以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:13 、訪客IP:3.144.20.230
姓名 林琦茵(Chi-Yin Lin) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 流道深度對金屬多孔材 質子交換膜燃料電池性能之影響
(Effect of Flow Field Depth on the Performance of Proton Exchange Membrane Fuell Cell)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究使用端板固定燃料電池/電堆,並探討使用端板與直接使用兩端極板作為電池支撐,對電池性能之影響。另外,雙極板為質子交換膜燃料電池(Proton Exchange Membrane Fuel Cell, PEMFC)核心元件之一,其重量與體積約佔燃料電池堆的一半,為使雙極板重量減輕,本研究將進行雙極板內之流道減薄,並且搭配不同規格之金屬多孔材,針對氣體流速、多孔材孔洞大小及內部氣體擴散係數進行探討,以了解流道減薄及多孔材規格對低溫質子交換膜燃料電池之影響。研究結果顯示,有使用端板之燃料電池因受壓較均勻,故有使用端板之電池性能有效提升10 %。而在薄化燃料電池研究上,當流量固定時,流道減薄使氣體流速變快,增加氣體與金屬肋條碰撞之機率,使氣體較易往觸媒區反應,進而增加反應面積,可使交換電流密度提高,故使用流道減薄之電池,不僅能薄化流道並同時提升電池性能。另外,於搭配不同規格金屬多孔材之研究中,隨著負載越高,因流量較大,氣體進入非達西區,使得氣體進入金屬多孔材的摩擦力較大,性能受氣體碰撞機率影響較大,故選用孔洞較小、氣體碰撞機率高之多孔材性能較佳,此結果與交流組抗分析結果相符,此研究有助於未來金屬多孔材PEMFC之規格選用。 摘要(英) In this research, the end plate was used to fix the fuel cell/stack, and the effect of using the end plate and directly using the ends of the plate as a battery support was investigated. In addition, the bipolar plate is one of the components of the Proton exchange membrane fuel cell (PEMFC), and the weight and volume account for about half of the fuel cell stack. In order to reduce the weight of the bipolar plate, this study let the flow path in the plate is thinned, and with different specifications of metal foam material, the size of the foam holes and the internal gas diffusion coefficient are discussed to understand the flow path thinning and foam material specifications for the effect of PEMFC.
The results of this study show that the fuel cell using the end plate maintains uniform pressure in the cell, so the PEMFC performance of the end plate will effectively increase by 10%. The change in the performance is due to the ease of uniform and higher rate of distribution of gas by thinning the flow channel in the fuel cell. When the flow rate of the gas is fixed, the flow of the gas is faster as the flow path is thinner. Because there is an increase in probability of gas to collide with the metal foam and higher amount of gas will enter the catalyst zone, thus increase the area of reaction and exchange current density. So thinner flow channel can effectively improve the performance of PEMFC. The influence of metal foam in the performance of the PEMFC is also studied. We have used metal foams with different specifications and observed their advantages and disadvantages with respect to the performance of PEMFC. In our research we observed that PEMFC with metal foam of lower pore size is having better performance, because the gas entering the non-Darcy area, the friction is larger when the gas into the porous metal material, the performance is greatly affected by the gas collision probability. The results of this study are helpful for researchers in future for better understanding of cell design and to select the suitable metal foam for high performance PEMFC depending upon the operating parameters.關鍵字(中) ★ 端板
★ 流道薄化
★ 金屬多孔材
★ 低溫型質子交換膜燃料電池關鍵字(英) 論文目次 中文摘要 I
英文摘要 II
致謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 質子交換膜燃料電池 2
1-2-1燃料電池之種類 2
1-2-2 質子交換膜燃料電池工作原理 4
1-2-3 質子交換膜燃料電池之組成結構 6
1-2-4 質子交換膜燃料電池之極化現象 9
1-3 電化學交流阻抗基本原理 10
1-4 研究動機與目的 13
第二章 文獻回顧 14
2-1 低溫型質子交換膜燃料電池 14
2-2 金屬多孔材特性之研究與應用 15
2-3 電化學交流阻抗分析 17
第三章 實驗方法與實驗設備 19
3-1 實驗架構與流程 19
3-2 界面壓力量測 20
3-3 截面結構分析 21
3-3-1 光學顯微鏡 21
3-3-2 掃描式電子顯微鏡 22
3-4 滲透率量測 23
3-5 燃料電池個部元件 24
3-5-1 膜電極組 24
3-5-2 矽橡膠氣密墊片 26
3-5-3 鎳金屬多孔材 26
3-5-4 金屬雙極板與流道 27
3-5-5 端板 28
3-6 燃料電池測試系統 28
3-7 電化學交流阻抗分析儀 30
第四章 結果與討論 34
4-1 電池與端板之關係 34
4-1-1電池之介面壓力 34
4-1-2 單電池性能測試 36
4-2 薄化設計與實驗室原設計之比較 40
4-2-1 流速與雷諾數關係 40
4-2-3 單電池性能測試 41
4-3 金屬多孔材特性分析 44
4-3-1 不同PPI之截面分析 44
4-3-2 金屬多孔材之氣體擴散性分析 46
4-3-3 單電池性能測試與交流阻抗分析 51
第五章 結論與未來規劃 57
5-1 結論 57
5-2 未來規劃 58
第六章 參考文獻 59
?
表目錄
表1-1-1 燃料電池類型[3] 3
表3-5-1 氣體擴散層SIGRACETR GDL 39BC規格表 26
表3-5-2 金屬多孔材實驗規格 27
表4-1-1 有無端板之性能數據 37
表4-1-2 單電池之極化阻抗數值 39
表4-2-1 有無端板之性能數據 42
表4-2-2 薄化設計與原實驗室設計比較數值 43
表4-3-1 不同規格之多孔材孔徑大小 46
表4-3-2 不同規格金屬多孔材之面密度 47
表4-3-7 不同規格多孔材電池性能 55
表4-3-8 不同規格之多孔材極化阻抗數值 56
?
圖目錄
圖1-2-1 質子交換膜燃料電池示意圖[5] 6
圖1-2-2 Nafion膜化學結構式[6] 7
圖1-3-1 簡易等效電路圖 11
圖1-3-2 典型交流阻抗奈奎斯特圖 12
圖1-3-3 典型交流阻抗波德圖 12
圖3-1-1 實驗架構流程圖 19
圖3-2-1 感壓軟片構造圖 20
圖3-2-2 感壓軟片壓力濃度色層圖 21
圖3-3-1 光學顯微鏡 22
圖3-3-2 掃描式電子顯微鏡 22
圖3-4-1 滲透率量測儀 23
圖3-4-2 滲透率系統簡圖 24
圖3-5-1 燃料電池示意圖 24
圖3-5-2 自製燃料電池膜電極組實體圖 25
圖3-5-3 金屬多孔材實體圖 27
(a)鎳金屬多孔材;(b)防腐鍍層處理之鎳金屬多孔材 27
圖3-6-1 燃料電池測試機台實體圖 29
圖3-6-2 燃料電池測試系統簡圖 30
圖3-6-3 LabView系統介面圖 30
圖3-7-1 奈奎斯特圖[27] 32
圖3-7-2 等效電路模型 32
圖3-7-3 Autolab PGSTAT302 33
圖3-7-4 Chroma 63600 負載器 33
圖4-1-1 無端板之單電池壓力分佈 35
圖4-1-2 有端板之單電池壓力分佈 35
圖4-1-3 無端板之電池性能 36
圖4-1-4 有端板之電池性能 37
圖4-1-5 有無端板之單電池5 A奈奎斯特圖 38
圖4-1-6 有無端板之單電池25 A奈奎斯特圖 38
圖4-1-7 單電池之35 A 奈奎斯特圖 39
圖4-2-4 薄化設計與原實驗室設計比較之奈奎斯特圖 43
圖4-3-1 80 PPI金屬多孔材之截面 45
圖4-3-2 94 PPI金屬多孔材之截面 45
圖4-3-3 130 PPI金屬多孔材之截面 46
表4-3-3 不同規格之多孔材滲透率與非達西項 49
圖4-3-6 不同規格多孔材之流速與雷諾數之關係(dp) 50
圖4-3-11 溫度60℃不同規格多孔材之性能曲線圖 55
圖4-3-12 不同規格之多孔材比較之35 A奈奎斯特圖 56參考文獻 [1] S. M. Lu, “A review of high-efficiency motors: Specification, policy, and technology” , Renew and Sustainable Energy Reviews, vol. 59, pp. 1-12, 2016.
[2] A. Alaswad, A. Baroutaji, H. Achour, J. Carton, A. A. Makky, A.G. Olabi, “Developments in fuel cell technologies in the transport sector” , Hydrogen Energy, Unpoblished.
[3] Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report”, Fuel Cell Today, 2011.
[4] K. Kordesch, G. Simader, “Fuel cells and their applications”, VCH Weinheim, 1996.
[5] 蔡秉蒼,「應用金屬多孔材為流道之質子交換膜燃料電池之研究」,國立中央大學能源工程研究所博士論文,2012.
[6] J. J. Sumner, S. E. Creagert, J. J. Ma and D. D. DesMarteau, “Proton conductivity in NafionR 117 and in a novel bis[(perfluoroalkyl)sulfonyl]-imide ionomer membrane”, J. Electrochem. Soc., vol. 145, No. 1, 1998.
[7] X. Ch eng, Z. Shi, N. Glass, L. Zhang, J. Zhanga, D. Song, Z.S. Liu, H. Wang, J. Shen, “A review of PEM hydrogen fuel cell contamination: impacts, mechanisms, and mitigation” , J. Power Sources, vol. 165, no. 2, pp. 739-756,2007.
[8] V. R. Antunes, M.C.L. Oliveira, G. Ett, V. Ett, “Corrosion of metal bipolar plates for PEM fuel cells: A review” , International Journal of Hydrogen Energy, vol. 35, pp. 3632-3647, 2010.
[9] 黃鎮江,「燃料電池」,全華科技圖書股份有限公司,2005.
[10] E. Barsoukov, J. R. Macdonald (2nd Eds), “Impedance spectroscopy: theory, experiment, and application”, John Wiley&Sons, Inc., 2005.
[11] Oliver J. Murphy, Alan Cisar and Eric Clarke, “Low-cost light weight high power density PEM fuel cell stack” , Elsevier Science, vol. 43, pp. 3829-3840, 1998.
[12] S. Asghari, M.H. Shahsamandi, M.R. Ashraf Khorasani, “Design and manufacturing of end plates of a 5 kW PEM fuel cell” , Int J Hydrogen Energy, vol. 35, pp. 9291-9297, 2010.
[13] P. Rodatz, F. Buchi, C. Onder, L. Guzzella, “ Operational aspects of a large PEFC stack under practical conditions” , J. Power Sources, vol.128, pp. 208-217, 2004.
[14] Xiqiang Yan, Ming Hou, Haifeng Zhang, Fenning Jing, Pingwen Ming, Baolian Yi, “Performance of PEMFC stack using expanded graphite bipolar plates” , Journal of Power Sources, vol. 160, pp.252-257,2006.
[15] W.Schmittinger, A.Vahidi,“A review of the main parameters influencing long-term performance and durability of PEM fuel cells” , J. Power Sources, vol. 180, pp. 1-14, 2008
[16] E. Hontanon, M. J. Escudero, C. Bautista, P.L. Garcia-Ybarra, L, Daza, “Optimisation of flow-field in polymer electrolyte membrane fuell cells using computational fluid dynamics techniques” , J. Power Sources, vol. 86, pp. 823-832,2000.
[17] B. T. Tsai, C. J. Tseng, Z. S. Liu, C. H. Wang, C. I. Lee, C. C. Yang, S. K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor” , Int. J. Hydrogen Energy, vol. 37, pp. 13060-13066, 2012.
[18] J. Kim, N. Cunningham, “Development of porous carbon foam polymer electrolyte membrane fuel cell”, J. Power Sources, Vol. 195, pp. 2291-2300, 2010.
[19] N. Dukhan, O. Bagci, M. Ozdemir, “Metal foam hydrodynamics: flow regimes from pre-Darcy to turbulent”, Int. J. Heat Mass Transfer, vol. 77, pp. 114-123, 2014.
[20] N. Dukhan, K. Patel, “Effect of sample’s length on flow properties of open-cell metal foam and pressure-drop correlation”, J. Porous Mater, Vol. 18, pp. 655-665, 2011.
[1] A. Fly, D. Butcher, Q. Meyer, M. Whiteley, A. Spencer, C. Kim, P.R. Shearing, D.J.L. Brett,R. Chen, “Visualization of flooding in a single cell and stacks by using a newly-designed transparent PEMFC”, Int. J. Hydrogen Energy, vol. 37, pp. 422-435, 2012.
[21] J. J. Hwang, G. J. Hwang, R. H. Yeh, C. H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams,” J. Heat Transfer, Vol. 124, pp. 120-129, 2002.
[22] M. Medraj, E. Baril, V. Loya, L. P. Lefebvre, “The effect of microstructure on the permeability of metallic foams”, J. Mater Sci., Vol. 42, pp. 4372-4383, 2007.
[23] M. S. Hossain, B. Shabani, “Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells,” J. Power Sources, Vol. 295, pp. 275-291, 2015.
[24] V.A. Paganin, C.L.F. Oliveira, E.A. Ticianelli, T.E. Springer, E.R. Gonzalez, “Modelisticinterpretation of the impedance response of a polymer electrolyte fuel cell1,” Electrochimica Acta, Vol. 43, pp. 3761-3766, 1998.
[25] M. Eikerling, A. A. Kornyshev, “Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells,” J. electroanal. chem. interfacial electrochem., vol. 475, pp. 107-123, 1999.
[26] R. O’Hayre, W. S. Cha, W. Colella, F.B. Prinz, “Fuel cell fundamentals,” Wiley, 2005.
[27] R. O’Hayre, S. W. Cha, W. Colella, F. B. Prinz,王曉紅、黃宏 譯,「燃料電池基礎」,全華科技圖書股份有限公司,2008.
[28] P. Macini , E. Mesini, R. Viola, “Laboratory measurements of non-Darcy flow coefficients in natural and artificial unconsolidated porous media,” J. petrol sci eng., vol. 77, pp. 365-374, 2011.
[29] 雷諾數,維基百科,自由的百科全書,取自https://zh.wikipedia.org/wiki/%E9%9B%B7%E8%AF%BA%E6%95%B0.指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2018-8-21 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare