, 2014, 041407.
[85] P. V. Medeiros, S. S. Tsirkin, S. Stafstrom, and J. Bjork. “Unfolding Spinor Wave Functions and Expectation Values of General Operators: Introducing the Unfolding-Density Operator,” Physical Review B, 91, 4, 2015, 041116.
[86] L. Yue, W. Cui, S. Zheng, Y. Wu, X. Dong, and G. Lu. “Enhanced Thermoelectric Performance of In and Se Co-Doped GeTe Compounds,” Journal of Materials Research and Technology, 9, 3, 2020, 4106-4113.
[87] C. Merlet, “Thin film quantification by EPMA: Accuracy of Analytical Procedure,” Microscopy and Microanalysis, 12, 2006, 842-843.
[88] M. Ahmad, J. Zhao, J. Iqbal, W. Miao, L. Xie, R. Mo, and J. Zhu. “Conductivity Enhancement by Slight Indium Doping in ZnO Nanowires for Optoelectronic Applications,” Journal of Physics D: Applied Physics, 42, 16, 2009, 165406.
[89] S. Y. Bae, C. W. Na, J. H. Kang, and J. Park. “Comparative Structure and Optical Properties of Ga-, In-, and Sn-Doped ZnO Nanowires Synthesized via Thermal Evaporation,” The Journal of Physical Chemistry B, 109, 7, 2005, 2526-2531.
[90] G. Xing, J. Sun, Y. Li, X. Fan, W. Zheng, and D. J. Singh. “Thermoelectric Properties of p-Type Cubic and Rhombohedral GeTe,” Journal of Applied Physics, 123, 19 2018, 195105.
[91] L. Wang, X. Zhang, and L.-D. Zhao. “Evolving Strategies Toward Seebeck Coefficient Enhancement,” Accounts of Materials Research, 4, 5, 2023, 448-456.
[92] C. Chiritescu, D. G. Cahill, N. Nguyen, D. Johnson, A. Bodapati, P. Keblinski, and P. Zschack. “Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals,” Science, 315, 5810, 2007, 351-353.
[93] D. G. Cahill and F. Watanabe. “Thermal Conductivity of Isotopically Pure and Ge-Doped Si Epitaxial Layers from 300 to 550 K,” Physical Review B, 70, 23, 2004, 235322.
[94] E. Bozorg-Grayeli, A. Sood, M. Asheghi, V. Gambin, R. Sandhu, T. I. Feygelson, B. B. Pate, K. Hobart, and K. E. Goodson. “Thermal Conduction Inhomogeneity of Nanocrystalline Diamond Films by Dual-Side Thermoreflectance,” Applied Physics Letters, 102, 11, 2013, 111907.
[95] W. Capinski, H. Maris, T. Ruf, M. Cardona, K. Ploog, D. Katzer. “Thermal-Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique,” Physical Review B, 59, 12, 1999, 8105.
[96] H. S. Kim, Z. M. Gibbs, Y. Tang, H. Wang, and G. J. Snyder. “Characterization of Lorenz Number with Seebeck Coefficient Measurement,” APL Materials, 3, 4, 2015, 041506.
[97] M. T. Buscaglia, F. Maglia, U. Anselmi-Tamburini, D. Marre, I. Pallecchi, A. Ianculescu, G. Canu, M. Viviani, M. Fabrizio, and V. Buscaglia. “Effect of Nanostructure on the Thermal Conductivity of La-Doped SrTiO3 Ceramics,” Journal of the European Ceramic Society, 34, 2, 2014, 307-316.
[98] J. Li, Q. Hu, S. He, X. Tan, Q. Deng, Y. Zhong, F. Zhang, and R. Ang. “Enhancing Near-Room-Temperature GeTe Thermoelectrics Through In/Pb Co-Doping,” ACS Applied Materials & Interfaces, 13, 31, 2021, 37273-37279.
[99] R. Liang, G. Yan, Y. Geng, L. Hu, F. Liu, W. Ao, C. Zhang, “Compromise Design of Resonant Levels in GeTe?Based Alloys with Enhanced Thermoelectric Performance,” Advanced Functional Materials, 2024, 2404021.
[100] S. Perumal, M. Samanta, T. Ghosh, U. S. Shenoy, A. K. Bohra, S. Bhattacharya, A. Singh, U. V. Waghmare, and K. Biswas. “Realization of High Thermoelectric Figure of Merit in GeTe by Complementary Co-Doping of Bi and In,” Joule, 3, 10, 2019, 2565-2580.
[101] Z. Guo, G. Wu, X. Tan, R. Wang, Z. Zhang, G. Wu, Q. Zhang, J. Wu, G. Q. Liu, and J. Jiang. “Enhanced Thermoelectric Performance in GeTe by Synergy of Midgap State and Band Convergence,” Advanced Functional Materials, 33, 11, 2023, 2212421.
[102] H. Sun, X. Lu, H. Chi, D. T. Morelli, and C. Uher. “Highly Efficient (In2Te3)x(GeTe)3-3x Thermoelectric Materials: A Substitute for TAGS,” Physical Chemistry Chemical Physics, 16, 29, 2014, 15570-15575.
[103] A. Suwardi, J. Cao, Y. Zhao, J. Wu, S. W. Chien, X. Y. Tan, L. Hu, X. Wang, W. Wang, and D. Li. “Achieving High Thermoelectric Quality Factor Toward High Figure of Merit in GeTe,” Materials Today Physics, 14, 2020, 100239.
[104] F. Robinson, V. Sethi, C. K. de Groot, A. L. Hector, R. Huang, G. Reid. “Low-Pressure CVD of GeE (E = Te, Se, S) Thin Films from Alkylgermanium Chalcogenolate Precursors and Effect of Deposition Temperature on the Thermoelectric Performance of GeTe,” ACS Applied Materials & Interfaces, 13, 40, 2021, 47773-47783.
[105] E. R. Sittner, K. S. Siegert, P. Jost, C. Schlockermann, F. R. L. Lange, M. Wuttig. “(GeTe)x–(Sb2Te3)1-x Phase-Change Thin Films as Potential Thermoelectric Materials,” Physica Status Solidi (A), 210, 1, 2013, 147-152.
[106] Z. Hu, H. Yu, J. He, Y. Ran, H. Zeng, Y. Zhao, Z. Yu, and K. Tai. “High-Performance Sb-Doped GeTe Thermoelectric Thin Film and Device,” Acta Metallurgica Sinica (English Letters), 36, 10, 2023, 1699-1708.
[107] M. Li, M. Hong, X. Tang, Q. Sun, W.-Y. Lyu, S.-D. Xu, L.-Z. Kou, M. Dargusch, J. Zou, Z.-G. Chen, “Crystal Symmetry Induced Structure and Bonding Manipulation Boosting Thermoelectric Performance of GeTe,” Nano Energy, 73, 2020, 104740.
[108] M. Hong, Y. Wang, T. Feng, Q. Sun, S. Xu, S. Matsumura, S.T. Pantelides, J. Zou, Z.-G. Chen, “Strong Phonon–Phonon Interactions Securing Extraordinary Thermoelectric Ge1–x Sb x Te with Zn-Alloying-Induced Band Alignment,” Journal of the American Chemical Society, 141, 2018, 1742-1748.
[109] L. Xie, Y. Chen, R. Liu, E. Song, T. Xing, T. Deng, Q. Song, J. Liu, R. Zheng, X. Gao, “Stacking Faults Modulation for Scattering Optimization in GeTe-based Thermoelectric Materials,” Nano Energy, 68, 2020, 104347.
[110] B. Srinivasan, S. Le Tonquesse, A. Gelle, C. Bourges, L. Monier, I. Ohkubo, J.-F. Halet, D. Berthebaud, T. Mori, “Screening of Transition (Y, Zr, Hf, V, Nb, Mo, and Ru) and Rare-Earth (La and Pr) Elements as Potential Effective Dopants for Thermoelectric GeTe – An Experimental and Theoretical appraisal,” Journal of Materials Chemistry A, 8, 2020, 19805-19821.
[111] S. Imam, K.S. Bayikadi, M. Ubaid, V. Ranganayakulu, S. Devi, B.S. Pujari, Y.-Y. Chen, L.-C. Chen, K.-H. Chen, F.-L. Lin, “Achieving Synergistic Performance through Highly Compacted Microcrystalline Rods induced in Mo doped GeTe based Compounds,” Materials. Today Physics, 22, 2022, 100571.
[112] U.S. Shenoy, D.K. Bhat, “Tuning the Electronic Structure of Rhombohedral and Cubic GeTe for Thermoelectric Application: Influence of Molybdenum Doping,” Journal of Physics and Chemistry of Solids, 188, 2024, 111943.
[113] E. Isotta, J. Andrade?Arvizu, U. Syafiq, A. Jimenez?Arguijo, A. Navarro?Guell, M. Guc, E. Saucedo, P. Scardi, “Towards Low Cost and Sustainable Thin Film Thermoelectric Devices based on Quaternary Chalcogenides,” Advanced Functional Materials, 32, 2022, 2202157.
[114] J. Yan, X. Liao, D. Yan, Y. Chen, “Review of Micro Thermoelectric Generator”, Journal of Microelectromechanical Systems, 27, 2018, 1-18.
[115] R. Amin, M.A. Hossain, Y. Zakaria, “Interfacial Kinetics and Ionic Diffusivity of the Electrodeposited MoS2 Film,” ACS Applied Materials Interfaces., 10, 2018, 13509-13518.
[116] J. Ma, X.-Y. Xin, H.-Q. Liu, Y.-J. Gu, Y.-F. Wang, “Origin of Improved Average Power Factor and Mechanical Properties of SnTe with High-Dose Bi2Te3 Alloying,” Ceramics International, 49 , 2023, 21916-21922. |