博碩士論文 105322080 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:250 、訪客IP:3.144.244.117
姓名 張智雄(Chih-Hsiung Chang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以建築資訊模型/深度學習作法實現聲音定位救災用途
(Realization of Indoor Positioning Based on Sound for Disaster Relief Using Building Information Modeling and Deep Learning)
相關論文
★ 路權取得資料探勘與決策輔助工具設計之研究★ 以時空資料庫管理管線單位道路申挖許可之雛形系統研究
★ 關鍵基礎設施相依性模型設計與應用★ 應用RFID技術於室內空間防救災時的疏散指引系統之研究
★ 考量列車迴轉與擾動因子情況下高速鐵路系統最佳化排班設計之研究★ 應用資料探勘分群分類演算法與空間資料庫技術在鋪面裂縫影像辨識之初探
★ 以本體論建構工程程式設計課程之線上考試平台研究★ 結合遙測影像與GIS資料以資料挖掘 技術進行崩塌地辨識-以石門水庫集水區為例
★ 設計整合型手持式行動裝置平台於災害設施損毀資料收集研究★ 考量擾動因子情況下傳統鐵路時刻表建置合併於高速鐵路時刻表模型之回顧與探討
★ 關鍵基礎設施相依性分析:以竹科某晶圓廠區為例★ 建築資訊模型於火災原因調查流程的應用
★ Hadoop雲端平台在工程應用之探討研究★ 關鍵基礎設施投入產出停轉模型之回顧與應用
★ 擴展建築資訊模型於防救災應用:使用Revit平台★ 應用交通資料蒐集與發佈設備及資料探勘法協助觀光地區交通管理策略之研究:以桃園大溪老街為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著科技的日新月異,建築資訊模型(Building Information Modeling, BIM)、人工智慧(Artificial Intelligence, AI)和虛擬實境(Virtual Reality, VR)技術也逐漸成熟,其中又以AI的成長最為顯著,此一進展也漸漸改變人們的生活習慣,例如透過手機聲音辨識即可達成語音查詢或個人化秘書之功能。而聲音對於建築物也是一項非常重要之課題,例如透過各種科技模擬建築物室內或戶外場景中的聲音傳播和噪音控制…等。目前,聲音定位方面之應用非常具有潛力,但聲音定位技術仍會受到噪音、障礙物…等干擾,所以運用較為受限,故本研究想藉此提出一聲音定位的方法,以解決上述之問題。
本研究利用BIM、VR和頭部相關轉移函數(Head Related Transfer Functions, HRTF)技術達到擬真音場,並蒐集音訊後再透過AI訓練,以達到聲音定位之功能。經過驗證我們得知:利用本研究所提出之聲音定位方法,在解析度為25m2時,準確度為95.2%;在解析度為12m2時,準確度為89.3%,且在AI訓練階段皆有加入訊噪比為0.3之噪音。在連續性音訊中,當解析度為25 m2和12 m2時,都可100%辨識,且準確度分別高達94%及86%。
本研究驗證區域也挑選障礙物較多之廚房和客廳區域,相對於傳統聲音定位受障礙物之影響,透過本研究所提出之聲音參數化架構,反而於AI訓練階段取得更多特徵值,以達到更高準確度,也解決現今聲音定位應用範圍受限之疑慮,且相較於其他無線射頻定位技術受金屬屏蔽作用所限制,本研究所提供聲音定位之功能可利用蒐集不同音頻,並擷取某特定頻率進行定位,以此增加在複雜環境聲音定位可行性,例如:火場…等。
摘要(英) With the rapid development of science and technology, BIM, AI, and VR technologies have gradually matured. Among them, the growth of Artificial Intelligence has become most remarkable. This progress has gradually changed people’s living habits. For example, a voice query or personalized secretary function can be achieved through voice recognition of a cell phone. Sound is also a very important issue for buildings, such as simulating the sound transmission and noise control in indoor or outdoor scenes of buildings through various technologies. At present, the application of sound positioning has great potential, but sound positioning technology is still subject to noise, obstacles, etc. Therefore, this study would like to propose a sound localization method to solve the above problem.
This study uses BIM, VR, and HRTF techniques to achieve a Virtual sound field. Collecting the audio and then uses AI training to achieve sound positioning. After verification, we learned that: Using the sound positioning method proposed in this study, in the AI training stage, noises with a signal to noise ratio 0.3 are added. The accuracy is 95.2% when the resolution is 25m2; The accuracy is 89.3% when the resolution is 12m2. In continuous stream of audio, when the resolution is 25 m2 and 12m2, it can be 100% recognized, and the accuracy is as high as 94% and 86% respectively.
In this study, the verification area selected kitchen and living areas with more obstacles. Compared with traditional sound localization affected by obstacles, through the sound parameterization framework proposed in this study, more features are obtained in the AI training stage to achieve higher accuracy. Also solves the doubts about the limited scope of today′s sound positioning applications. Compared to other radio frequency positioning technologies, it is limited by metal shielding. The sound positioning function of the institute can be used to collect different frequencies and capture a specific frequency for positioning. In order to increase the feasibility of sound positioning in a complex environment, such as fire field, and so on.
關鍵字(中) ★ 人工智慧
★ 聲音定位
★ 虛擬實境
★ 建築資訊模型
★ 頭部相關轉移函數
關鍵字(英) ★ Artificial Intelligence
★ Sound Positioning
★ Virtual Reality
★ Building Information Modeling
★ Head Related Transfer Functions
論文目次 摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 研究背景 1
1-2 研究問題與目的 2
1-3 研究範圍與限制 2
1-4 研究流程 3
1-5 論文架構 4
第二章 文獻回顧 6
2-1 BIM和VR相關應用 6
2-1-1 BIM 6
2-1-2 VR 7
2-2 Unity遊戲引擎相關技術 8
2-2-1 Unity遊戲引擎及其他遊戲引擎比較 9
2-2-2 Steam VR 9
2-2-3 Steam Audio 10
2-3 聲學工程相關技術 11
2-3-1 物理聲學 11
2-3-2 HRTF 13
2-4 AI文獻與技術 15
2-4-1 機器學習 15
2-4-2 深度學習 16
2-5 聲音定位文獻 17
2-6 語音辨識技術 18
2-7 文獻回顧總結 19
第三章 聲音定位系統架構與機制 20
3-1 系統架構 20
3-2 系統運作機制與設計 24
3-2-1 材質轉換機制 24
3-2-2 聽覺層聲音參數新增機制與上傳設計 31
3-2-3 控制層新增機制與上傳設計 42
3-2-4 BIM Model在Unity虛擬實境化機制 43
3-2-5 聲音定位的方法 50
第四章 聲音定位系統概念展示 54
4-1 系統實作流程 54
4-1-1 專案虛擬實境化 54
4-1-2 專案聲音定位應用 57
4-2 系統成果分析 58
4-2-1 虛擬實境化視覺層呈現 59
4-2-2 虛擬實境化控制層呈現 60
4-2-3 聲音定位驗證 60
第五章 結論與建議 68
5-1 結論 68
5-2 未來展望與建議 69
5-3 貢獻 70
參考文獻 72
評審意見回覆表 76
參考文獻 吳中期, (2016). IFC與Unity資料模型交換機制之建置與應用, 碩士論文, 國立高雄應用科技大學土木工程研究所, 高雄市, 臺灣。

許俊逸、徐景文、林傑、李文欽, (2014). BIM帶來的變革與政府的前瞻作為, 工程, 87(5), 2-9。

謝志侑, (2016). 改善耳機產生之虛擬音場定位感之探討, 碩士論文, 國立臺北科技大學資訊工程系所, 臺北市, 臺灣。

黃文堅、唐源, (2017). 實戰Tensorflow:Google深度學習系統, 碁峰資訊, 臺北市, 臺灣。

Abdel-Hamid, O., Mohamed, A., Jiang, H., Deng, L., Penn, G., & Yu, D. (2014). Convolutional Neural Networks for Speech Recognition. IEEE/ACM Transactions On Audio, Speech, And Language Processing, 22(10), 1533 -1545.

Altini, M., Brunelli, D., Farella, E., & Benini, L. (2010). Bluetooth in door localization with multiple neural networks. IEEE 5Th International Symposium On Wireless Pervasive Computing, IEEE, Mondena, Italy, May 5-7, 2010.

Azhar, S. (2011). Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the AEC Industry. Leadership and Management in Engineering, 11(3), 241-252.

Begault, D., & Trejo, L. (2000). 3-D sound for virtual reality and multimedia. NASA Ames Research Center, Sunnyvale, CA, USA.

Biswas, J., & Veloso, M. (2010). WiFi localization and navigation for autonomous indoor mobile robots. IEEE International Conference on Robotics and Automation, IEEE, Anchorage, AK, USA, May 3-7, 2010.

Chen, G., Parada, C., & Heigold, G. (2014). Small-footprint keyword spotting using deep neural networks. International Conference Acoustics, Speech and Signal Processing, IEEE, Florence, Italy, May 4-9, 2014.

Dunston, P., Arns, L., Mcglothlin, J., Lasker, G., & Kushner, A. (2007). An Immersive Virtual Reality Mock-Up for Design Review of Hospital Patient Rooms. International Conference on Construction Applications of Virtual Reality, University Park, State College, PA, USA, Oct. 22-23, 2007.

Eastman, C., Sacks, R., Teicholz, P., & Liston, K. (2011). BIM handbook: A Guide to Building Information Modeling for Owners, Managers, Architects, Engineers, Contractors, and Fabricators, 2nd ed. John Wiley and Sons, Hoboken, NJ, USA.

Filonenko, V., Cullen, C., & Carswell, J. (2010). Investigating Ultrasonic Positioning on Mobile Phones. International Conference On Indoor Positioning and Indoor Navigation, IEEE, Zurich, Switzerland, Sept. 15-17, 2010.

Ibrahim, R., & Rahimian, F. (2010). Comparison of CAD and manual sketching tools for teaching architectural design. Automation in Construction, 19(8), 978-987.

Jin, T. (1997). Studies On Human Behavior And Tenability In Fire Smoke. Fire Safety Science, 5, 3-21.

Krishnan, S., Sharma, P., Guoping, Z., & Woon, O. (2007). A UWB based Localization System for Indoor Robot Navigation. IEEE International Conference On Ultra-Wideband, IEEE, Singapore, Sept.24-26, 2007.

Mandal, A., Lopes, C., Givargis, T., Haghighat, A., Jurdak, R., & Baldi, P. (2005). Beep: 3D Indoor Positioning Using Audible Sound. Second IEEE Consumer Communications and Networking Conference, IEEE, Las Vegas, NV, USA, Jan. 6, 2005.

Mainetti, L., Patrono, L., & Sergi, I. (2014). A survey on indoor positioning systems. International Conference on Software, Telecommunications and Computer Networks, IEEE, Split, Croatia, Sept. 17-19, 2014.

Ni, L., Zhang, D., & Souryal, M. (2011). RFID-based localization and tracking technologies. IEEE Wireless Communications, 18(2), 45-51.

Paes, D., Arantes, E., & Irizarry, J. (2017). Immersive environment for improving the understanding of architectural 3D models: Comparing user spatial perception between immersive and traditional virtual reality systems. Automation in Construction, 84, 292-303.

Pei, L., Chen, L., Guinness, R., Liu, J., Kuusniemi, H., & Chen, Y. et al. (2013). Sound positioning using a small-scale linear microphone array. International Conference on Indoor Positioning and Indoor Navigation, IEEE, Montbeliard-Belfort, France, Oct. 28-31, 2013.

Ramos, G., Cobos, M., Bank, B., & Belloch, J. (2017). A Parallel Approach to HRTF Approximation and Interpolation Based on a Parametric Filter Model. IEEE Signal Processing Letters, 24(10), 1507-1511.

Sainath, T., & Parada, C. (2015). Convolutional Neural Networks for Small-Footprint Keyword Spotting. INTERSPEECH-2015, ISCA, Dresden, Germany, Sept. 6-10, 2015.

Savioja, L., & Svensson, U. (2015). Overview of geometrical room acoustic modeling techniques. The Journal of the Acoustical Society of America, 138(2), 708-730.

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., & van den Driessche, G. et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489.

Tóth, L. (2014). Combining time- and frequency-domain convolution in convolutional neural network-based phone recognition. International Conference On Acoustics, Speech and Signal Processing, IEEE, Florence, Italy, May 4-9, 2014.

Vorländer, M., Schröder, D., Pelzer, S., & Wefers, F. (2015). Virtual reality for architectural acoustics. Journal of Building Performance Simulation, 8(1), 15-25.

Wikipedia. (2008a). Sound localization in Wikipedia: Interaural Level Difference (ILD) between left ear (left) and right ear (right). Retrieved Nov. 12, 2017, from https://goo.gl/EWNu1S.

Wikipedia. (2008b). Sound localization in Wikipedia: Interaural Time Difference (ITD) between left ear (top) and right ear (bottom). Retrieved Nov. 12, 2017, from https://goo.gl/QumgeC.

Yu, D., & Deng, L. (2014). Automatic Speech Recognition – A Deep Learning Approach. Springer, London, UK.

Zotkin, D., Duraiswami, R., & Davis, L. (2004). Rendering Localized Spatial Audio in a Virtual Auditory Space. IEEE Transactions on Multimedia, 6(4), 553-564.

Zulkifli, R., Mohd Nor, M. J., Ismail, A. R., Nuawi, M. Z., & Tahir, M. F. M. (2009). Effect of Perforated size and air gap thickness on acoustic properties of coir fibre sound absorption panels. European Journal of Scientific Research, 28(2), 242-252.
指導教授 周建成(Chien-Cheng Chou) 審核日期 2019-1-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明