參考文獻 |
1. Wang, Z. L. &Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays.
2. NREL. https://www.materialsnet.com.tw/DocView.aspx?id=25503.
3. 黃原裕,蔣孝澈. Factors on Low Temperature Synthesis of fine BaTiO3 by Conventional and Microwave heating.
4. 池田拓郎 1997 基本壓電材料學.
5. Cheng, L.-Q. &Li, J.-F. A review on one dimensional perovskite nanocrystals for piezoelectric applications. J. Mater. 2, 25–36 (2016).
6. 吳朗,電子材料,1997.
7. N. Tucker, J. J. Stanger, M. P. Staiger, H. Razzaq, K. H. The History of the Science and Technology of Electrospinning from 1600 to 1995. J. Eng. Fiber. Fabr. 63–73 (2012).
8. L.F. Nascimento, M., S. Araujo, E., R. Cordeiro, E., H.P. de Oliveira, A. &P. de Oliveira, H. A Literature Investigation about Electrospinning and Nanofibers: Historical Trends, Current Status and Future Challenges. Recent Pat. Nanotechnol. (2015). doi:10.2174/187221050902150819151532
9. Szentivanyi, A. L., Zernetsch, H., Menzel, H. &Glasmacher, B. A review of developments in electrospinning technology: New opportunities for the design of artificial tissue structures. International Journal of Artificial Organs (2011). doi:10.5301/ijao.5000062
10. Koyal Garg and Gary L. Bowlin. Electrospinning jets and nanofibrous structures. Biomicrofluidcs 5, 13403 (2011).
11. Reneker, D. H., Yarin, A. L., Fong, H. &Koombhongse, S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. (2000). doi:10.1063/1.373532
12. 維基百科,靜電紡絲.
13. Haghi, A. K. &Akbari, M. Trends in electrospinning of natural nanofibers. in Physica Status Solidi (A) Applications and Materials Science (2007). doi:10.1002/pssa.200675301
14. Yang, Q. et al. Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning. J. Polym. Sci. Part B Polym. Phys. (2004). doi:10.1002/polb.20222
15. Zheng, J. Y. et al. The effect of surfactants on the diameter and morphology of electrospun ultrafine nanofiber. J. Nanomater. (2014). doi:10.1155/2014/689298
16. Li, Z. &Wang, C. Effects of Working Parameters on Electrospinning. in (2013). doi:10.1007/978-3-642-36427-3_2
17. H. Fong, I. Chun, D. H. R. Beaded nanofibers formed during electrospinning. Polym. 40, 4585–4592 (1999).
18. Huan, S. et al. Effect of experimental parameters on morphological, mechanical and hydrophobic properties of electrospun polystyrene fibers. Materials (Basel). (2015). doi:10.3390/ma8052718
19. Lyons, J., Li, C. &Ko, F. Melt-electrospinning part I: Processing parameters and geometric properties. Polymer (Guildf). (2004). doi:10.1016/j.polymer.2004.08.071
20. Yang, Y., Jia, Z., Li, Q. &Guan, Z. Experimental investigation of the governing parameters in the electrospinning of polyethylene oxide solution. in IEEE Transactions on Dielectrics and Electrical Insulation (2006). doi:10.1109/TDEI.2006.1657971
21. Arayanarakul, K., Choktaweesap, N., Aht-ong, D., Meechaisue, C. &Supaphol, P. Effects of poly(ethylene glycol), inorganic salt, sodium dodecyl sulfate, and solvent system on electrospinning of poly(ethylene oxide). Macromol. Mater. Eng. (2006). doi:10.1002/mame.200500419
22. Uyar, T. &Besenbacher, F. Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. Polymer (Guildf). (2008). doi:10.1016/j.polymer.2008.09.025
23. Mit-Uppatham, C., Nithitanakul, M. &Supaphol, P. Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. doi:10.1002/macp.200400225
24. Huang, C. et al. Electrospun polymer nanofibres with small diameters. Nanotechnology (2006). doi:10.1088/0957-4484/17/6/004
25. Ding, W. et al. Manipulated electrospun PVA nanofibers with inexpensive salts. Macromol. Mater. Eng. (2010). doi:10.1002/mame.201000188
26. Park, J. Y., Lee, I. H. &Bea, G. N. Optimization of the electrospinning conditions for preparation of nanofibers from polyvinylacetate (PVAc) in ethanol solvent. J. Ind. Eng. Chem. (2008). doi:10.1016/j.jiec.2008.03.006
27. Reneker, D. H. &Yarin, A. L. Electrospinning jets and polymer nanofibers. Polymer (2008). doi:10.1016/j.polymer.2008.02.002
28. Pillay, V. et al. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. Journal of Nanomaterials (2013). doi:10.1155/2013/789289
29. Mazoochi, T., Hamadanian, M., Ahmadi, M. &Jabbari, V. Investigation on the morphological characteristics of nanofiberous membrane as electrospun in the different processing parameters. Int. J. Ind. Chem. (2012). doi:10.1186/2228-5547-3-2
30. Baek, C. et al. Enhanced output performance of a lead-free nanocomposite generator using BaTiO3nanoparticles and nanowires filler. Appl. Surf. Sci. (2018). doi:10.1016/j.apsusc.2017.06.109
31. Liang, L. Y., Kang, X. L., Sang, Y. H. &Liu, H. One-Dimensional Ferroelectric Nanostructures: Synthesis, Properties, and Applications. Adv. Sci. 3, 21 (2016).
32. Li, X., Sun, M., Wei, X., Shan, C. &Chen, Q. D Piezoelectric Material Based Nanogenerators: Methods, Materials and Property Optimization. (2018). doi:10.3390/nano8040188
33. Yoko, T., Kamiya, K. &Tanaka, K. Preparation of multiple oxide BaTiO3 fibres by the sol-gel method. J. Mater. Sci. 25, 3922–3929 (1990).
34. Baji, A., Mai, Y. W., Li, Q. &Liu, Y. Nanoscale investigation of ferroelectric properties in electrospun barium titanate/polyvinylidene fluoride composite fibers using piezoresponse force microscopy. Compos. Sci. Technol. 71, 1435–1440 (2011).
35. Zhang, X., Ma, Y., Zhao, C. &Yang, W. High dielectric constant and low dielectric loss hybrid nanocomposites fabricated with ferroelectric polymer matrix and BaTiO3 nanofibers modified with perfluoroalkylsilane. Appl. Surf. Sci. 305, 531–538 (2014).
36. Liu, S., Xue, S., Zhang, W. &Zhai, J. Enhanced dielectric and energy storage density induced by surface-modi fi ed BaTiO 3 nano fi bers in poly ( vinylidene fl uoride ) nanocomposites. 40, 15633–15640 (2014).
37. Yan, J. &Jeong, Y. G. Roles of carbon nanotube and BaTiO 3 nanofiber in the electrical, dielectric and piezoelectric properties of flexible nanocomposite generators. Compos. Sci. Technol. 144, 1–10 (2017).
38. Padture, N. P. &Wei, X. Hydrothermal synthesis of thin films of barium titanate ceramic nano-tubes at 200°C. J. Am. Ceram. Soc. (2003). doi:10.1111/j.1151-2916.2003.tb03636.x
39. Wang, X., Chen, L., Zhao, J., Jin, L. &Li, L. Hydrothermal synthesis of thin films of barium titanate nanotube arrays. in Integrated Ferroelectrics (2008). doi:10.1080/10584580802107882
40. Munoz-Tabares, J. A. et al. Nanostructural evolution of one-dimensional BaTiO 3 structures by hydrothermal conversion of vertically aligned TiO 2 nanotubes. Nanoscale (2016). doi:10.1039/C5NR07283B
41. Tsege, E. L. et al. A flexible lead-free piezoelectric nanogenerator based on vertically aligned BaTiO 3 nanotube arrays on a Ti-mesh substrate. RSC Adv. (2016). doi:10.1039/C6RA13482C
42. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T. &Niihara, K. Formation of Titanium Oxide Nanotube.
43. Bao, N. Z., Shen, L. M., Srinivasan, G., Yanagisawa, K. &Gupta, A. Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: From nanotubes and nanowires to ordered nanostructures. J. Phys. Chem. C 112, 8634–8642 (2008).
44. Li, Y. et al. Titanate Nanofiber Reactivity: Fabrication of MTiO3 (M = Ca, Sr, and Ba) Perovskite Oxides. J. Phys. Chem. C 113, 4386–4394 (2009).
45. Zhu, Y.-F., Zhang, L., Natsuki, T., Fu, Y.-Q. &Ni, Q.-Q. Facile Synthesis of BaTiO 3 Nanotubes and Their Microwave Absorption Properties. ACS Appl. Mater. Interfaces 4, 2101–2106 (2012).
46. Tang, H., Zhou, Z. &Sodano, H. A. Relationship between BaTiO3 Nanowire Aspect Ratio and the Dielectric Permittivity of Nanocomposites. ACS Appl. Mater. Interfaces 6, 5450–5455 (2014).
47. Koka, A., Zhou, Z., Tang, H. X. &Sodano, H. A. Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications. Nanotechnology 25, 10 (2014).
48. Lin, Z. H. et al. BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. J Phys Chem Lett 3, 3599–3604 (2012).
49. Dhakras, D. &Ogale, S. High-Performance Organic-Inorganic Hybrid Piezo-Nanogenerator via Interface Enhanced Polarization Effects for Self-Powered Electronic Systems. Adv. Mater. Interfaces 3, 9 (2016).
50. Lee, M. et al. A hybrid piezoelectric structure for wearable nanogenerators. Adv. Mater. (2012). doi:10.1002/adma.201200150
51. Fang, J., Wang, X. &Lin, T. Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes. J. Mater. Chem. (2011). doi:10.1039/c1jm11445j
52. Vazquez, B., Vasquez, H. &Lozano, K. Preparation and characterization of polyvinylidene fluoride nanofibrous membranes by forcespinningTM. Polym. Eng. Sci. (2012). doi:10.1002/pen.23169
53. Gheibi, A., Bagherzadeh, R., Merati, A. A. &Latifi, M. Electrical power generation from piezoelectric electrospun nanofibers membranes: electrospinning parameters optimization and effect of membranes thickness on output electrical voltage. J. Polym. Res. (2014). doi:10.1007/s10965-014-0571-8
54. Liu, X., Ma, J., Wu, X., Lin, L. &Wang, X. Polymeric Nanofibers with Ultrahigh Piezoelectricity via Self-Orientation of Nanocrystals. ACS Nano 11, 1901–1910 (2017).
55. Corral-Flores, V. et al. Preparation of Electrospun Barium Titanate – Polyvinylidene Fluoride Piezoelectric Membranes. Mater. Sci. Forum (2010). doi:10.4028/www.scientific.net/MSF.644.33
56. Chanmal, C. V. &Jog, J. P. Electrospun PVDF/BaTiO3 nanocomposites: Polymorphism and thermal emissivity studies. Int. J. Plast. Technol. (2011). doi:10.1007/s12588-011-9001-5
57. Siddiqui, S. et al. A durable and stable piezoelectric nanogenerator with nanocomposite nanofibers. embedded in an elastomer under high loading for a self-powered sensor system. Nano Energy 30, 434–442 (2016).
58. Lu, X., Qu, H. &Skorobogatiy, M. Piezoelectric microstructured fibers via drawing of multimaterial preforms. Sci. Rep. (2017). doi:10.1038/s41598-017-01738-9
59. Joshi, U. A., Yoon, S., Balk, S. &Lee, J. S. Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: A structural investigation. J. Phys. Chem. B 110, 12249–12256 (2006).
60. Xie, B. et al. Mechanical force-driven growth of elongated BaTiO3 lead-free ferroelectric nanowires. Ceram. Int. 43, 2969–2973 (2017).
61. Wang, Y., Du, G., Liu, H. &王?敏表征及形成机理探?. Preparation, Characterization and Formation Mechanism of TiO 2 Nanobelts.
62. Bavykin, D.V., Friedrich, J. M. &Walsh, F. C. Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. (2006). doi:10.1002/adma.200502696
63. Rorvik, P. M., Grande, T. &Einarsrud, M. A. One-Dimensional Nanostructures of Ferroelectric Perovskites. Adv. Mater. 23, 4007–4034 (2011).
64. Gregorio R. Cestari M. Effed of Crystallization Temperature on the Crystalline Phase Content and Morphology of Poly (vinylidene Fluoride). Polymer (Guildf). 32, 859–870 (1994).
65. Park, K.-I. et al. Lead-free BaTiO 3 nanowires-based flexible nanocomposite generator. Nanoscale 6, 8962 (2014).
66. Mao, Y., Banerjee, S. &Wong, S. S. Hydrothermal synthesis of perovskite nanotubes. Chem. Commun. 408–409 (2003). doi:10.1039/B210633G
67. Choi, W., Choi, K., Yang, G., Kim, J. C. &Yu, C. Improving piezoelectric performance of lead-free polymer composites with high aspect ratio BaTiO3 nanowires. Polym. Test. 53, 143–148 (2016).
68. Maxim, F., Ferreira, P., Vilarinho, P. M. &Reaney, I. Hydrothermal Synthesis and Crystal Growth Studies of BaTiO3 Using Ti Nanotube Precursors. Cryst. Growth Des. 8, 3309–3315 (2008). |