博碩士論文 105322083 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:139 、訪客IP:13.59.181.246
姓名 曾禹昕(Yu-Hsin Tseng)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 裂隙岩體水力傳導係數之不確定性
(Uncertainty of Hydraulic Conductivity of Fractured Rock Mass)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 裂隙岩體具有空間變異性,其裂隙之方向性對水力傳導係數影響甚大。本文先針對裂隙岩體中水力傳導係數之表徵單元體積(representative elementary volume,REV)進行探討,當岩體體積小於表徵單元體積時,其水力傳導係數(hydraulic conductivity)具有離散性及變異性,試驗及分析結果可能將不具代表性。再利用求得之表徵單元體積進而探討裂隙位態及費雪常數對水力傳導係數的影響。最後,藉由裂隙岩體影響之參數定義連通比之關係。
由於探討岩體裂隙水力傳導係數之研究,往往需要大量試體進行試驗,通常耗時費力且試體幾何變因不易掌握。近年來裂隙岩體數值模擬技術成熟,離散裂隙網絡(discrete fracture network,DFN)是一種廣泛應用於裂隙岩體的建模方法,因此本文利用數值軟體 FracMan 生成離散裂隙網絡,並使用兩種不同計算水力傳導係數之模式(Conventional Oda與 Oda gold),模擬裂隙岩體的幾何性質及分析取樣岩體的水力傳導係數,以系統性方式進行裂隙幾何的參數研究,包括:岩體模型大小、取樣體積、傾角、傾向、費雪常數、裂隙直徑及裂隙程度等。針對一系列裂隙岩體水力傳導係數的模擬結果,統計裂隙岩體水力傳導係數期望值及變異係數(acceptable coefficient of variance),分別建立其與裂隙幾何關係的量化模式,並彙整影響連通比的參數而量化其關係求得之結果,再將其整合成可代表連通比之量化模式。最後,根據量化模式結果,可決定裂隙岩體的水力傳導係數及連通比,應用於現地之評估及預測裂隙岩體中之流動與傳輸行為,為工程上帶來有效的預防及利益。
摘要(英) The property of fractured rock is highly spatial variable, and the directionality of fractures has a great influence on the hydraulic conductivity. This study presents the representative elementary volume (REV) of hydraulic conductivity of fractured rock mass. When the rock sample is smaller than the representative elementary volume (REV), the sampled hydraulic conductivity would be discrete, variable and not representative. Then use the REV to investigate the effect of the fracture orientation and Fisher constant on the hydraulic conductivity. Finally, the relationship of the connectivity is defined by the influence parameters of the fractured rock mass.
Due to the research of hydraulic conductivity of fractured rock mass usually needs a large number of specimens to do the test, which is difficult to conduct due to high time-consuming and cost. In recent studies, the discrete fracture network (DFN) was widely used to simulate the fractured rock. FracMan was used to generate DFN in rock mass models and execute the systematical sampling in this study. Conventional Oda and Oda gold were adopted to estimate the hydraulic conductivity of the fractured rock mass. A series parametric study including size of rock mass model, specimen volume, dip angle, dip direction, Fisher constant κ, fracture diameter, and fracture intensity was conducted in this study. The quantized model of mean and coefficient of variance of hydraulic conductivity was established based on the results of parametric study. And consolidated the quantized result of the parameters which influence on the connectivity. Then, integrated these results to represent the quantized model of the connectivity. Finally, according to the results of the quantized model, the hydraulic conductivity and the connectivity of the fractured rock mass can be determined, which is applied to the local assessment and prediction of the flow and transmission behavior in the fractured rock mass. It has effective prevention and benefits to the engineering.
關鍵字(中) ★ 裂隙岩體
★ 水力傳導係數
★ 不確定性
★ 表徵單元體積
★ Conventional Oda
★ Oda gold
★ 離散裂隙網絡
關鍵字(英) ★ fractured rock mass
★ hydraulic conductivity
★ uncertainty
★ representative elementary volume (REV)
★ Conventional Oda
★ Oda gold
★ discrete fracture network (DFN)
論文目次 摘要...I
Abstract...II
致謝...III
目錄...IV
圖目錄...VI
表目錄...X
第一章、緒論...1
1.1 研究動機...1
1.2 研究目的...2
1.3 論文架構...2
第二章、文獻回顧...4
2.1 表徵單元體積...4
2.2 等值連續體方法...4
2.3 裂隙含量量測...5
2.4 離散裂隙網絡...6
2.5 水力特性理論...7
2.6 水力傳導係數影響因子...10
2.7 水力傳導係數張量...11
2.8 位態...13
2.9 裂隙岩體滲透性張量數值模擬...14
第三章、研究步驟...17
3.1 研究流程...17
3.2 建模步驟...18
3.3 Conventional Oda水力傳導係數...30
3.4 Oda gold 水力傳導係數...33
3.5 主水力傳導係數定義...38
第四章、Conventional Oda水力傳導係數...43
4.1 巨觀等向性岩體...43
4.2 巨觀橫向等向性岩體...47
4.3 等值連續體驗證...61
第五章、Oda gold水力傳導係數...74
5.1 連通比定義...74
5.2 等向性岩體...75
5.3 等向性裂隙岩體之量化及驗證...104
第六章、結論與建議...106
6.1 結論...106
6.2 建議...108
參考文獻...109
參考文獻 1. 法麗佳 (Farichah, Himatul),「Representative elementary volume of P32 and hydraulic conductivity of fractured rock masses」,國立中央大學土木工程學系,碩士論文,中壢 (2017)。
2. 田永銘、盧育辰、許哲睿、法麗佳、陳虹君,「不連續異質性岩體力學性質與幾何特性之變異性(III)」,科技部專題研究計畫期末報告,MOST 104-2221-E-008-089- (2016)。
3. 許哲睿,「岩體裂隙程度與力學性質之不確定性」,國立中央大學土木工程學系,碩士論文,中壢 (2017)。
4. 吳宛庭,「三維裂隙網路升尺度方法推估等效參數之差異評估」,國立中央大學應用地質學系,碩士論文,中壢 (2016)。
5. Ahmed Elfeel, M., “Improved upscaling and reservoir simulation of enhanced oil recovery processes in naturally fractured reservoirs, ” Diss. Heriot-Watt University, (2014).
6. Amaziane, B., and T. Hontans, “Equivalent permeability and simulation of two-phase flow in heterogeneous porous media,” Computers & Geosciences, Vol. 5, pp. 279-300 (2002).
7. Baecher, G. B., Lanney, N. A. and Einstein, H. H., “Statistical description of rock properties and sampling” Proceedings of 18th US Symposium on Rock Mechanics, 5C1-1 to 5C1-8, (1977).
8. Baghbanan, A., and Jing, L., “Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture,” International Journal of Rock Mechanics and Mining Sciences, Vol. 45(8), 1320-1334 (2008).
9. Bear, J., “Dynamic of Fluids in Porous Media,” American Elsevier, New York, USA, pp.19-21 (1972).
10. Brady, B.H.G. and Brown, E.T. “Rock Mechanics for Underground Mining,” Allen & Unwin (1985).
11. Bogdanov, I. I., V. V. Mourzenko, J.-F. Thovert, and Adler, P. M., “Effective permeability of fractured porous media in steady state flow,” Water Resources Research, Vol. 39(1), pp. 1023 (2003).
12. Caine J.S., and S.R.A. Tomusiak, “Brittle structures and theirrole in controlling porosity and permeability in a complex Precambrian crystalline-rock aquifer system in the Colorado Rocky Mountain Front Range,” Geological Society of America Bulletin, Vol. 115, pp. 1410-1424 (2003).
13. Chesnaux, R., Allen, D.M., and Jenni, S., “Regional fracture network permeability using outcrop scale measurements,” Hydrogeology Journal, Vol. 108, pp. 259-271 (2009).
14. Decroux, B., and O. Gosselin, “Computation of effective dynamic properties of naturally fractured reservoirs: Comparison and validation of methods,” European Association of Geoscientists and Engineers, London, UK, pp. 1-18 (2013).
15. Dershowitz, W.S., “Rock joint systems,” Ph.D. Dissertation, Massachusetts Institute of Technology (1984).
16. Dershowitz, W.S. and Einstein, H., “Characterizing rock joint geometry with joint system models,” Rock Mechanics and Rock Engineering, Vol. 21, pp. 21­51 (1988).
17. Dershowitz, W.S., and Herda, H.H., “Interpretation of fracture spacing and intensity,” The 33th U.S. Symposium on Rock Mechanics, Santa Fe, New Mexico (1992).
18. Dershowitz, W.S., Personal communication (2007).
19. Dhillon, I.S. and Sra, S. “Modeling data using directional distributions,” Technical Report TR-03-06 (2003).
20. Esmaieli, K., Hadjigeorgiou, J. and Grenon, M., “Estimating geometrical and mechanical REV based on synthetic rock mass models at Brunswick Mine,” International Journal of Rock Mechanics and Mining Sciences, Vol. 47, pp. 915-926 (2010).
21. Elfeel, M.A., and S. Geiger, “Static and dynamic assessment of DFN permeability upscaling,” European Association of Geoscientists and Engineers, Copenhagen, Denmark, pp. 1-16 (2012).
22. Fisher, N.I.. “Statistical Analysis of Circular Data,” Cambridge University Press, (1996).
23. Grenon, M., and Hadjigeorgiou, J., “Fracture-SG, A fracture system generator software package,” Version 2.17(2008).
24. Hadjigeorgiou, J., Lessard, J.F., and Flament, F., “Characterizing in-situ block size distribution using a stereological model,” Tunneling Association of Canada Annual Publication (1995).
25. Jolly, R.J.H., Cosgrove, J.W. “Geological evidence of patterns of fluid flow through fracture networks: examination using random realizations and con-nectivity analysis. In: Ameen, M.S. (Ed.) Fracture and In-situ Stress Character-isation of Hydrocarbon Reservoirs,” Special Publications, Vol. 209, pp. 177-186 (2003).
26. Koudina, N., R. Gonzalez Garcia, J.-F. Thovert, and P. Adler, “Permeability of three-dimensional fracture networks,” Physical Review E, Vol. 57(4), pp. 4466-4479 (1998).
27. Ko, N.Y., Ji, S.H., Koh, Y.K., and Choi, J.W., “Evaluation of two conceptual approaches for groundwater flow simulation for a rock domain at the block-scale for the Olkiluoto site, Finland,” Engineering Geology, Vol. 193, pp. 297-304 (2015).
28. Klimczak, C., Schultz, R.A., Parashar, R., and Reeves, D.M., “Cubic law with aperture-length correlation: implications for network scale fluid flow,” Hydrogeology Journal, Vol. 18, No. 4, pp. 851-862 (2010).
29. Lang, P.S., Paluszny, A., and Zimmerman, R.W., “Permeability tensor of three-dimensional fractured porous rock and a comparison to trace map predictions” Journal of Geophysical Research: Solid Earth, Vol. 119, pp. 6288-6307 (2014).
30. Leung, C. T. O., and R. W. Zimmerman, “Estimating the hydraulic conductivity of two-dimensional fracture networks using network geometric properties,” Transport in Porous Media, Vol. 93(3), pp. 777–797 (2012).
31. Long, J. C. S., J. S. Remer, C. R. Wilson, and P. A. Witherspoon, “Porous media equivalents for networks of discontinuous fractures”, Water Resources Research, Vol. 8, No. 3, pp. 645-658 (1982).
32. Long, J.C.S., Gilmour, P. and Witherspoon, P.A., “A Model for Steady Fluid Flow in Random Three-Dimensional Networks of Disc-Shaped Fractures” Water Resources Research, Vol. 21, No. 8, pp. 1105-1115 (1985).
33. Mardia, K.V. and Jupp, P. “Directional Statistics,” John Wiley and Sons Ltd., 2nd edition (2000).
34. Min, K.B. and Jing, L., “Numerical determination of the equivalent elastic compliance tensor for fractured rock masses using the distinct element method,” International Journal of Rock Mechanics and Mining Sciences, Vol. 40, pp. 795-816 (2003).
35. Müller, Christian, Siegesmund, Siegfried. and Blum, Philip., “Evaluation of the representative elementary volume (REV) of a fractured geothermal sandstone reservoir,” Environmental Earth Sciences, Vol. 61, pp. 1713-1724 (2010).
36. Matthai, S. K., and M. Belayneh, “Fluid flow partitioning between fractures and a permeable rock matrix,” Geophysical Research Letters, Vol. 31(7) (2004).
37. Min, K.-B., J. Rutqvist, C.-F. Tsang, and L. Jing, Stress-dependent permeability of fractured rock masses: A numerical study, International Journal of Rock Mechanics and Mining Sciences, Vol. 41(7), pp. 1191–1210 (2004).
38. Nelson, R. A., “Geological Analysis of Naturally Fractured Reservoirs,” Gulf Publishing, Houston, Texas (2001).
39. Nick, H. M., A. Paluszny, M. J. Blunt, and S. K. Matthai, “Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations,” Physical Review E, Vol. 84(5), 056,301 (2011).
40. Nordahl, Kjetil. and Ringrose, Philip S., “Identifying the Representative Elementary Volume for Permeability in Heterolithic Deposits Using Numerical Rock Models,” Mathematical Geosciences, Vol. 40, pp. 753-771 (2008).
41. Nordahl, K., Messina, C., Berland, H., Rustad, A.B. and Rimstad, E., “Impact of multiscale modelling on predicted porosity and permeability distributions in the fluvial deposits of the Upper Lunde Member (Snorre Field, Norwegian Continental Shelf),” Special Publications, Vol. 387, pp. 85-109 (2014).
42. Oda, M., “Permeability tensor for discontinuous rock masses”, Geotechnique, Vol. 35, pp.483-495, (1985).
43. Ӧhman, J. and Niemi, A., “Upscaling of fracture hydraulics by means of an oriented correlated stochastic continuum model,” Water Resources Research, Vol. 39(10), SBH 3 1-13 (2003).
44. Pan, J.B., Lee, C.C., Lee, C.H., Yeh, H.F., and Lin, H.I., “Application of fracture network model with crack permeability tensor on flow and transport in fractured rock,” Engineering Geology, Vol. 116, pp. 166-177 (2010).
45. Pouya, A., and O. “Fouche, Permeability of 3D discontinuity networks: New tensors from boundary-conditioned homogenisation,” Advances in Water Resources, Vol. 32(3), pp. 303-314 (2009).
46. Reeves, D. M., R. Parashar, G. Pohll, R. Carroll, T. Badger, and K. Willoughby, “The use of discrete fracture network simulations in the design of horizontal hillslope drainage networks in fractured rock,” Engineering Geology, Vol. 163, pp. 132-143 (2013).
47. Renard, P., and G. de Marsily, “Calculating equivalent permeability: A review,” Advances in Water Resources, Vol. 20(5-6), 253-278 (1997).
48. Rutqvist, J., C. Leung, A. Hoch, Y. Wang, and Z. Wang, “Linked multicontinuum and crack tensor approach for modeling of coupled geomechanics, fluid flow and transport in fractured rock,” Journal of Rock Mechanics and Geotechnical Engineering, Vol. 5(1), pp. 18-31 (2013).
49. Snow, D.T., “Rock fracture spacings, openings, and porosities,” Journal of the Soil Mechanics and Foundations Division, Vol. 94(1), pp. 73-92 (1968).
50. Snow, D. T., “Anisotropie permeability of fractured media,” Water Resources Research, Vol. 5(6), pp. 1273-1289 (1969).
51. Surrette, M.J. and Allen, D.M. “Quantifying heterogeneity in variably fractured sedimentary rock using a hydrostructural domain,” Geological Society of America Bulletin, Vol. 120 (1-2), pp. 225-237 (2008).
52. Taylor, W. L., D. D. Pollard, and A. Aydin, “Fluid flow in discrete joint sets: Field observations and numerical simulations,” Journal of Geophysical Research, Vol. 104(B12), pp. 28983-29006 (1999).
53. van Golf-Racht, T., “Fundamentals of Fractured Reservoir Engineering,” Elsevier BV, Amsterdam (1982).
54. Watkins, H., Bond, C.E., Healy, D., Butler, R.W.H., “Appraisal of fracture sampling methods and a new workflow to characterize heterogeneous fracture networks at outcrop,” Journal of Structural Geology, Vol.72 pp.67-82 (2015).
55. Wu, Y.-S., C. Haukwa, and G. Bodvarsson, “A site-scale model for fluid and heat flow in the unsaturated zone of Yucca Mountain,” Journal of Contaminant Hydrology, Vol. 38(1-3), pp. 185-215 (1999).
56. Zhang, W., Chen, J., Chen, H., Xu, D. and Li, Y., “Determination of RVE with consideration of the spatial effect,” International Journal of Rock Mechanics and Mining Sciences, Vol. 61, pp. 154-160 (2013)
57. Zimmerman, R., and G. S. Bodvarsson, “Effective transmissivity of two-dimensional fracture networks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 33(4), pp. 433-438 (1996).
58. Zhang, X., D. Sanderson, R. Harkness, and N. Last, “Evaluation of the 2-D permeability tensor for fractured rock masses,” International Journal of Rock Mechanics and Mining Sciences, Vol. 33(1), pp. 17-37 (1996).
指導教授 田永銘(Yong-Ming Tian) 審核日期 2019-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明