博碩士論文 105323098 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:18.191.31.104
姓名 林怡萱(Yi-Xuan Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以計算流體力學模擬徑向多孔介質指形流: 流率與濕潤性的交互作用
(Computational Fluid Dynamic Simulation of viscous fingering in radial porous media: interplay between injection and wettability)
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 當兩種流體存在黏度差異時,以低黏度流體驅替高黏度流體會導致流動介面不穩定,這種現象稱為指形流。根據前人研究以時變線性流率進行注入能夠有效抑制徑向Hele-Shaw cell中的黏性指形,本文進一步將其應用在具有亂數分佈的顆粒之多孔介質中,以商用軟體ANSYS Fluent進行模擬。本研究分為兩個部分:徑向Hele-Shaw cell與多孔介質,針對不同濕潤性下線性流率的抑制能力來進行探討。其中濕潤性的改變在Hele-Shaw cell中為改變上下平板壁面,多孔介質則除了上下平板更增加了顆粒的濕潤性,以探討孔隙對流動的影響。
Hele-Shaw cell結果顯示當流動為非濕潤流體驅替濕潤流體的排移流動時,線性流率可有效的抑制指形;而當濕潤流體驅替非濕潤流體的浸潤流動時,線性流率效果不彰,此結果與上下平板濕潤性造成的垂直面的介面張力方向有關,排移流動的介面張力與流動方向相反,使擾動的成長幅度較小,進而能抑制指形;而浸潤流動的介面張力與流動方向相同,增加了介面的擾動程度,較易形成指形使得線性流率失效。多孔介質中受到孔隙間毛細壓力的影響,排移流動傾向往孔隙大的地方流動,浸潤流動傾向往孔隙小的地方流動;兩者的線性流率皆因為受到孔隙影響使得線性流率抑制指形的效用十分不明顯。
摘要(英) Displacing a more viscous fluid by another less viscous fluid leads to instabilities of the interface between two fluids due to the viscosity contrast. The phenomenon is called viscous fingering. Researchers already found out that linear time-dependent injection rate is able to suppress this phenomenon. Our work here is to take a step further, by applying the scheme in porous media. We consider the radial Hele-Shaw cell and porous media flow, and focus on how wettability may affect the instability suppress.
The results in Hele-Shaw cell show that the linear injection flow rate suppress the instabilities effectively for drainage flow, in which a non-wetting fluid displaces a wetting fluid; On the other hand, this scheme doesn’t work for imbibition flow where a wetting fluid displace a non-wetting fluid. This is because the interfacial force caused by the wettability, directs in same the direction as imbibition flow. In porous media, a linear injection rate has little impact on both kinds of flow. Drainage flow tends to flow toward larger pores while imbibition flow most likely flows toward smaller pores, which both induce the onset of instability that is hardly suppressible by the linear flow rates.
關鍵字(中) ★ 指形流
★ 多孔介質
★ 濕潤性
★ 時變流率
關鍵字(英) ★ fingering flow
★ Hele-Shaw cell
★ porous media
★ wettability
★ time-dependent injection flow rate
論文目次 中文摘要 i
Abstract ii
符號說明 iii
英文字母 iii
希臘字母 iv
上下標 iv
目錄 v
圖目錄 viii
表目錄 viii
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究目的 4
第二章 數學模型 12
2.1 問題描述 12
2.1.1 Hele-Shaw cell模型 12
2.1.2 多孔介質模型 13
2.1.3 常數流率與線性流率 13
2.2 統御方程式 15
2.2.1 質量守恆方程式 15
2.2.2 動量守恆方程式 15
2.2.3 體積分率方程式 16
2.3 VOF模型及CSF模型 16
2.3.1 VOF模型 17
2.3.2 CSF 模型 17
2.4 邊界條件 18
2.5 流體性質 19
2.6 網格測試 20
第三章 Hele-Shaw cell 26
3.1 模擬條件 26
3.2 濕潤性 27
3.3 排移流動 28
3.4 浸潤流動 29
3.5 綜合比較 30
3.5.1介面長度 30
3.5.2 壓力 32
3.5.3功率 33
第四章 多孔介質 40
4.1 排移流動與浸潤流動 40
4.1.1排移流動 40
4.1.2浸潤流動 41
4.1.3綜合比較 42
4.2 毛細壓力的影響 43
4.2.1排移流動 43
4.2.2浸潤流動 44
4.2.3綜合比較 44
4.3 完全沾濕介質 45
第五章 結論與未來展望 57
5.1 結論 57
5.2 未來展望 59
參考文獻 60
參考文獻 Al-Housseiny, T. T., Tsai, P. A., & Stone, H. A. (2012). Control of interfacial instabilities using flow geometry. Nature Physics, 8(10), p. 747.
ANSYS. (2015). ANSYS Fluent Theory Guide. ANSYS, Inc.
ANSYS. (2015). ANSYS Fluent Users Guide. ANSYS, Inc.
Brackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of computational physics, 100(2), pp. 335-354.
Brener, E. A., Kessler, D. A., Levine, H., & Rappei, W. J. (1990). Selection of the viscous finger in the 90° geometry. Europhysics Letters, Vol. 13, pp. 161-166.
Callan-Jones, A. C., Joanny, J. F., & Prost, J. (2008). Viscous-fingering-like instability of cell fragments. Physical review letters, 100(25), p. 258106.
Carrillo, L., Magdaleno, F. X., Casademunt, J., & Ortı´n, J. (1996). Experiments in a rotating Hele-Shaw cell. Physical Review E, Vol. 54, pp. 6260-6267.
Chuoke, R. L., Van Meurs, P., & van der Poel, C. (1959). The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media. Society of Petroleum Engineers, Vol. 216, pp. 188-194.
Dias, E. O., Alvarez-Lacalle, E., Carvalho, M. S., & Miranda, J. A. (2012). Minimization of Viscous Fluid Fingering: A Variational Scheme for Optimal Flow Rates. Physical Review Letters, p. 144502.
Dias, E. O., Parisio, F., & Miranda, J. A. (2010). Suppression of viscous fluid fingering: A piecewise-constant injection process. Physical Review E 82, p. 067301.
Ferrari, A., & Lunati, I. (2013). Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy. Advances in water resources, 57, pp. 19-31.
Gorell, S., & Homsy, G. (1983). A theory of the optimal policy of oil recovery by secondary displacement process. Society for Industrial and Applied Mathematics, pp. 79-98.
Gu, Y. (2001). Drop size dependence of contact angles of oil drops on a. Colloids and Surfaces A: Physicochemical and Engineering Aspects, pp. 215-224.
Hill, S. (1952). Channeling in packed columns. Chemical Engineering Science, 1(6), pp. 247-253.
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of computational physics, 39(1), pp. 201-225.
Homsy, G. M. (1987). Viscous fingering in porous media. Ann. Rev. Fluid Mech., pp. 271-311.
Horgue, P., Augier, F., Duru, P., Prat, M., & Quintard, M. (2013). Experimental and numerical study of two-phase flows in arrays of cylinders. Chemical Engineering Science, 102, pp. 335-345.
Hugaboom, D., & Powers, S. (2002). Recovery of coal tar and creosote from porous media: the influence of wettability. Ground Water Monitoring and Remediation, Vol. 22, pp. 83-90.
Jha, B., Cueto-Felgueroso, L., & Juanes, R. (2011). Fluid Mixing from Viscous Fingering. American Physical Society, p. 194502.
Leclerc, D. F., & Neale, G. H. (1988). Monte Carlo simulations of radial displacement of oil from a wetted porous medium: fractals, viscous fingering and invasion percolation. J. Phys. A: Math. Gen. 21, pp. 2979-2994.
Lins, T. F. (2017). Dynamics of Time Dependent Immiscible Injection Flows in Porous Media. Thesis of degree of master of University of Calgary.
Martyushev, L., & Birzina, A. (2008). Specific features of the loss of stabilityduring radial displacement of fluid in theHele–Shaw cell. Journal of Physic, p. 045201.
Mukherjee, P. P., Kang, Q., & Wang, C. Y. (2011). Pore-scale modeling of two-phase transport in polymer electrolyte fuel cells—progress and perspective. Energy & Environmental Science, 4(2), pp. 346-369.
Paterson, L. (1981). Radial fingering in a Hele Shaw cell. Journal of Fluid Mechanics, 113, pp. 513-529.
Philip, J. R. (1970). Flow in porous media. Annual Review of Fluid Mechanics, 2(1), pp. 177-204.
Pihler-Puzović, D., Illien, P., Heil, M., & Juel, A. (2012). Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Physical review letters, 108(7), p. 074502.
Reis, L., & J, A. M. (2011). Controlling fingering instabilities in nonflat Hele-Shaw geometries. Physical Review E, p. 066313.
Sader, J. E., Chan, D. Y., & Hughes, B. D. (1994). Non-Newtonian effects on immiscible viscous fingering in a radial Hele-Shaw cell. Physical Review E, Vol.49, pp. 420-432.
Saffman, P. G., & Taylor, G. (1958, June). The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences(Vol. 245,No. 1242), pp. 312-329.
Than, P., Preziosi, L., Josephl, D. D., & Arney, M. (1988). Measurement of interfacial tension between immiscible liquids with the spinning road tensiometer. Journal of Colloid and Interface Science, Vol. 124, pp. 552-559.
Trojer, M., Szulczewski, M. L., & Juanes, R. (2015). Stabilizating fluid-fluid displacements in porous media through wettability alteration. Physic Review Application, vol. 3 , p. 054008.
Wang, Y., Zhang, C., Wei, N., Oostrom, M., Wietsma, T. W., & Li, X. (2012). Experimental study of crossover from capillary to viscous fingering for supercritical CO2−water displacement in a homogeneous pore network. Environmental Science and Technology, pp. 212-218.
Young, T. (1805). An Essay on the Cohesion of Fluids. Philosophical Transactions of the Royal Society of London, pp. 65-87.
Zhao, B., MacMinn, C. W., & Juanes, R. (2016). Wettability control on multiphase flow in patterned microfluidics. PNAS, vol. 113, pp. 10251-10256.
林再興. (2004). 石油採收技術與蘊藏量估算. 科學發展月刊,382, 頁 18-23.
林鴻諭. (2016). 利用異質孔徑界面增強多孔介質內流體驅替效果之研究. 國立中央大學碩士論文.
邱瑞祥. (2017). 時變流率對多孔介質指形的影響. 國立中央大學碩士論文
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2019-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明