博碩士論文 105324029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:238 、訪客IP:3.147.47.57
姓名 賴佳忻(Chia-Hsin Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討
(The Influence of Coating Temperature and Solvent Ratio on Active Layer by Blade-Coating for Perovskite Solar Cells)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年鈣鈦礦太陽能電池發展廣泛且快速,為走向商業化,本研究以相較傳統旋轉塗佈製程更適合放大面積製造的刮刀塗佈製程為主題,探討前驅液選擇、刮刀塗佈溫度與混合溶劑比例於此製程中塗佈鈣鈦礦薄膜的影響。實驗結果發現,不同單一或混合溶劑對膜厚與薄膜的連續性有明顯差異,過薄或不連續薄膜會造成主動層吸光率不佳,影響元件之短路電流表現。塗佈溫度則是影響薄膜粗糙度的關鍵,過低的塗佈溫度會使刮刀經過後溶劑持續因表面張力流動,造成分布不均勻的薄膜表面形貌;過高的塗佈溫度則會使溶劑快速揮發,使薄膜表面出現少量破洞,降低其覆蓋率。塗佈溫度亦主導鈣鈦礦成膜時結晶相態的變化則可由文獻得到印證,越高的塗佈溫度,其前驅液直接結晶成為規則排列的鈣鈦礦,不易生成不穩定的溶劑化合物中間相與碘化鉛相,可得更佳的薄膜品質。而深入探討GBL與DMSO混合溶劑比例可發現,DMSO所佔比例越多的薄膜其結晶較大較平整,應用於電池元件之轉換效率表現較佳;反之,GBL所占比例越多的薄膜,因其結晶核密度大,使結晶尺寸受到限制,且由於GBL溶劑特性造成的薄膜表面易於溶劑揮發過程產生中心向外圍的熱對流,形成如盆地狀的表面形貌,造成薄膜粗糙與缺陷現象。本研究由上述三個方向優化之條件,分析出最佳塗佈溫度130℃與最佳溶劑比例GBL:DMSO=1:9(v:v),製作n-i-p結構與p-i-n結構太陽能電池,分別得到12.16%、13.19%之光電轉換效率,更由效率分布比較其薄膜均勻性,進而應用於放大面積約120倍之p-i-n結構太陽能次模組,得到11.13%之效率。刮刀塗佈法製程簡單、材料有效運用、元件有效面積無限制等優點,於大規模製造鈣鈦礦太陽能電池具有相當的競爭力。
摘要(英) In recent year, perovskite solar cells has developed widely and quickly. In order to commercialize, we use blade-coating method which is more easily to up-scale than the most commonly used spin-coating process to investigate the effect of the precursor solvent, coating temperature, and the ratio of the mixed solvent. We find that there is obvious difference in film thickness and continuity when used distinct single or mixed solvent. The bad absorption of the active layer attributed to the discontinuous film or when the film is too thin, which caused the low device short circuit current. Coating temperature is the key of the roughness of the film. The solvent will keep flowing because of the surface tension after the blade go through when in lower coating temperature, which lead to the uneven morphology. In contrast, when it comes to higher coating temperature, the solvent volatilize so quick that bring about the holes on the film surface, result the lower coverage. Coating temperature is also the main role of the phase change when forming the perovskite crystalline. The precursor react directly into the ordered perovskite crystal at higher coating temperature, the unstable solvate and intermediate are found less. Furthermore, we discuss the film quality of the different solvent ratio of GBL and DMSO. The more DMSO, the larger the crystalline, and also get the better power conversion efficiency when applied to the solar cells. On the contrary, the more GBL, the bigger the density of the nucleus, cause the limited grain size. Due to the characteristic of the solvent GBL, the film is easily form the ring-like surface when the solvent volatilize and emerge the center-to-outer heat convection, which is the reason why the roughness and defects. This study is the analyzation about the above three optimization and got the best coating temperature 130℃ and the best ratio of the solvent GBL: DMSO=1:9(v: v), the n-i-p and p-i-n type solar cells respectively yield 12.16% and 13.19%. After enlarge the active area about 120 times as p-i-n type module with the efficiency of 11.13%. The advantages such as easy-made, material used effectively, and no active area limitation, blade-coating is a very promising process for up-scale manufacture.
關鍵字(中) ★ 鈣鈦礦太陽能電池
★ 刮刀塗佈法
★ 溶劑比例
關鍵字(英) ★ perovskite solar cell
★ blade coating
★ solvent ratio
論文目次 中文摘要---I
Abstract---II
謝誌---IV
目錄---V
圖目錄---VII
表目錄---X
第一章 緒論---1
1.1 前言---1
1.2 太陽能電池種類介紹與發展概況---3
1.3 文獻回顧---11
1.3.1 鈣鈦礦源起---11
1.3.2 鈣鈦礦太陽能電池發展史---12
1.3.3 n-i-p/p-i-n結構鈣鈦礦太陽能電池---14
1.3.4 鈣鈦礦薄膜製程種類與發展---15
1.4 研究動機---24
第二章 實驗方法---25
2.1 實驗藥品與儀器---25
2.2 材料製備---28
2.2.1 甲基胺碘合成---28
2.2.2 鈣鈦礦溶液配置---29
2.2.3 二氧化鈦緻密層溶液配置---29
2.2.4 二氧化鈦介孔層溶液配置---29
2.2.5 電洞傳輸層(Spiro-OMeTAD)溶液配置---30
2.2.6 電子傳輸層(PC61BM)溶液配置---30
2.3 實驗步驟---31
2.3.1 n-i-p結構鈣鈦礦小元件電池製作---31
2.3.2 p-i-n結構鈣鈦礦小元件電池製作---34
2.3.3 p-i-n結構5cm x 5cm鈣鈦礦次模組製作---36
2.4 儀器分析原理---38
2.4.1 紫外-可見分光光譜儀(Ultraviolet–Visible Spectrophotometer, UV-Vis)---38
2.4.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)---39
2.4.3 原子力顯微鏡(Atomic Force Microscope, AFM)---40
2.4.4 X光繞射儀(X-Ray Diffractometer, XRD)---42
2.4.5 光激發螢光光譜儀(Photoluminescence Spectrometer, PL)、時間解析之螢光光譜儀(Time-Resolved Photoluminescence Spectrometer, TRPL)---43
2.4.6 太陽光模擬器(Solar Simulator)---45
第三章 結果與討論---46
3.1 塗佈溫度之影響---46
3.2 溶劑比例之影響---57
第四章 結論---70
第五章 參考資料---71
參考文獻 [1] National Renewable Energy Laboratory. (2018). Best Research-Cell Efficiencies. Retrieved from https://www.nrel.gov/pv/assets/images/efficiency-chart.png.
[2] Peck, L. (2011). Solar history: Alexandre Edmond Becquerellar. Retrieved from https://www.solarenergyworld.com/solar-history-alexandre-edmond/
[3] Chodos, A. (2009). April 25, 1954: Bell Labs demonstrates the first practical silicon solar cell. APS NEWS APS Physics, 18(4), 2-2.
[4] Spielberg, N. & Anderson, B. D. (1987). Seven Ideas that Shook the Universe, Trade Version. U.S.A.: John Wiley & Sons, Inc.
[5] Ohl, R. S. (1946). Light-sensitive electric device. U. S. Patent US2402662A. Nokia Bell Labs.
[6] Kuang, Y., Vece, M. D., Rath, J. K., Dijk, L. V. & Schropp, R. E. I. (2013). Elongated nanostructures for radial junction solar cells. Rep. Prog. Phys., 76(10), 106502-106530. DOI: 10.1088/0034-4885/76/10/106502
[7] Shockley, W. & Queisser, H. J. (1961). Detailed Balance Limit of Efficiency of p?n Junction Solar Cells. J. Appl. Phys., 32(3), 510-519. DOI: 10.1063/1.1736034
[8] Wikipedia. Organic solar cell. Retrieved from https://en.wikipedia.org/wiki/Organic_solar_cell
[9] Kearns, D. & Calvin, M. (1958). Photovoltaic Effect and Photoconductivity in Laminated Organic Systems. J. Chem. Phys., 29(4), 950-951. DOI: 10.1063/1.1744619
[10] Tang, C. W. (1986). Two-layer organic photovoltaic cell. Appl. Phys. Lett., 48(2), 183-185. DOI: 10.1063/1.96937
[11] Yu, G., Gao, J., Hummelen, J. C., Wudi, F., Heeger, A. J. (1995). Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Science, 270, 1790-1791. DOI: 10.1126/science.270.5243.1789
[12] Tsukamoto, J., Ohigashi, H., Matsumura, K. & Takahashi, A. (1981). A Schottky Barrier Type Solar Cell Using Polyacetylene. Jpn. J. Appl. Phys., 20(2), 127-129. DOI: 10.1143/JJAP.20.L127
[13] Shaheen, S. E., Brabec, C. J. & Sariciftci, N. S. (2001). 2.5% efficient organic plastic solar cells. Appl. Phys. Lett., 78(6), 841-843. DOI: 10.1063/1.1345834
[14] Padinger, F., Rittberger, R. S. & Sariciftci, N. S. (2003). Effects of Postproduction Treatment on Plastic Solar Cells. Adv. Funct. Mater., 13(1), 85-88. DOI: 10.1002/adfm.200390011
[15] Seki, K., Furube, A. & Yoshida, Y. (2013). Detailed balance limit of power conversion efficiency for organic photovoltaics. Appl. Phys. Lett., 103(25), 253904. DOI: 10.1063/1.4852676
[16] Tsubomura, H., Matsumura, M., Nomura, Y. & Amamiya, T. (1976). Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature, 261, 402-403. DOI: 10.1038/261402a0
[17] O′Regan, B. & Gratzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737-740. DOI: 10.1038/353737a0
[18] Wikipedia. Dye-sensitized solar cell. Retrieved from https://en.wikipedia.org/wiki/Dye-sensitized_solar_cell
[19] Barnham, K. W. J. & Duggan, G. (1990). A new approach to high?efficiency multi?band?gap solar cells. J. Appl. Phys., 67(7), 3490-3493. DOI: 10.1063/1.345339
[20] Luther, J. M., Gao, J., Lloyd, M. T., Semonin, O. E., Beard, M. C. & Nozik, A. J. (2010). Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell. Adv. Mater., 22(33), 3704-3707. DOI: 10.1002/adma.201001148
[21] Ning, Z., Voznyy, O., Sargent. E. H. et al. (2014). Air-stable n-type colloidal quantum dot solids. Nat. Mater., 13, 822-828. DOI: 10.1038/nmat4007
[22] Chuang, C.-H. M., Brown, P. R., Bulovi?, V. & Bawendi, M. G. (2014). Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater., 13, 796-801. DOI: 10.1038/nmat3984
[23] Sanehira, E. M., Marshall, A. R., Luther, J. M. et al. (2017). Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv., 3(10), eaao4204. DOI: 10.1126/sciadv.aao4204
[24] Coontz, R. (2013). Science′s Top 10 Breakthroughs of 2013. Retrieved from http://www.sciencemag.org/news/2013/12/sciences-top-10-breakthroughs-2013
[25] Green, M. A., Ho-Baillie, A. & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nat. Photonics, 8, 506-514. DOI: 10.1038/NPHOTON.2014.134
[26] Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. (2009). Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc., 131(17), 6050-6051. DOI: 10.1021/ja809598r
[27] Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W. & Park, N.-G. (2011). 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3, 4088-4093. DOI: 10.1039/c1nr10867k
[28] Kim, H.-S., Lee, C.-R., Gratzel, M., Park, N.-G. et al. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Sci. Rep., 2, 591. DOI: 10.1038/srep00591
[29] Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. (2016). Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science, 338, 643-647. DOI: 10.1126/science.1228604
[30] Liu, M., Johnston, M. B. & Snaith, H. J. (2013). Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 501, 395-398. DOI: 10.1038/nature12509
[31] Zhou, H., Chen, Q., Yang, Y. et al. (2014). Interface engineering of highly efficient perovskite solar cells. Science, 345, 542-546. DOI: 10.1126/science.1254050
[32] Noh, J.-H., Im, S.-H., Heo, J.-H., Mandal, T. N. & Seok, S. Il. (2013). Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells. Nano Lett., 13, 1764-1769. DOI: 10.1021/nl400349b
[33] Pellet, N., Gao, P., Gregori, G., Yang, T.-Y., Nazeeruddin, M. K., Maier, J. & Gratzel, M. (2014). Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angew. Chem. Int. Ed., 53, 3151-3157. DOI: 10.1002/anie.201309361
[34] Saliba, M., Matsui, T., Gratzel, M. et al. (2016). Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci., 9, 1989-1997. DOI: 10.1039/c5ee03874j
[35] Malinkiewicz, O., Graetzel, M., Nazeeruddin, M. K., Bolink, H. J. et al. (2013). Perovskite solar cells employing organic charge-transport layers. Nat. Photonics, 8, 128-132. DOI: 10.1038/nphoton.2013.341
[36] Wang, K.-C., Jeng, J.-Y., Chen, P., Guo, T.-F., Wen, T.-C. et al. (2014). p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells. Sci. Rep., 4, 4756. DOI: 10.1038/srep04756
[37] Song, Z., Watthage, S. C., Phillips, A. B. & Heben, M. J. (2016). Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications. J. Photon. Energy, 6(2), 022001. DOI: 10.1117/1.JPE.6.022001
[38] Burschka, J., Pellet, N., Moon, S.-J., Gratzel, M. et al. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499, 316-320. DOI: 10.1038/nature12340
[39] Xu, Y., Zhu, L., Li, D., Meng, Q. et al. (2016). The Effect of Humidity upon the Crystallization Process of Two-Step Spin-Coated Organic–Inorganic Perovskites. ChemPhysChem, 17, 112-118. DoI: 10.1002/cphc.201500844
[40] You, J., Hong, Z., Zhou, H., Yang, Y. (2014). Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 8(2), 1674–1680. DOI: 10.1021/nn406020d
[41] Barnett, J. L., Cherrette, V. L., Hutcherson, C. J. & So, M. C. (2016). Effects of Solution-Based Fabrication Conditions on Morphology of Lead Halide Perovskite Thin Film Solar Cells. Adv. Mater. Sci. Eng., 2016, 4126163. DOI: 10.1155/2016/4126163
[42] Eperon, G. E., Burlakov, V. M., Docampo, P., Goriely A. & Snaith, H. J. (2013). Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells. Adv. Funct. Mater., 24(1), 151-157. DOI: 10.1002/adfm.201302090
[43] Dualeh, A., Tetreault, N., Moehl, T., Gao, P., Nazeeruddin, M. K. & Gratzel, M. (2014). Effect of Annealing Temperature on Film Morphology of Organic-Inorganic Hybrid Pervoskite Solid?State Solar Cells. Adv. Funct. Mater., 24(21), 3250-3258. DOI: 10.1002/adfm.201304022
[44] Yuan, Y., Huang, J., Bao, Z. et al. (2014). Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun., 5, 3005. DOI: 10.1038/ncomms4005
[45] Moore, D. T., Zhang, W., Snaith, H. J., Wiesner, U., Estroff, L. A. (2015). Crystallization Kinetics of Organic-Inorganic Trihalide Perovskites and the Role of the Lead Anion in Crystal Growth. J. Am. Chem. Soc., 137(6), 2350–2358. DOI: 10.1021/ja512117e
[46] Liang, P.-W., Jen, A. K.?Y. et al. (2014). Additive Enhanced Crystallization of Solution?Processed Perovskite for Highly Efficient Planar-Heterojunction Solar Cells. Adv. Mater., 26(22), 3748-3754. DOI: 10.1002/adma.201400231
[47] Zhang, W., Snaith, H. J. et al. (2015). Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun., 6, 6142. DOI: 10.1038/ncomms7142
[48] Wu, Y., Xie, F., Han, L. et al. (2017). Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm2 achieved by Additive Engineering. Adv. Mater., 29(28), 1701073. DOI: 10.1002/adma.201701073
[49] Im, J.-H., Kim, H.-S. & Park, N.-G. (2014). Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Mater., 2, 081510. DOI: 10.1063/1.4891275
[50] Adnan, M. & Lee, J. K. (2018). All Sequential Dip-Coating Processed Perovskite Layers from an Aqueous Lead Precursor for High Efficiency Perovskite Solar Cells. Sci. Rep., 8, 2168. DOI: 10.1038/s41598-018-20296-2
[51] Chen, Q., Zhou, H., Yang, Y. et al. (2013). Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process. J. Am. Chem. Soc., 136(2), 622-625. DOI: 10.1021/ja411509g
[52] Barrows, A. T., Pearson, A. J., Lidzey, D. G. et al. (2014). Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci., 7, 2944-2950. DOI: 10.1039/C4EE01546K
[53] Das, S., Geohegan, D. B., Xiao, K. et al. (2015). High-Performance Flexible Perovskite Solar Cells by Using a Combination of Ultrasonic Spray-Coating and Low Thermal Budget Photonic Curing. ACS Photonics, 2(6), 680-686. DOI: 10.1021/acsphotonics.5b00119
[54] Jung, Y.-S., Kim, D.-Y., Vak, D. et al. (2016). Differentially pumped spray deposition as a rapid screening tool for organic and perovskite solar cells. Sci. Rep., 6, 20357. DOI: 10.1038/srep20357
[55] Xia, X., Gao, C., Liu, X. et al. (2015). Efficient Light Harvester Layer Prepared by Solid/Mist Interface Reaction for Perovskite Solar Cells. ACS Appl. Mater. Interfaces, 7(31), 16907-16912. DOI: 10.1021/acsami.5b04563
[56] Lau, C. F. J., Deng, X., Ho-Baillie, A. W. Y. et al. (2016). CsPbIBr2 Perovskite Solar Cell by Spray-Assisted Deposition. ACS Energy Lett., 1(3), 573-577. DOI: 10.1021/acsenergylett.6b00341
[57] Xia, X., Wu, W., Liu, X. et al. (2016). Spray reaction prepared FA1?xCsxPbI3 solid solution as a light harvester for perovskite solar cells with improved humidity stability. RSC Adv., 6, 14792-14798. DOI: 10.1039/C5RA23359C
[58] Heo, J. H., Lee, M. H., Jang, M. H. & Im, S. H. (2016). Highly efficient CH3NH3PbI3?xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. J. Mater. Chem. A, 4, 17636-17642. DOI: 10.1039/C6TA06718B
[59] Gamliel, S., Dymshits, A., Aharon, S., Terkieltaub, E. & Etgar, L. (2015). Micrometer Sized Perovskite Crystals in Planar Hole Conductor Free Solar Cells. J. Phys. Chem. C, 119(34), 19722-19728. DOI: 10.1021/acs.jpcc.5b07554
[60] Leyden, M. R., Ono, L. K., Qi, Y. et al. (2014). High performance perovskite solar cells by hybrid chemical vapor deposition. J. Mater. Chem. A, 2, 18742-18745. DOI: 10.1039/C4TA04385E
[61] Calioa, L., Momblona, C., Bolink, H. J., Ahmad, S. et al. (2017). Vacuum deposited perovskite solar cells employing dopant-free triazatruxene as the hole transport material. Sol. Energy Mater Sol. Cells, 163, 237-241. DOI: 10.1016/j.solmat.2017.01.037
[62] Momblona, C., Blochwitz-Nimoth, J., Bolink, H. J. et al. (2016). Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy Environ. Sci., 9, 3456-3463. DOI: 10.1039/C6EE02100J
[63] Kim, J. H., Williams, S. T., Cho, N., Chueh, C.-C. & Jen, A. K.-Y. (2014). Enhanced Environmental Stability of Planar Heterojunction Perovskite Solar Cells Based on Blade-Coating. Adv. Energy Mater., 5(4), 1401229. DOI: 10.1002/aenm.201401229
[64] Tong, S., Yang, J., Sun, J., Gao, Y. et al. (2017). Large-area and high-performance CH3NH3PbI3 perovskite photodetectors fabricated via doctor blading in ambient condition. Org. Electron., 49, 347-354. DOI: 10.1016/j.orgel.2017.07.011
[65] Yang, Z., Chueh, C.-C., Jen, A. K.-Y. et al. (2015). High?Performance Fully Printable Perovskite Solar Cells via Blade-Coating Technique under the Ambient Condition. Adv. Energy Mater., 5(13), 1500328. DOI: 10.1002/aenm.201500328
[66] Razza, S., Giacomo, F. D., Carlo, A. D. et al. (2015). Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process. ?J. Power Sources, 277, 286-291. DOI: 10.1016/j.jpowsour.2014.12.008
[67] Deng, Y., Dong, Q., Huang, J. et al. (2015). Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci., 8, 1544-1550. DOI: 10.1039/C4EE03907F
[68] Deng, Y., Dong, Q., Bi, C., Yuan, Y. & Huang, J. (2016). Air-Stable, Efficient Mixed-Cation Perovskite Solar Cells with Cu Electrode by Scalable Fabrication of Active Layer. Adv. Energy Mater., 6, 1600372. DOI: 10.1002/aenm.201600372
[69] Tang, S., Deng, Y., Huang, J. et al. (2017). Composition Engineering in Doctor-Blading of Perovskite Solar Cells. Adv. Energy Mater., 7(18), 1700302. DOI: 10.1002/aenm.201700302
[70] Li, S., Tong, S., Yang, B., Meng, J.-Q. et al. (2017). High-Performance Formamidinium-based Perovskite Photodetectors Fabricated via Doctor-blading Deposition in Ambient Condition. Org. Electron., 47, 102-107. DOI: 10.1016/j.orgel.2017.05.010
[71] Yang, M., Li, Z., Zhu, K. et al. (2017). Perovskite ink with wide processing window for scalable high-efficiency solar cells. Nat. Energy, 2, 17038. DOI: 10.1038/nenergy.2017.38
[72] Mallajosyula, A. T., Gupta, G., Mohite, A. D. et al. (2016). Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Appl. Mater. Today, 3, 96-102. DOI: 10.1016/j.apmt.2016.03.002
[73] Kong, W., Wang, G., Xu, B., Cheng, C. et al. (2018). Fabricating High-Efficient Blade-Coated Perovskite Solar Cells under Ambient Condition Using Lead Acetate Trihydrate. Sol. RRL, 2, 1700214. DOI: 10.1002/solar.201700214
[74] Deng, Y., Wang, Q., Yuan, Y. & Huang, J. (2015). Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures. Mater. Horiz., 2, 578-583. DOI: 10.1039/c5mh00126a
[75] Cotella, G., Watson, T. et al. (2017). One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Sol. Energy Mater Sol. Cells, 159, 362-369. DOI: 10.1016/j.solmat.2016.09.013
[76] Qin, T., Huang, W., Cheng, Y.-B. et al. (2016). Amorphous Hole-Transporting Layer in Slot-die Coated Perovskite Solar Cells. Nano Energy, 31, 210-217. DOI: 10.1016/j.nanoen.2016.11.022
[77] Hwang, K., Kim, D.-Y., Vak, D. et al. (2015). Toward Large Scale Roll?to?Roll Production of Fully Printed Perovskite Solar Cells. Adv. Mater., 27(7), 1241-1247. DOI: 10.1002/adma.201404598
[78] Electronic Excitation by UV/Vis Spectroscopy Retrieved from http://slideplayer.com/slide/5086587/
[79] CNX OpenStax. (2016). Microbiology. Chapter 2.3 Instruments of Microscopy
[80] 李其紘. (2013). 原子力顯微鏡的基本介紹. 科學研習, 52-5, 18-21
[81] Wikipedia. Atomic force microscopy. Retrieved from https://en.wikipedia.org/wiki/Atomic_force_microscopy
[82] Sagun Shrestha. (2018). Bragg′s Law. Retrieved from https://www.sciencetopia.net/physics/braggs-law
[83] 國立高雄大學應用物理學系光電實驗室. Retrieved from https://ap.nuk.edu.tw/m/412-1000-130.php?Lang=zh-tw
[84] Ossila. Solar Cells: A Guide to Theory and Measurement. Retrieved from https://www.ossila.com/pages/solar-cells-theory
[85] Li, Y., Wang, J., Yuan, Y., Dong, X. & Wang, P. (2017). Anti-solvent dependent device performance in CH3NH3PbI3 solar cells: the role of intermediate phase content in the as-prepared thin films. Sustainable Energy & Fuels, 1, 1041-1048. DOI: 10.1039/C7SE00125H
[86] Zhou, Y., Yang, M., Zhu, K., Padture, N. P. et al. (2015). Room-temperature crystallization of hybrid-perovskite thin films via solvent-solvent extraction for high-performance solar cells. J. Mater. Chem. A, 3, 8178-8184. DOI: 10.1039/C5TA00477B
[87] Liu, J., Gao, C., Lau, W. et al. (2015). Improved Crystallization of Perovskite Films by Optimized Solvent Annealing for High Efficiency Solar Cell. ACS Appl. Mater. Interfaces, 7(43), 24008-24015. DOI: 10.1021/acsami.5b06780
[88] Nie, W., Tsai, H., Wang, H.-L., Mohite, A. D. et al. (2015). High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 347(6221), 522-525. DOI: 10.1126/science.aaa0472
[89] Shin, G. S., Choi, W.-G., Na, S., Gokdemir, F. P. & Moon, T. (2018). Lead Acetate Based Hybrid Perovskite Through Hot Casting for Planar Heterojunction Solar Cells. Electron. Mater. Lett., 14(2), 155-160. DOI: 10.1007/s13391-018-0042-1
[90] Zhong, Y., Munir, R., Amassian, A. et al. (2018). Blade-Coated Hybrid Perovskite Solar Cells with Efficiency > 17%: An In Situ Investigation. ACS Energy Lett., 3(5), 1078-1085. DOI: 10.1021/acsenergylett.8b00428
[91] Li, J., Munir, R., Amassian, A., Zhao, K., Liu, S. (F.) et al. (2018). Phase Transition Control for High-Performance Blade-Coated Perovskite Solar Cells. Joule, 2, 1-18. DOI: 10.1016/j.joule.2018.04.011
[92] Ye, F., Yang, X., Han, L. et al. (2017). Effect of thermal-convection-induced defects on the performance of perovskite solar cells. Applied Physics Express, 10, 075502. DOI: 10.7567/APEX.10.075502
指導教授 張博凱 李坤穆(Bor-Kae Chang) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明