博碩士論文 105324057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.140.195.249
姓名 楊佳馨(Jia-Sin Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 連續式培養系統於接枝具奈米鏈段之熱敏感生物材料控制人類胚胎與誘導多功能幹細胞增生
(Continuous harvest system for expansion of human ES and iPS cells cultured on biomaterials immobilized with thermoresponsive nanosegments)
相關論文
★ 重組及培養人類誘導型多能性幹細胞在奈米片段接枝表面★ 羊水間葉幹細胞培養於細胞外間質寡?嫁接具有硬度/彈性表面的材料,其分化能力及多能性之研究
★ 利用具有特定奈米片段及彈性的生醫材料去除癌症幹細胞★ 人類脂肪幹細胞培養在具有細胞外基質接枝的水凝膠上之多能性與分化能力研究
★ 從人類初始結腸癌組織分離結腸癌細胞和癌症幹細胞為建立病患專一癌細胞株★ 用於人類胚胎幹細胞生長之生醫材料其奈米片段分子之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 於再生醫學與組織工程之領域而言,人類多能性幹細胞具有吸引力的前景。典型培養細胞的方式大多為耗時與成本高的批次培養,本研究致力於發展連續收穫幹細胞之系統,利用低臨界溶解溫度(LCST)的熱敏感材料製備培養皿去培養幹細胞且降低培養液溫度使得細胞脫附,可維持細胞聚集和片狀,取代使用酵素讓細胞從培養皿上脫附。
熱敏感奈米片段表面由三種共聚物製備而成,利用可逆加成斷裂鏈轉移(RAFT)高分子合成法製備三種具有聚苯乙烯(polystyrene)的共聚物為(a)熱敏感性的聚(N-異丙基丙烯?胺)(poly[styrene-co-N-isopropylacrylamide], PNIPAAm)(b)生物相容性的聚乙二醇甲基丙烯酸酯(poly[styrene-co-polyethylene glycol methacrylate], PEGMA)和(c)可藉由聚丙烯酸(polyacrylic acid, PAA)的羧酸基(carboxylic acid)共軛寡?(oligo-vitronectin)。
本研究成功將人類胚胎幹細胞與人類誘導多能性幹細胞培養於熱敏感表面且可連續培養7個循環,藉由螢光免疫染色、胚體體外分化及畸形瘤的體內生成分析,得知經由培養7個循環後,人類胚胎幹細胞與人類誘導多能性幹細胞依然維持其多能性及分化能力。此外,將培養皿置於銅板上且放進7-9度的冰箱中,30分鐘之內hESCs與hiPSCs脫附率可超過60%,此連續培養方式能縮小幹細胞培養所需的設備且簡化培養過程,同時也可避免使用酵素脫附對細胞造成的傷害,細胞可以維持其多能性。還可通過將2D培養方式轉移到3D新型培養以獲得更大量的細胞數量,這對於再生醫學的臨床應用上將會是非常有益的。
摘要(英) Human pluripotent stem cells (hPSCs) are an attractive prospect for regenerative medicine and tissue engineering. Typical stem cell cultivation methods are still based on batch-type culture, which is laborious and expensive. In this study, It is developed that the partial detachment stem cell culture system by using thermoresponsive nanosegments, a polymer having low critical solution temperature (LCST), which were coated on the surface of cell culture dishes for continuous stem cell harvest. This method enables cell aggregates or cell sheets to be obtained in culture medium without applying an enzymatic digestion.
The themoresponsive nanobrush surfaces are composed by three copolymers having polystyrene, which are (a) thermoresponsive poly(N-isopropyl acrylamide), PNIPAAm, (b) biocompatible polyethylene glycol methacrylate (PEGMA) and (c) polyacrylic acid (PAA) where bioactive oligopeptide (oligo-vitronectin) could be conjugated via carboxylic acid of PAA. P[St-NIPAAm] (poly[styrene-co-N-isopropylacrylamide]), and P[St-PEGMA] (poly[styrene-co-polyethylene glycol methacrylate]) were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization.
In this study, I successfully cultured human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) on the thermoresponsive surface and continuously harvested for seven and ten cycles respectively. The hESCs and hiPSCs have high pluripotency and differentiation ability by immunostaining analysis, embryoid body (EB) formation and teratoma formation after seven cycles. In addition, over 60% of hESCs and hiPSCs could be detached from the surface after 30 minutes of low temperature incubation (7-9°C). This continuous culture system prevents hESCs and hiPSCs from enzymatic digestion damages and allows cells maintain their pluripotency on the surface. The continuous harvest of stem cells should downsize the equipment requirements for stem cell culture and simplify the culture process. Moreover, This cultivation method also can be scaled up cell numbers by shifting 2D to a novel 3D culture system, which will be a great benefit to its clinical application in regenerative medicine.
關鍵字(中) ★ 幹細胞
★ 熱敏感
★ 奈米片段
★ 細胞培養
★ 胚胎幹細胞
關鍵字(英) ★ Stem cell
★ Thermoresponsive
★ Nanosegment
★ Cell culture
★ Embryonic stem cell
論文目次 Abstract I
摘要 III
Index of Figure VI
Index of Table XVI
Chapter 1. Introduction 1
1-1 Stem Cell Applications in Regenerative Medicine 1
1-2 Stem Cells 3
1-2-1 Pluripotent Stem Cells (PSCs) 6
1-3 Human Pluripotent Stem Cells (hPSCs) Cultivation (2D) 9
1-3-1 hPSC Culture Under Xeno-Free Conditions 10
1-3-2 hPSCs Culture on Thermoresponsive Surface 15
1-4 Three-dimensional (3D) Cultivation of hPSCs 27
1-4-2 hPSCs Culture on Thermoresponsive Materials for 3D Culture 33
1-5 Characterization of human Pluripotent Stem Cells (hPSCs) 36
1-5-1 Colony Formation 37
1-5-3 Alkaline phosphatase activity 38
1-5-2 Pluripotent Gene Expression 38
1-5-3 Pluripotent Protein Expression 38
1-5-4 Differentiation Ability 39
Chapter 2. Materials and Methods 42
2-1 Materials 42
2-1-1 Cell Lines 42
2-1-2 Commercial Coating Dishes 42
2-1-3 Materials for Thermoresponsive Surface 42
2-1-4 Medium and Others 43
2-1-5 Immunostaining Materials 44
2-2 Methods 45
2-2-1 Preparation of Thermoresponsive Dishes (2D) 45
2-2-3 hPSCs Culture on the Thermoresponsive Dishes (2D) 49
2-2-4 hPSCs Adhesion and Detachment 50
2-2-5 Differentiation Ratio of hPSCs Colonies 51
2-2-6 Continuous Culture System of hPSCs 52
2-2-7 Characterization of Thermoresponsive Surface 53
2-2-8 Characterization of hPSCs 54
2-2-9 Three-dimensional (3D) Culture of hESCs 59
Chapter 3. Results and Discussion 62
3-1 Characterization of Thermoresponsive Surface 62
3-1-1 X-ray photoelectron spectroscopy (XPS) analysis 63
3-1-2 Water Contact Angle Analysis of the PNIPAAm Coating Surface 67
3-2 Continuous Culture of hPSCs on the Thermoresponsive Surface 70
3-2-1 hESCs Cultivated on the Thermoresponsive Surface Treated with Roller Cutter 70
3-2-2 hESCs Cultivated on Thermoresponsive Surface with Pipetting 88
3-2-3 Continuous Culture of hiPSCs on Thermoresponsive Surface by re-coating rVN every two cycles 106
3-3 Characterization of hPSCs after Long-term Cultivation 113
3-3-1 Immunostaining Analysis 113
3-3-2 Differentiation Ability in Vitro 116
3-3-3 Differentiation Ability in Vivo 119
3-3-4 Cardiomyocyte Differentiation of hESCs after Long-term Culture 120
3-4 hESCs Cultivated on the Thermoresponsive Microcarrier Beads 126
3-4-1 X-ray photoelectron spectroscopy (XPS) analysis 126
3-4-2 Continuous Culture of hESCs on the Thermoresponsive Microcarrier beads 130
Chapter 4. Conclusion 136
Reference 138
Supplementary Data 154
參考文獻 1. Bajada, S., et al., Stem Cells in Regenerative Medicine. Topics in Tissue Engineering, 2008. 4.
2. Corona, B.T., et al., Regenerative medicine: basic concepts, current status, and future applications. J Investig Med, 2010. 58(7): p. 849-58.
3. Tabar, V. and L. Studer, Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet, 2014. 15(2): p. 82-92.
4. Mason, C. and P. Dunnill, A brief definition of regenerative medicine. Regenerative Medicine, 2008. 3.
5. Liu, Z., et al., Looking into the Future: Toward Advanced 3D Biomaterials for Stem-Cell-Based Regenerative Medicine. Adv Mater, 2018.
6. Mahla, R.S., Stem Cells Applications in Regenerative Medicine and Disease Therapeutics. Int J Cell Biol, 2016. 2016: p. 6940283.
7. Ratcliffe, E., et al., Current status and perspectives on stem cell-based therapies undergoing clinical trials for regenerative medicine: case studies. Br Med Bull, 2013. 108: p. 73-94.
8. Garber, K., RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol, 2015. 33(9): p. 890-1.
9. Kimbrel, E.A. and R. Lanza, Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov, 2015. 14(10): p. 681-92.
10. Trounson, A. and C. McDonald, Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell, 2015. 17(1): p. 11-22.
11. EH, L. and H. JH, The potential of stem cells in orthopaedic surgery. THE JOURNAL OF BONE AND JOINT SURGERY, 2006. 88-B.
12. Ratajczak, M.Z., et al., Hunt for pluripotent stem cell -- regenerative medicine search for almighty cell. J Autoimmun, 2008. 30(3): p. 151-62.
13. Ehnert, S., et al., The possible use of stem cells in regenerative medicine: dream or reality? Langenbecks Arch Surg, 2009. 394(6): p. 985-97.
14. Sugawara, T., et al., Investigating cellular identity and manipulating cell fate using induced pluripotent stem cells. Stem Cell Research & Therapy, 2012. 3.
15. Weissman, I.L., Stem cells: units of development, units of regeneration, and units in evolution. Cell 2000. 100: p. 157-168.
16. Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
17. Horie, M. and A. Ito, A Genetically Engineered STO Feeder System Expressing E-Cadherin and Leukemia Inhibitory Factor for Mouse Pluripotent Stem Cell Culture. Journal of Bioprocessing & Biotechniques, 2011. 01(S3).
18. Zuk, P.A., et al., Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002. 13(12): p. 4279-95.
19. Taylor, R., Human Biotechnology as Social Challenge: An Interdisciplinary Introduction to Bioethics. Human Reproduction and Genetic Ethics 2010. 14(1): p. 40.
20. Singh, V., Squamous Cell Carcinoma of the Kidney – Rarity Redefined: Case Series with Review of Literature. Journal of Cancer Science & Therapy, 2010. 02(04).
21. Majo, F., et al., Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature, 2008. 456(7219): p. 250-4.
22. Blanpain, C., V. Horsley, and E. Fuchs, Epithelial stem cells: turning over new leaves. Cell, 2007. 128(3): p. 445-58.
23. Ffrench, B., et al., Developing ovarian cancer stem cell models: laying the pipeline from discovery to clinical intervention. Molecular Cancer, 2014. 13.
24. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981. 292.
25. GR., M., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A., 1981. 78(12): p. 7634-7638.
26. Strulovici, Y., et al., Human embryonic stem cells and gene therapy. Mol Ther, 2007. 15(5): p. 850-66.
27. Kang, L., et al., Induced pluripotent stem cells (iPSCs)—a new era of reprogramming. Journal of Genetics and Genomics, 2010. 37(7): p. 415-421.
28. Li, T.S., et al., Direct comparison of different stem cell types and subpopulations reveals superior paracrine potency and myocardial repair efficacy with cardiosphere-derived cells. J Am Coll Cardiol, 2012. 59(10): p. 942-53.
29. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-676.
30. Wilmut, I., et al., Viable offspring derived from fetal and adult mammalian cells. Nature, 1997. 385: p. 810-813.
31. Tada, M., et al., Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Current Biology, 2001. 11(19): p. 1553-1558.
32. Cowan, C.A., et al., Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 2005. 309(5739): p. 1369-1373.
33. Nakagawa, M., et al., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnology, 2008. 26(1): p. 101-106.
34. Bindu A, H. and S. B, Potency of Various Types of Stem Cells and their Transplantation. Journal of Stem Cell Research & Therapy, 2011. 01(03).
35. Kang, L., et al., iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell, 2009. 5(2): p. 135-8.
36. Zhao, X.Y., et al., iPS cells produce viable mice through tetraploid complementation. Nature, 2009. 461(7260): p. 86-90.
37. Warren, L., et al., Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 2010. 7(5): p. 618-30.
38. Yu, J.Y., et al., Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences. Science, 2009. 324(5928): p. 797-801.
39. K, O., et al., A more efficient method to generate integration-free human iPS cells. Nat Methods, 2011. 8(5): p. 409-12.
40. Jia, F., et al., A nonviral minicircle vector for deriving human iPS cells. Nat Methods, 2010. 7(3): p. 197-9.
41. Woltjen, K., et al., piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 2009. 458(7239): p. 766-70.
42. Kim, D., et al., Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 2009. 4(6): p. 472-6.
43. Fusaki, N., et al., Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy, Series B, 2009. 85(8): p. 348-362.
44. Diecke, S., et al., Recent technological updates and clinical applications of induced pluripotent stem cells. Korean J Intern Med, 2014. 29(5): p. 547-57.
45. Amit, M., et al., Feeder layer- and serum-free culture of human embryonic stem cells. Biol Reprod, 2004. 70(3): p. 837-45.
46. Villa-Diaz, L.G., et al., Concise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells, 2013. 31(1): p. 1-7.
47. Rodin, S., et al., Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nature Biotechnology, 2010. 28(6): p. 611-U102.
48. Mallon, B.S., et al., Toward xeno-free culture of human embryonic stem cells. Int J Biochem Cell Biol, 2006. 38(7): p. 1063-75.
49. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chem Rev, 2011. 111(5): p. 3021-35.
50. Brafman, D.A., et al., Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials, 2010. 31(34): p. 9135-44.
51. JR1, K., et al., A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat Methods, 2010. 7(12): p. 989-94.
52. Mei, Y., et al., Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater, 2010. 9(9): p. 768-78.
53. Melkoumian, Z., et al., Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol, 2010. 28(6): p. 606-10.
54. Villa-Diaz, L.G., et al., Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol, 2010. 28(6): p. 581-3.
55. Abraham, S., et al., Stable propagation of human embryonic and induced pluripotent stem cells on decellularized human substrates. Biotechnol Prog, 2010. 26(4): p. 1126-34.
56. Fu, X., et al., Establishment of clinically compliant human embryonic stem cells in an autologous feeder-free system. Tissue Eng Part C Methods, 2011. 17(9): p. 927-37.
57. Ilic, D., et al., Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy, 2012. 14(1): p. 122-8.
58. MP, S., et al., Matrix-bound heparan sulfate is essential for the growth and pluripotency of human embryonic stem cells. Glycobiology, 2013. 23(3): p. 337-45.
59. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014. 39(7): p. 1348-1374.
60. Desai, N., P. Rambhia, and A. Gishto, Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reprod Biol Endocrinol, 2015. 13: p. 9.
61. Braam, S.R., et al., Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells, 2008. 26(9): p. 2257-65.
62. Chen, G., et al., Chemically defined conditions for human iPSC derivation and culture. Nat Methods, 2011. 8(5): p. 424-9.
63. Hasegawa, K., et al., Wnt signaling orchestration with a small molecule DYRK inhibitor provides long-term xeno-free human pluripotent cell expansion. Stem Cells Transl Med, 2012. 1(1): p. 18-28.
64. Wang, Y., et al., Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res, 2013. 11(3): p. 1103-16.
65. Higuchi, A., et al., Biomimetic cell culture proteins as extracellular matrices for stem cell differentiation. Chem Rev, 2012. 112(8): p. 4507-40.
66. Lambshead, J.W., et al., Defining synthetic surfaces for human pluripotent stem cell culture. Cell Regeneration, 2013. 2.
67. Rodin, S., et al., Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun, 2014. 5: p. 3195.
68. Pijuan-Galito, S., et al., Human serum-derived protein removes the need for coating in defined human pluripotent stem cell culture. Nat Commun, 2016. 7: p. 12170.
69. Dolley-Sonneville, P.J., L.E. Romeo, and Z.K. Melkoumian, Synthetic surface for expansion of human mesenchymal stem cells in xeno-free, chemically defined culture conditions. PLoS One, 2013. 8(8): p. e70263.
70. Li, Y., et al., Differentiation of oligodendrocyte progenitor cells from human embryonic stem cells on vitronectin-derived synthetic peptide acrylate surface. Stem Cells Dev, 2013. 22(10): p. 1497-505.
71. Lin, P.Y., et al., A synthetic peptide-acrylate surface for production of insulin-producing cells from human embryonic stem cells. Stem Cells Dev, 2014. 23(4): p. 372-9.
72. Wrighton, P.J., et al., Signals from the surface modulate differentiation of human pluripotent stem cells through glycosaminoglycans and integrins. Proc Natl Acad Sci U S A, 2014. 111(51): p. 18126-31.
73. Pennington, B.O., et al., Defined culture of human embryonic stem cells and xeno-free derivation of retinal pigmented epithelial cells on a novel, synthetic substrate. Stem Cells Transl Med, 2015. 4(2): p. 165-77.
74. Varun, D., et al., A robust vitronectin-derived peptide for the scalable long-term expansion and neuronal differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs). Acta Biomater, 2017. 48: p. 120-130.
75. Jin, S., et al., A synthetic, xeno-free peptide surface for expansion and directed differentiation of human induced pluripotent stem cells. PLoS One, 2012. 7(11): p. e50880.
76. Kolhar, P., et al., Synthetic surfaces for human embryonic stem cell culture. J Biotechnol, 2010. 146(3): p. 143-6.
77. Nishishita, N., et al., Generation of virus-free induced pluripotent stem cell clones on a synthetic matrix via a single cell subcloning in the naive state. PLoS One, 2012. 7(6): p. e38389.
78. Meng, G., S. Liu, and D.E. Rancourt, Synergistic effect of medium, matrix, and exogenous factors on the adhesion and growth of human pluripotent stem cells under defined, xeno-free conditions. Stem Cells Dev, 2012. 21(11): p. 2036-48.
79. Higuchi, A., et al., Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev, 2013. 113(5): p. 3297-328.
80. Raic, A., et al., Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells. Biomaterials, 2014. 35(3): p. 929-40.
81. Choi, J.S., B.P. Mahadik, and B.A. Harley, Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science. Biotechnol J, 2015. 10(10): p. 1529-45.
82. Mahadik, B.P., et al., The use of covalently immobilized stem cell factor to selectively affect hematopoietic stem cell activity within a gelatin hydrogel. Biomaterials, 2015. 67: p. 297-307.
83. Diniz, I.M., et al., Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. J Mater Sci Mater Med, 2015. 26(3): p. 153.
84. Caron, I., et al., A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury. Biomaterials, 2016. 75: p. 135-147.
85. Sharma, A.D., et al., Oriented growth and transdifferentiation of mesenchymal stem cells towards a Schwann cell fate on micropatterned substrates. J Biosci Bioeng, 2016. 121(3): p. 325-35.
86. Pires, F., et al., Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: Expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim Biophys Acta, 2015. 1850(6): p. 1158-68.
87. Celiz, A.D., et al., Discovery of a Novel Polymer for Human Pluripotent Stem Cell Expansion and Multilineage Differentiation. Adv Mater, 2015. 27(27): p. 4006-12.
88. Ross, A.M., et al., Synthetic substrates for long-term stem cell culture. Polymer, 2012. 53(13): p. 2533-2539.
89. Irwin, E.F., et al., Engineered polymer-media interfaces for the long-term self-renewal of human embryonic stem cells. Biomaterials, 2011. 32(29): p. 6912-9.
90. Nandivada, H., et al., Fabrication of synthetic polymer coatings and their use in feeder-free culture of human embryonic stem cells. Nat Protoc, 2011. 6(7): p. 1037-43.
91. Zhang, R., et al., A thermoresponsive and chemically defined hydrogel for long-term culture of human embryonic stem cells. Nat Commun, 2013. 4: p. 1335.
92. Yamato, M., et al., Temperature-responsive cell culture surfaces for regenerative medicine with cell sheet engineering. Progress in Polymer Science, 2007. 32(8-9): p. 1123-1133.
93. Healy, D., et al., An investigation of cell growth and detachment from thermoresponsive physically crosslinked networks. Colloids Surf B Biointerfaces, 2017. 159: p. 159-165.
94. H.G.Schild, Poly(N-isopropylacrylamide): experiment, theory and application. Progress in Polymer Science, 1992. 17(2): p. 163-249.
95. Nagase, K., et al., Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials, 2018. 153: p. 27-48.
96. Sudo, Y., et al., Star-Shaped Thermoresponsive Polymers with Various Functional Groups for Cell Sheet Engineering. Langmuir, 2018. 34(2): p. 653-662.
97. JP, C., Y. HJ, and H. AS, Polymer-protein conjugates. I. Effect of protein conjugation on the cloud point of poly (N-isopropylacrylamide). Biomaterials, 1990. 11(9): p. 625-30.
98. Takei, Y.G., et al., Temperature-responsive bioconjugates. 1. Synthesis of temperature-responsive oligomers with reactive end groups and their coupling to biomolecules. Bioconjugate Chem., 1993. 4(1): p. 42-46.
99. Takahashi, H., et al., Terminally functionalized thermoresponsive polymer brushes for simultaneously promoting cell adhesion and cell sheet harvest. Biomacromolecules, 2012. 13(1): p. 253-60.
100. M, N. and O. T, Polymer Terminal Group Effects on Properties of Thermoresponsive Polymeric Micelles with Controlled Outer-Shell Chain Lengths. Biomacromolecules, 2005. 6(4): p. 2320-7.
101. Nakayama, M. and T. Okano, Unique Thermoresponsive Polymeric Micelle Behavior via Cooperative Polymer Corona Phase Transitions. Macromolecules, 2008. 41(3): p. 504-507.
102. Matsuzaka, N., et al., Terminal-functionality effect of poly(N-isopropylacrylamide) brush surfaces on temperature-controlled cell adhesion/detachment. Biomacromolecules, 2013. 14(9): p. 3164-71.
103. Tang, Z. and T. Okano, Recent development of temperature-responsive surfaces and their application for cell sheet engineering. Regen Biomater, 2014. 1(1): p. 91-102.
104. Yamada, N., et al., Thermo?responsive polymeric surfaces; control of attachment and detachment of cultured cells. Makromolekulare Chemie Rapid Communications, 1990. 11: p. 571-576.
105. Okano, T., et al., A novel recovery system for cultured cells using plasma?treated polystyrene dishes grafted with poly(N?isopropylacrylamide). J Biomed Mater Res 1993. 27(10): p. 1243-51.
106. Akiyama, Y., et al., Ultrathin Poly(N-isopropylacrylamide) Grafted Layer on Polystyrene Surfaces for Cell Adhesion/Detachment Control. Langmuir, 2004. 20(13): p. 5506-5511.
107. Fukumori, K., et al., Temperature-responsive glass coverslips with an ultrathin poly(N-isopropylacrylamide) layer. Acta Biomater, 2009. 5(1): p. 470-6.
108. Cheng, X., et al., Novel cell patterning using microheater-controlled thermoresponsive plasma films. J Biomed Mater Res A, 2004. 70(2): p. 159-68.
109. Canavan, H.E., et al., Cell sheet detachment affects the extracellular matrix: a surface science study comparing thermal liftoff, enzymatic, and mechanical methods. J Biomed Mater Res A, 2005. 75(1): p. 1-13.
110. HE, C., et al., Surface characterization of the extracellular matrix remaining after cell detachment from a thermoresponsive polymer. Langmuir, 2005. 21(5): p. 1949-55.
111. X, C., et al., Surface chemical and mechanical properties of plasma-polymerized N-isopropylacrylamide. Langmuir, 2005. 21(17): p. 7833-41.
112. Galperin, A., T.J. Long, and B.D. Ratner, Degradable, thermo-sensitive poly(N-isopropyl acrylamide)-based scaffolds with controlled porosity for tissue engineering applications. Biomacromolecules, 2010. 11(10): p. 2583-92.
113. G, C., I. Y, and I. Y, Regulation of growth and adhesion of cultured cells by insulin conjugated with thermoresponsive polymers. Biotechnol Bioeng, 1997. 53(3): p. 339-44.
114. Ito, Y., et al., Patterned Immobilization of Thermoresponsive Polymer. Langmuir, 1997. 13(10): p. 2756-2759.
115. Li, L., et al., Fabrication of Thermoresponsive Polymer Gradients for Study of Cell Adhesion and Detachment. Langmuir, 2008. 24(23): p. 13632-13639.
116. Mizutani, A., et al., Preparation of thermoresponsive polymer brush surfaces and their interaction with cells. Biomaterials, 2008. 29(13): p. 2073-2081.
117. Nagase, K., et al., Thermo?Responsive Polymer Brushes as Intelligent Biointerfaces: Preparation via ATRP and Characterization. Macromolecular Bioscience, 2011. 11(3): p. 400-409.
118. H, T., et al., Controlled chain length and graft density of thermoresponsive polymer brushes for optimizing cell sheet harvest. Biomacromolecules, 2010. 11(8): p. 1991-9.
119. Liao, T., et al., N?isopropylacrylamide?based thermoresponsive polyelectrolyte multilayer films for human mesenchymal stem cell expansion. Biotechnology Progress, 2010. 26(6): p. 1705-1713.
120. Schmidt, S., et al., Adhesion and Mechanical Properties of PNIPAM Microgel Films and Their Potential Use as Switchable Cell Culture Substrates. Advanced Functional Materials, 2010. 20(19): p. 3235-3243.
121. Loh, X.J., et al., Novel poly(N-isopropylacrylamide)-poly[(R)-3-hydroxybutyrate]-poly(N-isopropylacrylamide) triblock copolymer surface as a culture substrate for human mesenchymal stem cells. Soft Matter, 2009. 5(15): p. 2937-2946.
122. Loh, X.J., et al., Surface Coating with a Thermoresponsive Copolymer for the Culture and Non?Enzymatic Recovery of Mouse Embryonic Stem Cells. Macromolecular Bioscience, 2009. 9(11): p. 1069-1079.
123. Nakayama, M., et al., Thermoresponsive Poly(N?isopropylacrylamide)?Based Block Copolymer Coating for Optimizing Cell Sheet Fabrication. Macromolecular Bioscience, 2012. 12(6): p. 751-760.
124. Sakuma, M., et al., Control of cell adhesion and detachment on Langmuir-Schaefer surface composed of dodecyl-terminated thermo-responsive polymers. Journal of Biomaterials Science, Polymer Edition, 2014. 25(5): p. 431-443.
125. Nakajima, K., et al., Intact microglia are cultured and non-invasively harvested without pathological activation using a novel cultured cell recovery method. Biomaterials, 2001. 22(11): p. 1213-23.
126. Akiyama, Y. and T. Okano, Temperature-responsive polymers for cell culture and tissue engineering applications. 2015: p. 203-233.
127. Tang, Z., Y. Akiyama, and T. Okano, Temperature-Responsive Polymer Modified Surface for Cell Sheet Engineering. Polymers, 2012. 4(4): p. 1478-1498.
128. Kushida, A., et al., Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature?responsive culture surfaces. Journal of Biomedical Materials Research, 1999. 45(4): p. 355-362.
129. Shimizu, T., et al., Cell sheet engineering for myocardial tissue reconstruction. Biomaterials, 2003. 24(13): p. 2309-16.
130. Nishida, K., et al., Functional bioengineered corneal epithelial sheet grafts from corneal stem cells expanded ex vivo on a temperature-responsive cell culture surface. Transplantation, 2004. 77(3): p. 379-85.
131. Nishida, K., et al., Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med, 2004. 351(12): p. 1187-96.
132. Miyagawa, S., et al., Tissue cardiomyoplasty using bioengineered contractile cardiomyocyte sheets to repair damaged myocardium: their integration with recipient myocardium. Transplantation, 2005. 80(11): p. 1586-95.
133. Hata, H., et al., Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. J Thorac Cardiovasc Surg, 2006. 132(4): p. 918-24.
134. Miyahara, Y., et al., Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med, 2006. 12(4): p. 459-65.
135. Sekine, H., et al., Cardiomyocyte bridging between hearts and bioengineered myocardial tissues with mesenchymal transition of mesothelial cells. J Heart Lung Transplant, 2006. 25(3): p. 324-32.
136. Sekiya, S., et al., Bioengineered cardiac cell sheet grafts have intrinsic angiogenic potential. Biochem Biophys Res Commun, 2006. 341(2): p. 573-82.
137. Shimizu, T., et al., Long-term survival and growth of pulsatile myocardial tissue grafts engineered by the layering of cardiomyocyte sheets. Tissue Eng, 2006. 12(3): p. 499-507.
138. Shimizu, T., et al., Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. Faseb j, 2006. 20(6): p. 708-10.
139. Matsuura, K., et al., Cell sheet approach for tissue engineering and regenerative medicine. Journal of Controlled Release, 2014. 190: p. 228-239.
140. Owaki, T., et al., Cell sheet engineering for regenerative medicine: Current challenges and strategies. Biotechnology Journal, 2014. 9(7): p. 904-914.
141. Fukumori, K., et al., Characterization of Ultra?Thin Temperature?Responsive Polymer Layer and Its Polymer Thickness Dependency on Cell Attachment/Detachment Properties. Macromolecular Bioscience, 2010. 10(10): p. 1117-1129.
142. Takezawa, T., Y. Mori, and K. Yoshizato, Cell Culture on a Thermo-Responsive Polymer Surface. Bio/Technology, 1990. 8: p. 854.
143. Nagase, K., et al., Dynamically cell separating thermo-functional biointerfaces with densely packed polymer brushes. Journal of Materials Chemistry, 2012. 22(37): p. 19514-19522.
144. Nagase, K., et al., Thermoresponsive Cationic Copolymer Brushes for Mesenchymal Stem Cell Separation. Biomacromolecules, 2015. 16(2): p. 532-540.
145. Selezneva, I.I., A.V. Gorelov, and Y.A. Rochev, Use of thermosensitive polymer material on the basis of N-isopropylacrylamide and N-tert-butylacrylamide copolymer in cell technologies. Bulletin of Experimental Biology and Medicine, 2006. 142(4): p. 538-541.
146. Nash, M.E., et al., Straightforward, One-Step Fabrication of Ultrathin Thermoresponsive Films from Commercially Available pNIPAm for Cell Culture and Recovery. ACS Applied Materials & Interfaces, 2011. 3(6): p. 1980-1990.
147. Nagase, K., et al., Hydrophobized Thermoresponsive Copolymer Brushes for Cell Separation by Multistep Temperature Change. Biomacromolecules, 2013. 14(10): p. 3423-3433.
148. Fukumori, K., et al., A Facile Method for Preparing Temperature?Responsive Cell Culture Surfaces by Using a Thioxanthone Photoinitiator Immobilized on a Polystyrene Surface. ChemNanoMat, 2016. 2(5): p. 454-460.
149. von Recum, H.A., et al., Novel thermally reversible hydrogel as detachable cell culture substrate. J Biomed Mater Res, 1998. 40(4): p. 631-9.
150. Ebara, M., et al., Temperature-Responsive Cell Culture Surfaces Enable “On?Off” Affinity Control between Cell Integrins and RGDS Ligands. Biomacromolecules, 2004. 5(2): p. 505-510.
151. Ebara, M., et al., Immobilization of cell-adhesive peptides to temperature-responsive surfaces facilitates both serum-free cell adhesion and noninvasive cell harvest. Tissue Eng, 2004. 10(7-8): p. 1125-35.
152. Nishi, M., et al., The use of biotin–avidin binding to facilitate biomodification of thermoresponsive culture surfaces. Biomaterials, 2007. 28(36): p. 5471-5476.
153. Ebara, M., et al., The effect of extensible PEG tethers on shielding between grafted thermo-responsive polymer chains and integrin–RGD binding. Biomaterials, 2008. 29(27): p. 3650-3655.
154. Lei, Y. and D.V. Schaffer, A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc Natl Acad Sci U S A, 2013. 110(52): p. E5039-48.
155. Cukierman, E., R. Pankov, and K.M. Yamada, Cell interactions with three-dimensional matrices. Curr Opin Cell Biol, 2002. 14(5): p. 633-9.
156. Pampaloni, F., E.G. Reynaud, and E.H. Stelzer, The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol, 2007. 8(10): p. 839-45.
157. Lund, A.W., et al., The natural and engineered 3D microenvironment as a regulatory cue during stem cell fate determination. Tissue Eng Part B Rev, 2009. 15(3): p. 371-80.
158. Jensen, J., J. Hyllner, and P. Bjorquist, Human embryonic stem cell technologies and drug discovery. J Cell Physiol, 2009. 219(3): p. 513-9.
159. Serra, M., et al., Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol, 2012. 30(6): p. 350-9.
160. Burdick, J.A. and G. Vunjak-Novakovic, Engineered microenvironments for controlled stem cell differentiation. Tissue Eng Part A, 2009. 15(2): p. 205-19.
161. Gerecht-Nir, S., S. Cohen, and J. Itskovitz-Eldor, Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnol Bioeng, 2004. 86(5): p. 493-502.
162. Cameron, C.M., W.S. Hu, and D.S. Kaufman, Improved development of human embryonic stem cell-derived embryoid bodies by stirred vessel cultivation. Biotechnol Bioeng, 2006. 94(5): p. 938-48.
163. Come, J., et al., Improvement of culture conditions of human embryoid bodies using a controlled perfused and dialyzed bioreactor system. Tissue Eng Part C Methods, 2008. 14(4): p. 289-98.
164. Yirme, G., et al., Establishing a dynamic process for the formation, propagation, and differentiation of human embryoid bodies. Stem Cells Dev, 2008. 17(6): p. 1227-41.
165. Krawetz, R., et al., Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors. Tissue Eng Part C Methods, 2010. 16(4): p. 573-82.
166. Singh, H., et al., Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Res, 2010. 4(3): p. 165-79.
167. Kempf, H., et al., Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat Protoc, 2015. 10(9): p. 1345-61.
168. Bauwens, C.L., D. Toms, and M. Ungrin, Aggregate Size Optimization in Microwells for Suspension-based Cardiac Differentiation of Human Pluripotent Stem Cells. J Vis Exp, 2016(115).
169. Pasca, A.M., et al., Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods, 2015. 12(7): p. 671-8.
170. Fan, Y., F. Zhang, and E.S. Tzanakakis, Engineering Xeno-Free Microcarriers with Recombinant Vitronectin, Albumin and UV Irradiation for Human Pluripotent Stem Cell Bioprocessing. ACS Biomater Sci Eng, 2017. 3(8): p. 1510-1518.
171. Phillips, B.W., et al., Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol, 2008. 138(1-2): p. 24-32.
172. Fernandes, A.M., et al., Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Braz J Med Biol Res, 2009. 42(6): p. 515-22.
173. Lock, L.T. and E.S. Tzanakakis, Expansion and differentiation of human embryonic stem cells to endoderm progeny in a microcarrier stirred-suspension culture. Tissue Eng Part A, 2009. 15(8): p. 2051-63.
174. Nie, Y., et al., Scalable culture and cryopreservation of human embryonic stem cells on microcarriers. Biotechnol Prog, 2009. 25(1): p. 20-31.
175. Oh, S.K., et al., Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Res, 2009. 2(3): p. 219-30.
176. Chen, A.K., et al., Expansion of human embryonic stem cells on cellulose microcarriers. Curr Protoc Stem Cell Biol, 2010. Chapter 1: p. Unit 1C.11.
177. DE, K., et al., Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng Part A, 2010. 16(2): p. 405-21.
178. Lecina, M., et al., Scalable platform for human embryonic stem cell differentiation to cardiomyocytes in suspended microcarrier cultures. Tissue Eng Part C Methods, 2010. 16(6): p. 1609-19.
179. Serra, M., et al., Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. J Biotechnol, 2010. 148(4): p. 208-15.
180. Storm, M.P., et al., Three-dimensional culture systems for the expansion of pluripotent embryonic stem cells. Biotechnology and Bioengineering, 2010. 107(4): p. 683-695.
181. Chen, A.K., et al., Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Res, 2011. 7(2): p. 97-111.
182. Leung, H.W., et al., Agitation can induce differentiation of human pluripotent stem cells in microcarrier cultures. Tissue Eng Part C Methods, 2011. 17(2): p. 165-72.
183. Heng, B.C., et al., Translating human embryonic stem cells from 2-dimensional to 3-dimensional cultures in a defined medium on laminin- and vitronectin-coated surfaces. Stem Cells Dev, 2012. 21(10): p. 1701-15.
184. Serra, M., et al., Microencapsulation technology: a powerful tool for integrating expansion and cryopreservation of human embryonic stem cells. PLoS One, 2011. 6(8): p. e23212.
185. Delcroix, G.J., et al., Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials, 2010. 31(8): p. 2105-20.
186. Hernandez, R.M., et al., Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev, 2010. 62(7-8): p. 711-30.
187. Gerecht-Nir, S., S. Cohen, and J. Itskovitz-Eldor, Bioreactor cultivation enhances the efficiency of human embryoid body (hEB) formation and differentiation. Biotechnology and Bioengineering, 2004. 86(5): p. 493-502.
188. Aubry, L., et al., Improvement of Culture Conditions of Human Embryoid Bodies Using a Controlled Perfused and Dialyzed Bioreactor System. Tissue Engineering Part C-Methods, 2008. 14(4): p. 289-298.
189. Yirme, G., et al., Establishing a Dynamic Process for the Formation, Propagation, and Differentiation of Human Embryoid Bodies. Stem Cells and Development, 2008. 17(6): p. 1227-1241.
190. Kehoe, D.E., et al., Scalable Stirred-Suspension Bioreactor Culture of Human Pluripotent Stem Cells. Tissue Engineering Part A, 2010. 16(2): p. 405-421.
191. Niebruegge, S., et al., Generation of Human Embryonic Stem Cell-Derived Mesoderm and Cardiac Cells Using Size-Specified Aggregates in an Oxygen-Controlled Bioreactor. Biotechnology and Bioengineering, 2009. 102(2): p. 493-507.
192. Krawetz, R., et al., Large-Scale Expansion of Pluripotent Human Embryonic Stem Cells in Stirred-Suspension Bioreactors. Tissue Engineering Part C-Methods, 2010. 16(4): p. 573-582.
193. Singh, H., et al., Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Research, 2010. 4(3): p. 165-179.
194. Olmer, R., et al., Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Research, 2010. 5(1): p. 51-64.
195. Amit, M., et al., Suspension Culture of Undifferentiated Human Embryonic and Induced Pluripotent Stem Cells. Stem Cell Reviews and Reports, 2010. 6(2): p. 248-259.
196. Zweigerdt, R., et al., Scalable expansion of human pluripotent stem cells in suspension culture. Nature Protocols, 2011. 6(5): p. 689-700.
197. Phillips, B.W., et al., Attachment and growth of human embryonic stem cells on microcarriers. Journal of Biotechnology, 2008. 138(1-2): p. 24-32.
198. Nie, Y., et al., Scalable Culture and Cryopreservation of Human Embryonic Stem Cells on Microcarriers. Biotechnology Progress, 2009. 25(1): p. 20-31.
199. Lock, L.T. and E.S. Tzanakakis, Expansion and Differentiation of Human Embryonic Stem Cells to Endoderm Progeny in a Microcarrier Stirred-Suspension Culture. Tissue Engineering Part A, 2009. 15(8): p. 2051-2063.
200. Fernandes, A.M., et al., Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Brazilian Journal of Medical and Biological Research, 2009. 42(6): p. 515-522.
201. Oh, S.K.W., et al., Long-term microcarrier suspension cultures of human embryonic stem cells. Stem Cell Research, 2009. 2(3): p. 219-230.
202. Lecina, M., et al., Scalable Platform for Human Embryonic Stem Cell Differentiation to Cardiomyocytes in Suspended Microcarrier Cultures. Tissue Engineering Part C-Methods, 2010. 16(6): p. 1609-1619.
203. Serra, M., et al., Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control. Journal of Biotechnology, 2010. 148(4): p. 208-215.
204. Chen, A.K., et al., Expansion of Human Embryonic Stem Cells on Cellulose Microcarriers, in Current Protocols in Stem Cell Biology. 2007, John Wiley & Sons, Inc.
205. Chen, A.K.-L., et al., Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Research, 2011. 7(2): p. 97-111.
206. Heng, B.C., et al., Translating Human Embryonic Stem Cells from 2-Dimensional to 3-Dimensional Cultures in a Defined Medium on Laminin- and Vitronectin-Coated Surfaces. Stem Cells and Development, 2012. 21(10): p. 1701-1715.
207. Siti-Ismail, N., et al., The benefit of human embryonic stem cell encapsulation for prolonged feeder-free maintenance. Biomaterials, 2008. 29(29): p. 3946-3952.
208. Murua, A., et al., Cell microencapsulation technology: Towards clinical application. Journal of Controlled Release, 2008. 132(2): p. 76-83.
209. Jing, D., A. Parikh, and E.S. Tzanakakis, Cardiac Cell Generation From Encapsulated Embryonic Stem Cells in Static and Scalable Culture Systems. Cell Transplantation, 2010. 19(11): p. 1397-1412.
210. Bardy, J., et al., Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells. Tissue Eng Part C Methods, 2013. 19(2): p. 166-80.
211. Yang, H.S., et al., Suspension culture of mammalian cells using thermosensitive microcarrier that allows cell detachment without proteolytic enzyme treatment. Cell Transplant, 2010. 19(9): p. 1123-32.
212. Chen, X., et al., Thermoresponsive worms for expansion and release of human embryonic stem cells. Biomacromolecules, 2014. 15(3): p. 844-55.
213. Chen, X., et al., Methods for Expansion of Three-Dimensional Cultures of Human Embryonic Stem Cells Using a Thermoresponsive Polymer. Tissue Eng Part C Methods, 2018. 24(3): p. 146-157.
214. Higuchi, A., et al., Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Progress in Polymer Science, 2014.
215. Kato, R., et al., Parametric analysis of colony morphology of non-labelled live human pluripotent stem cells for cell quality control. Sci Rep, 2016. 6: p. 34009.
216. Stefkova, K., J. Prochazkova, and J. Pachernik, Alkaline phosphatase in stem cells. Stem Cells Int, 2015. 2015: p. 628368.
217. Tsankov, A.M., et al., A qPCR ScoreCard quantifies the differentiation potential of human pluripotent stem cells. Nat Biotechnol, 2015. 33(11): p. 1182-92.
218. Brimble, S.N., et al., Karyotypic stability, genotyping, differentiation, feeder-free maintenance, and gene expression sampling in three human embryonic stem cell lines derived prior to August 9, 2001. Stem Cells Dev, 2004. 13(6): p. 585-97.
219. Ma, T., et al., [Basic research on the mechanism of venous reverse flow in reverse-flow island flap]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2005. 19(9): p. 758-61.
220. Bigdeli, N., et al., Adaptation of human embryonic stem cells to feeder-free and matrix-free culture conditions directly on plastic surfaces. J Biotechnol, 2008. 133(1): p. 146-53.
221. Baxter, M.A., et al., Analysis of the distinct functions of growth factors and tissue culture substrates necessary for the long-term self-renewal of human embryonic stem cell lines. Stem Cell Res, 2009. 3(1): p. 28-38.
222. Amit, M., et al., Feeder layer-and serum-free culture of human embryonic stem cells. Biology of reproduction, 2004. 70(3): p. 837-845.
223. Xu, C., et al., Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol, 2001. 19(10): p. 971-4.
224. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
225. Harkness, L., et al., Isolation and differentiation of chondrocytic cells derived from human embryonic stem cells using dlk1/FA1 as a novel surface marker. Stem Cell Rev, 2009. 5(4): p. 353-68.
226. Higuchi, A., et al., Biomaterials for the feeder-free culture of human embryonic stem cells and induced pluripotent stem cells. Chemical reviews, 2011. 111(5): p. 3021-3035.
227. Peng, I.C., et al., Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surfaces. Biomaterials, 2016. 76: p. 76-86.
228. 陸依彤 and Y.-T. Lu, 利用寡?培養人類胚胎幹細胞;Human Embryonic Stem Cell Culture Using Oligopeptides. 國立中央大學.
229. Bhattacharya, S., et al., High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry. J Vis Exp, 2014(91): p. 52010.
指導教授 ?口亞紺(Akon Higuchi) 審核日期 2018-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明