博碩士論文 105323074 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.145.63.131
姓名 甘弘暐(Hong-Wei Kan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 多頻率同步驅動光源之三維頻域式擴散光學斷層造影數值計算研究
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近紅外光擴散光學斷層造影(Near infrared diffuse optical tomography, NIR DOT),將近紅外光打入組織,藉由量測近紅外光穿透組織之光強度變化,重建出組織內部之光學係數影像,並利用其光學係數差異,區別腫瘤與正常組織。本論文以多頻率同步驅動光源進行三維頻域式擴散光學斷層造影,藉由方波達成多頻率同步驅動。組織光學重建以擴散方程式為模型,將演算法分為前向計算與逆向計算兩個部分。前向計算,使用有限元素法(Finite element method, FEM)求解擴散方程式以獲得光強度與相位分佈。逆向計算,將前向計算得到之光資訊與量測得到之光資訊透過牛頓法疊代,求出量測與理論的光資訊差異最小化,進而估測光學係數的分佈。由於逆向計算的病態特性(ill-posed characteristics),故使用Tikhonov正則化穩定重建結果,其中多組頻率之光資訊,於雅可比矩陣以縱向擺放。
實驗中分為二維平面與三維立體模擬,分別採用直徑80 mm圓型,與底圓直徑80 mm、高度80 mm的仿乳作為模型,藉由設計不同乳房仿體光學特性之案例,驗證多組頻率資訊相較單組頻率資訊的重建能力。結果顯示,二維平面頻率DOT,對於離心距離15 mm置入物皆可順利重建,而對於離心距離25 mm置入物,其半徑大於7.5 mm重較效果最好;三維立體多頻率DOT,對於離心距離10 mm置入物,半徑大於7 mm可順利重建,而對於離心距離20 mm置入物,其半徑需大於10 mm重較效果較好。多頻率DOT對於較小及位於深層的置入物具有更好重建效果,同時雜訊與光學係數串擾現象對其影響較低。
摘要(英) Near infrared Diffuse optical tomography (NIR DOT), using the intensity of the infrared light reflecting on the tissue; and rebuild of optical coefficient image inside the tissue to differentiate tumor or regular tissue. The study focuses on three dimensional frequency domain diffuse optical tomography using multi-frequency driving light source, where the driving light source are using square wave. Reconstruction of tissue optics is based on the diffusion equation as model, and involves both the forward calculation and the inverse reconstruction. The forward calculation using Finite element method (FEM) for calculating the distribution of the light intensity and phase. The inverse calculation reconstructs the distribution of the optical coefficient by using Newton’s to minimize the difference between the theory obtained by forward calculation and measurement obtained by measured data. Due to ill-posed characteristics of the inverse calculation, Tikhonov regularization is utilized to stabilize the reconstruction result. The multi-sets of frequency of measurement data were placed in vertically in the Jacobian matrix.
The experiment includes 2 dimensional and 3 dimensional simulation, using 80 mm diameter circle and 80 mm diameter breast-like phantom as 2D and 3D geometry. For verification the ability of reconstruction with multi frequency module compare to single frequency module, different designated simulation cases , including different position of inclusion, size, and contrast ratio of absorption and reduced scattering coefficient of inclusion respect to background were used. As the result display, 2D plane DOT can reconstruction successfully with off-center to be 15mm; ideally, it is most efficient for the off-center to be 25mm and the radius to be more than 7.5mm. For the 3D DOT, the radius has to be larger than 7mm if the off-center is 10mm to be successfully planted; if the off-center is 20mm, then the radius needs to be larger than 10 mm to operate most efficiently. Multi-frequency DOT operates much more efficient with smaller and deeper placement. Additionally, it minimizes the noise and optical coefficient error.
關鍵字(中) ★ 三維擴散光學斷層造影
★ 多頻率同步驅動光源
★ 方波驅動光源
★ 有限元素法
★ Tikhonov正則化
★ 腫瘤特徵辨識
★ 影像重建
★ 影像評估
關鍵字(英) ★ three-dimensional diffuse optical tomography
★ multi-frequency synchronous driving light source
★ square wave driven light source
★ finite element method
★ Tikhonov regularization
★ identification of tumor
★ image reconstruction
★ quantitative evaluation of image
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 XI
第一章 緒論 1
1-1 研究動機與目的 1
1-2 乳房組織光學特性與醫學影像造影 3
1-3 方波驅動光源 7
1-4 文獻回顧 8
1-4 論文架構 12
第二章 前向問題 13
2-1 擴散方程式 13
2-2 有限元素法求解擴散方程式 14
第三章 逆向問題 18
3-1 逆向問題之建立 18
3-2 雅可比(Jacobian)矩陣 20
3-3 雅可比矩陣正規化(normalization) 21
3-4 逆向問題正則化(regularization) 22
第四章 數值模擬驗證 23
4-1 模擬資料建立 23
4-2影像重建 28
4-3 模擬資料驗證 32
4-3-1幾何特徵辨識 33
4-3-2光學特徵辨識 58
4-4 影像評估與分析 76
第五章 結論 88
參考文獻 89
參考文獻 [1] T. O. McBride, “Spectroscopic Reconstructed Near Infrared Tomographic Imaging for Breast Cancer Diagnosis,” Ph.D. Dartmouth College, Hanover NH (2001).
[2] E. Vandeweyer, and D. Hertens, “Quantification of glands and fat in breast tissue: An experimental determination,” Ann. Anat., 182(2):181-4 (2002).
[3] National Cancer Institute, SEER Training Modules, Breast Anatomy.
https://training.seer.cancer.gov/breast/anatomy/
[4] B. B. Das, F. Liu, and R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys., 60, 2 (1999).
[5] 台灣癌症防治網:認識乳癌-女性必讀
取自http://web.tccf.org.tw/lib/addon.php?act=post&id=1203
[6] US Preventive Services Task Force. “Final Evidence Summary: Breast Cancer: Screening,” (2014).
https://www.uspreventiveservicestaskforce.org/Page/Document/final-evidence-summary9/breast-cancer-screening#
[7] 台灣癌症防治網:認識乳癌-乳癌的分類
取自http://web.tccf.org.tw/lib/addon.php?act=post&id=4383
[8] 秀傳紀念醫院:乳房中心的組織與功能
取自https://www.scmh.org.tw/dept/breast/know_1.htm
[9] L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D Imaging Through Scattering Walls Using an Ultrafast Optical Kerr Gate,” Sci., 253(5021), 769-771 (1991).
[10] L. Wang, X. Liang, P. Galland, P. P. Ho, and R. R. Alfano, “True scattering coefficients of turbid matter measured by early-time gating,” Opt. Lett., 20(8), 913-915, (1995).
[11] B. Eriksson and R. Nowak, “Resolution bounds and reconstruction techniques for Time-resolved transillumination imaging,”
https://www.researchgate.net/figure/Example-of-Photons-Through-a-Scattering-Medium_fig17_235156695
[12] 簡佑軒,「仿乳腫瘤特徵之近紅外光頻域式量測系統分析與驗證」,碩士論文,國立中央大學機械工程研究所(2013)。
[13] “Contrast Agents,” section of Contrast Agents in Optical and Photoacoustic Imaging, website of NanoHybrides. https://nanohybrids.net/pages/contrast-agents-for-better-imaging-results (2020).
[14] Albert Cerussi, David Hsiang, Natasha Shah, Rita Mehta, Amanda Durkin, John Butler, and Bruce J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy,” PNAS. 104(10) 4014-4019 (2007).
[15] 台灣家庭醫學會
取自http://www.tafm.org.tw/ehc-tafm/s/w/ebook/people_other/journalContent/358
[16] Etta D. Pisano, Constantine Gatsonis, Edward Hendrick, Martin Yaffe, Janet K. Baum, Suddhasatta Acharyya, Emily F. Conant, Laurie L. Fajardo, Lawrence Bassett, Carl D′Orsi, Roberta Jong, and Murray Rebner, “Diagnostic Performance of Digital versus Film Mammography for Breast-Cancer Screening,” N. Engl. J. Med., 353(17), 1773-1783 (2005).
[17] J. Wang, “Broadband near-infrared tomography for breast cancer imaging,” Ph.D. Dartmouth College, Hanover NH (2009).

[18] K. Uludag, J. Steinbrink, A. Villringer, and H. Obrig, “Separability and cross talk: optimizing dual wavelength combinations for near-infrared spectroscopy of the adult head,” NeuroImage 22(2), 583–589 (2004).
[19] A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. Hillman, S. Arridge, and A. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,” Opt. Lett. 28, 2339–2341 (2003).
[20] M. E. Eames, J. Wang, B. W. Pogue, and H. Dehghani, “Wavelength band optimization in spectral near-infrared optical tomography improves accuracy while reducing data acquisition and computational burden,” J. Biomed. Opt. 13, 054037 (2008).
[21] L. Y. Chen, M. C. Pan, C. C. Yan, M. C. Pan, “Wavelength Optimization of Spectral Near- infrared Optical Tomography Using Available Laser Diodes,” appl. Opt., 55, 21, 5729-5737 (2016).
[22] V. Ntziachristos, A. Yodh, M. Schnall, and B. Chance, “MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions,” Neoplasia 4, 347–354 (2002).
[23] H. Dehghani, B. Pogue, B. Brooksby, S. Srinivasan, and K. Paulsen, “Image reconstruction strategies using dual modality MRI-NIR data,” in IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 682–685 (2006).
[24] Q. Zhang, T. Brukilacchio, A. Li, J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. Moore, D. Kopans, and D. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results,” J. Biomed. Opt. 10, 024033 (2005).
[25] Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomography x-ray-guided three dimensional diffuse optical tomography of osteoarthritis in the finger joints,” J. Biomed. Opt. 13, 044006 (2008).
[26] R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijlstra, A. C. M. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” appl. Opt., 32, 426-434 (1993).
[27] D. E. Hyde, T. J. Farrell, M. S. Patterson and B. C. Wilson, “A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations,” Phys. Med. Biol. 46. 369-383 (2001).
[28] S. R. Arridge, and J. C. Hebden, “Optical imaging in medicine: II. Modelling and reconstruction,” Phys. Med. Biol. 42, 841-853 (1997).
[29] A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography,” Opt. Soc. America. 44, 10, 1948-1956 (2005).
[30] P. Hiltunen, S. J. D. Prince and S. Arridge, “A combined reconstruction–classification method for diffuse optical tomography,” Phys. Med. Biol. 54, 6457-6476 (2009)
[31] L. Y. Chen, M. C. Pan, and M. C. Pan, “Flexible near-infrared diffuse optical tomography with varied weighting functions of edge-preserving regularization,” Opt. Soc. America. 52, 6 (2013).
[32] H. Jiang, “Three-dimensional optical image reconstruction: finite element approach,” Opt. Soc. America. 21 (1998).
[33] H. Dehghani, B. W. Pogue, S. P. Poplack, and K. D. Paulsen, “Multiwavelength three-dimensional near-infrared tomography of the breast: initial simulation, phantom, and clinical results,” App. Opt., 42, 135–145 (2003).
[34] N. Iftimia, X. Gu, Y. Xu, H. Jiang, “A compact, parallel-detection diffuse optical mammography system,” Rev. Sci. Instr., 74, 2836–2842 (2003).
[35] M. Schweiger and S. R. Arridge, “Comparison of two- and three-dimensional reconstruction methods in optical tomography,” Appl. Opt., 37, 7419-7428 (1998).
[36] 嚴中成,「三維近紅外光擴散光學斷層影像重建之數值計算研究」,碩士論文,國立中央大學機械工程研究所(2016)。
[37] V. V. H. Mudeng, “Computation of Three-Dimensional Diffuse Optical Image Reconstruction with Arbitrary Surface Models,” 碩士論文,國立中央大學光機電工程研究所(2016)。
[38] H. K. Kim, U. J. Netz, J. Beuthan, and A. H. Heilscher, “Optimal source-modulation frequencies for transport-theory-based optical tomography of small-tissue volumes,” Opt. Exp. 16, 22, 18082-18101 (2008).
[39] A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, “Fluorescence optical diffusion tomography using multiple-frequency data,” J. Opt. Soc. America. 21, 6, 1035-1049 (2004).
[40] V. Ntziachristos, J. Culver, M. Holboke, A.G.Yodh, and B. Chance, “Optimal selection of frequencies for Diffuse Optical Tomography,” Biomed. Opt. Spectroscopy and Diagnostics. WB2 (2000).
[41] G. Gulsen, B. Xiong, O. Birgul, O. Nalcioglu, ”Design and implementation of a multifrequency near-infrared diffuse optical tomography system,” J. Biomed. Opt. 11(1), 01402 (2006).
[42] M. B. Unlu, O. Birgul, R. Shafiiha, G. Gulsen, O. Nalcioglu, ”Diffuse optical tomographic reconstruction using multifrequency data,” J. Biomed. Opt. 11(5), 054008 (2006).
[43] X. Intes, B. Chance, “Multi-frequency diffuse optical tomography,” J. Med. Opt. 52, 2139-2159 (2006).
[44] C. Chen, V. C. Kavuri, X. Wang, R. Li1, H. Liu, and J. Huang, ”Multi-frequency diffuse optical tomography for cancer detection,” 12th IEEE. Int. Sym. Biomed. Imaging, 67–70, (2015).

[45] K. D. Paulsen, and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation,” Med. Phys., 22(6), 691-701 (1995).
[46] S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue, ” Med. Phys., 20(2) 299-309 (1993).
[47] T. J. Farrell, M. S. Patterson, and B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys., 19(4), 879-888 (1992).
[48] W. Egan, Optical properties of inhomogeneous materials: Applications to geology, astronomy chemistry, and engineering (2012).
[49] Science Direct : Newton-Raphson method(2020).
https://www.sciencedirect.com/topics/engineering/newton-raphson-method
[50] S. R. Arridge, and M. Schweiger, “Photon-measurement density functions. Part 2: Finite-element-method calculations,” Appl. Opt. 34, 8026-8037 (1995).
[51] M. Jiang, T. Zhou, J. Cheng, W. Cong, and G. Wang, “Image reconstruction for bioluminescence tomography from partial measurement,” Opt. Express 15, 11095-11116 (2007).
[52] M. C. Pan, C. Chen, L. Chen, M. C. Pan, Y. Shyr, “Highly resolved diffuse optical tomography: a systematic approach using high-pass filtering for value-preserved images,” J. Biomed. Opt., 13(2), 024022-024022-14 (2008).
指導教授 潘敏俊 審核日期 2020-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明