博碩士論文 105323075 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.144.42.233
姓名 陳忠昊(Zhong-Hao Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 脊椎手術用3D C-arm影像輔助機械臂導引系統之研發
相關論文
★ 以擠製冷卻成型法結合相分離法製作神經再生用多孔性導管★ 整合可調式阻力之手足復健機研究
★ 應用於肝腫瘤治療之超音波影像輔助機械臂HIFU燒灼實驗系統★ 顱顏整型手術用植入物之設計與製作
★ 電腦輔助骨科手術用規劃及導引系統★ 遠端遙控機械手臂腹腔鏡手術系統
★ 頭部CT與MR影像之融合★ 手術用影像導引機械人定位及鑽孔系統
★ 機器人校正與醫學影像導引定位應用★ 顱顏手術用規劃及導引系統
★ 醫學用超音波影像導引系統★ 應用3D區域成長法於腦部磁共振影像之分割
★ 腦部手術用導引系統之方位校準及腦瘤影像分割★ 超音波影像即時震波導引
★ 腫瘤偵測與顱顏骨骼重建★ 骨科手術用C-arm影像輔助規劃及導引系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-6以後開放)
摘要(中) 微創椎莖螺釘植入手術為高風險與高難度的手術,傳統手術在過程中醫師須拍攝大量C-arm X光影像,以確認手術器械是正確的,因此造成病患與醫護人員吸收許多的輻射劑量,此外醫師徒手進行手術,手部晃動易造成的手術器械方位誤差,因此發展微創椎莖螺釘植入用的機械臂輔助導引系統是需要的。
本研究參考實驗室既有的機械臂定位技術與3D C-arm影像輔助導航技術,發展一微創脊椎手術用3D C-arm影像輔助機械臂導引系統。研究項目主要包括機械臂定位系統與導航系統的軟體整合並改良導航系統鋼珠辨識方法、導引輔助器械設計、病患與影像的註冊、手術路徑規劃視窗的路徑平移與旋轉拉霸、及機械臂導引定位誤差實驗。另針對註冊板上的鋼珠影像,發展3D建模參數自動設定方法,期望在不同3D C-arm設備與X光強度設定下皆可自動設定;又透過連通區域分析方法與球體特性,建立鋼珠模型辨識方法,以利不同C-arm設備下使用。
機械臂導引定位系統的定位誤差實驗,以驗證板與驗證器械的鋼珠特徵點作為定位目標,將特徵點空間座標作為對照組(C);特徵點影像座標作為實驗組(T);機械臂導引器械至規劃路徑後的器械空間方位座標作為實驗組(T^′′),將實驗組(T)的影像座標轉換至空間座標後計算註冊誤差(|C-T|)與機械臂導引定位誤差(|C-T^′′ |)。經數次實驗,驗證板之|C-T|=0.86±0.10mm;|C-T^′′ |=1.27±0.47mm。驗證器械之|C-T|:結束點0.89±0.40mm、進入點0.72±0.29mm、方向0.43±0.13°;|C-T^′′ |:結束點1.67±0.36mm、進入點1.51±0.28mm、方向0.54±0.24°。上述的誤差值都小於椎莖螺釘植入手術的2mm臨床需求範圍。

關鍵字:3D C-arm、手術導引、機械手臂、脊椎手術
摘要(英) Pedicle screw implantation is a high-risk operation. In the conventional operation, the surgeon must take many C-arm images to confirm that the surgical instruments will not injure the spinal cord by mistake, which will cause patients and medical staff to expose high radiation risk. In addition, the operation is highly relying on the surgeon’s skill and clinic experiences. Therefore, it is needed to develop a robotic navigation system that can assist surgeons to position and hold surgical tools for spine surgery.
This research refers the existing robotic positioning and 3D C-arm navigation technology in the laboratory to develop a 3D C-arm image assisted robotic navigation system. The main studies include the software integration of robotic system and navigation system with segmentation method improvement of steel marker images, design of assistive navigation devices, patient and image coordinate registration, design of path planning window with translation and rotation buttons, and experiments of robotic positioning accuracy. Further, an automatic image threshold setting for separating steel markers from the C-arm image is developed, which should be applicable for different 3D C-arm and X-ray intensity setting. Also, connecting area analysis and characteristics of sphere are used to identify features of steel sphere models so that intuitive facilitate adjustment can be done when different C-arm equipment is used.
The average positioning distance and direction error of the system were tested by using the verification board (V) and the verification device (SV). The coordinates of physical features of the testing devices are defined as control group(C);the transferred coordinates of image features of the testing devices are defined as group(T);the position and direction of the positioning probe navigated by the robot to the planned path are defined as group(T^′′). After at least three-time testing, the registration error(|C-T|) and system positioning error (|C-T^′′ |) are |C-T|=0.86±0.10mm, |C-T^′′ |=1.27±0.47mm based on V board;|C-T|:0.89±0.40mm (end point), 0.72±0.29mm (entry point), 0.43±0.13° (direction);|C-T^′′ |:1.67±0.36mm (end point), 1.51±0.28mm (entry point), 0.54±0.24° (direction) based on SV device. The overall position errors are lower than 2mm, a requirement for pedicle screw implantation.

Keyword:C-arm Image, Surgical Navigation, Robot, Spine Surgery
關鍵字(中) ★ 3D C-arm
★ 手術導引
★ 機械手臂
★ 脊椎手術
關鍵字(英)
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1研究動機 1
1-2文獻回顧 3
1-3研究內容簡介 6
第二章 研究方法 8
2-1本系統各座標系統間之轉換關係 8
2-2 3D C-arm影像輔助機械臂手術導引系統介紹 10
2-3系統方位校準(註冊)方法 11
2-3-1自動三維重建參數(ISO值)設定演算法 13
2-3-2辨識特徵(註冊)點演算法 20
2-3-3配對特徵(註冊)點演算法 23
2-4畫面調整的路徑規劃設計 24
2-5器械設計 27
2-6系統操作流程與使用者介面設計 28
第三章 實驗與結果討論 31
3-1系統完整性 31
3-2註冊板鋼珠註冊精準度實驗 32
3-3目標定位的精準度實驗 35
3-4機械臂輔助手術導引系統定位精準度實驗 44
3-5系統方位校準方法之適應性評估 51
3-6真實人體影像測試 53
第四章 結論與未來展望 55
參考文獻 57
附錄一 60
參考文獻 1. 彭仲祥, “脊椎手術用2D/3D C-arm影像輔助手術導引定位系統之研發,” 生醫科學與工程學系, 國立中央大學, 桃園縣, 2017.
2. 吳典學, “脊椎手術用2D C-arm影像輔助機械臂導引定位系統之研發,” 生醫科學與工程學系, 國立中央大學, 桃園縣, 2017.
3. Medtronic. ”Stealth Station Surgical Navigation System,” https://www.medtronic.com/us-en/index.html.
4. BrainLab. ”VectorVision System,” https://www.brainlab.com/.
5. Stryker. ”NAV3i System,” https://www.stryker.com/index.html.
6. M. N. 24. ”Global Electromagnetic Surgical Navigation System Market 2019 – Medtronic, Brainlab, Fiagon, Collin Medical, Karl Storz,” https://www.marketnews24.com/global-electromagnetic-surgical-navigation-system-market-2019-medtronic-brainlab-fiagon-collin-medical-karl-storz/.
7. G. M. Malham, and T. Wells-Quinn, “What should my hospital buy next?—Guidelines for the acquisition and application of imaging, navigation, and robotics for spine surgery,” Journal of Spine Surgery, vol. 5, no. 1, pp. 155, 2019.
8. W. Tian, M. Fan, and Y. Liu, “Pedicle screw insertion in spine: a randomized controlled study for robot-assisted spinal surgery,” EPiC Series in Health Sciences, vol. 1, pp. 23-27, 2017.
9. T. Fujishiro, Y. Nakaya, S. Fukumoto, S. Adachi, A. Nakano, K. Fujiwara, I. Baba, and M. Neo, “Accuracy of Pedicle Screw Placement with Robotic Guidance System: A Cadaveric Study,” Spine (Phila Pa 1976), vol. 40, no. 24, pp. 1882-9, Dec, 2015.
10. I. H. Lieberman, M. A. Hardenbrook, J. C. Wang, and R. D. Guyer, “Assessment of pedicle screw placement accuracy, procedure time, and radiation exposure using a miniature robotic guidance system,” J Spinal Disord Tech, vol. 25, no. 5, pp. 241-8, Jul, 2012.
11. W. Tian, Y. J. Liu, B. Liu, D. He, J. Y. Wu, X. G. Han, J. W. Zhao, M. X. Fan, E. Technical Committee on Medical Robot Engineering of Chinese Society of Biomedical, and C. Technical Consulting Committee of National Robotic Orthopaedic Surgery Application, “Guideline for Thoracolumbar Pedicle Screw Placement Assisted by Orthopaedic Surgical Robot,” Orthop Surg, vol. 11, no. 2, pp. 153-159, Apr, 2019.
12. J. P. Du, Y. Fan, Q. N. Wu, D. H. Wang, J. Zhang, and D. J. Hao, “Accuracy of Pedicle Screw Insertion Among 3 Image-Guided Navigation Systems: Systematic Review and Meta-Analysis,” World Neurosurg, vol. 109, pp. 24-30, Jan, 2018.
13. S. Chachan, H. R. Bin Abd Razak, W. L. Loo, J. C. Allen, and D. Shree Kumar, “Cervical pedicle screw instrumentation is more reliable with O-arm-based 3D navigation: analysis of cervical pedicle screw placement accuracy with O-arm-based 3D navigation,” Eur Spine J, vol. 27, no. 11, pp. 2729-2736, Nov, 2018.
14. W. Tian, Y. F. Xu, B. Liu, Y. J. Liu, D. He, Q. Yuan, Z. Lang, and X. G. Han, “Computer-assisted Minimally Invasive Transforaminal Lumbar Interbody Fusion May Be Better Than Open Surgery for Treating Degenerative Lumbar Disease,” Clin Spine Surg, vol. 30, no. 6, pp. 237-242, Jul, 2017.
15. Y. Ishikawa, T. Kanemura, G. Yoshida, A. Matsumoto, Z. Ito, R. Tauchi, A. Muramoto, S. Ohno, and Y. Nishimura, “Intraoperative, full-rotation, three-dimensional image (O-arm)-based navigation system for cervical pedicle screw insertion,” J Neurosurg Spine, vol. 15, no. 5, pp. 472-8, Nov, 2011.
16. M. Liu, L. Zhang, J. Zhao, and P. Liu, “Computer-assisted surgery navigation of pedicle screw insertion by standardized trainees,” Advanced Emergency Medicine, vol. 6, no. 1, 2017.
17. W. Tian, C. Zeng, Y. An, C. Wang, Y. Liu, and J. Li, “Accuracy and postoperative assessment of pedicle screw placement during scoliosis surgery with computer-assisted navigation: a meta-analysis,” Int J Med Robot, vol. 13, no. 1, Mar, 2017.
18. B. Li, J. He, Z. Zhu, D. Zhou, Z. Hao, Y. Wang, and Q. Li, “Comparison of 3D C-arm fluoroscopy and 3D image-guided navigation for minimally invasive pelvic surgery,” Int J Comput Assist Radiol Surg, vol. 10, no. 10, pp. 1527-34, Oct, 2015.
19. I. D. Gelalis, N. K. Paschos, E. E. Pakos, A. N. Politis, C. M. Arnaoutoglou, A. C. Karageorgos, A. Ploumis, and T. A. Xenakis, “Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques,” Eur Spine J, vol. 21, no. 2, pp. 247-55, Feb, 2012.
20. J. He, G. Tan, D. Zhou, L. Sun, Q. Li, Y. Yang, and P. Liu, “Comparison of Isocentric C-Arm 3-Dimensional Navigation and Conventional Fluoroscopy for Percutaneous Retrograde Screwing for Anterior Column Fracture of Acetabulum: An Observational Study,” Medicine (Baltimore), vol. 95, no. 2, pp. e2470, Jan, 2016.
21. E. Fomekong, S. E. Safi, and C. Raftopoulos, “Spine Navigation Based on 3-Dimensional Robotic Fluoroscopy for Accurate Percutaneous Pedicle Screw Placement: A Prospective Study of 66 Consecutive Cases,” World Neurosurg, vol. 108, pp. 76-83, Dec, 2017.
22. Y. Fan, J. P. Du, J. J. Liu, J. N. Zhang, S. C. Liu, and D. J. Hao, “Radiological and clinical differences among three assisted technologies in pedicle screw fixation of adult degenerative scoliosis,” Scientific Reports, vol. 8, Jan 17, 2018.
23. Y. Fan, J. P. Du, J. N. Zhang, S. C. Liu, X. K. Xue, Y. F. Huang, J. Zhang, and D. Hao, “Comparison of Accuracy of Pedicle Screw Insertion Among 4 Guided Technologies in Spine Surgery,” Medical Science Monitor, vol. 23, pp. 5960-5968, Dec 16, 2017.
24. G. Molliqaj, B. Schatlo, A. Alaid, V. Solomiichuk, V. Rohde, K. Schaller, and E. Tessitore, “Accuracy of robot-guided versus freehand fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery,” Neurosurg Focus, vol. 42, no. 5, pp. E14, May, 2017.
25. A. Khan, J. E. Meyers, I. Siasios, and J. Pollina, “Next-Generation Robotic Spine Surgery: First Report on Feasibility, Safety, and Learning Curve,” Oper Neurosurg (Hagerstown), vol. 17, no. 1, pp. 61-69, Jul 1, 2019.
26. L. Chenin, J. Peltier, and M. Lefranc, “Minimally invasive transforaminal lumbar interbody fusion with the ROSA(TM) Spine robot and intraoperative flat-panel CT guidance,” Acta Neurochirurgica, vol. 158, no. 6, pp. 1125-1128, Jun, 2016.
27. M. Lefranc, and J. Peltier, “Accuracy of thoracolumbar transpedicular and vertebral body percutaneous screw placement: coupling the Rosa(R) Spine robot with intraoperative flat-panel CT guidance--a cadaver study,” J Robot Surg, vol. 9, no. 4, pp. 331-8, Dec, 2015.
28. B. K. P. Horn, “Closed-form solution of absolute orientation using unit quaternions,” Journal of the Optical Society of America A, vol. 4, no. 4, pp. 629-642, 1987/04/01, 1987.
29. P. J. Besl, and N. D. Mckay, “A Method for Registration of 3-D Shapes,” Ieee Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 2, pp. 239-256, Feb, 1992.
30. W. E. Lorensen, and H. E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm,” in Proceedings of the 14th annual conference on Computer graphics and interactive techniques, 1987, pp. 163-169.
指導教授 曾清秀 審核日期 2020-1-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明