博碩士論文 105324073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.143.214.226
姓名 薛登允(Teng-Yun Hsueh)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 可撓曲矽晶基材上製備矽單晶奈米線陣列及其光感測特性之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在這項研究中,我們通過結合沉積銀奈米顆粒進行金屬催化蝕刻和氫氧化鉀鹼性溶液蝕刻的方法,成功地在(001)矽單晶基材上製備大面積準直排列的尖錐狀矽單晶奈米線陣列,並藉由調節蝕刻條件控制尖錐狀矽單晶奈米線的長度與形貌,此外本實驗亦結合無電鍍金屬催化蝕刻法將矽基材薄化,使之具有可撓曲的性質,更在其上製備尖錐狀矽單晶奈米線陣列。接著為了製備各式鎳/蕭基接面結構之光感測元件,本實驗分別蒸鍍鎳金屬和鋁金屬在試片的正面與背面,並進行一系列的量測。
由 SEM 和TEM 可檢測尖錐狀矽單晶奈米線具有相當良好的長寬比和異向性。在可見光-近紅外光譜測量中,所製備之尖錐狀矽單晶奈米線陣列從可見光範圍到紅外光範圍皆表現出優異的抗反射能力,其抗反射性能的增強可歸因於尖錐狀矽單晶奈米線對光捕捉和漸變折射率。在近?外光偵測系統研究中,所製備之各式鎳/矽蕭基接面結構光感?元件皆在無任何外加偏壓下進行量測,並以940 m近?外光燈源進行照光。實驗的結果表示,本研究所製備的鎳/尖錐狀矽單晶奈米線蕭基接面結構具有相當優異的靈敏度與響應時間,且將其製備成超薄可撓曲元件時仍保有幾乎相同的響應時間。
摘要(英) In this study, we present the successful fabrication of vertically-aligned, tapered Si nanowire arrays on (001)Si substrates by using a method combining Ag-nanoparticle catalytic etching and KOH etching process. The length and morphology of the tapered Si nanowires can be readily controlled by adjusting the etching conditions. Furthermore, we combined the electroless metal-catalytic etching to make the substrate thinning and have flexible properties. UV-Vis-IR spectroscopic measurements showed that the produced tapered Si nanowires exhibited excellent broadband antireflection properties from the UV to near-infrared (NIR) wavelength range. The optoelectronic study showed that the produced tapered Si nanowire-based NIR photodetector was able to operate at zero external voltage bias and exhibited high sensitivity to 940 nm NIR light and a fast response speed. The obtained results suggest that the facile approach proposed here promises to be applicable for fabricating various high performance Si-based NIR/IR photodetectors.
關鍵字(中) ★ 矽
★ 奈米線
★ 光感測器
★ 可撓曲
★ 金屬催化蝕刻
★ 無電鍍金屬催化蝕刻
關鍵字(英)
論文目次 第一章 前言及文獻回顧 1
1-1 前言 1
1-2 超薄可撓曲矽單晶基材 3
1-2-1 超薄可撓曲基材之製程 3
1-2-2 超薄可撓曲基材之應用 4
1-3 矽單晶奈米線陣列之製備 5
1-4尖錐狀矽單晶奈米線 7
1-5 紅外光光感測機制 8
1-5-1 歐姆接觸與蕭基接觸 8
1-5-2 蕭基接觸之光感測機制 9
1-6 紅外線光感測器 10
1-7 研究動機及目標 11
第二章 實驗步驟及儀器設備 13
2-1 實驗步驟 13
2-1-1 矽晶基材使用前處理 13
2-1-2 製備超薄可撓曲矽單晶基材 13
2-1-3 結合無電鍍金屬催化蝕刻法與金屬催化蝕刻法製備矽單晶奈米線陣列 14
2-1-4 以氫氧化鉀鹼溶液製備尖錐狀矽單晶奈米線陣列 14
2-1-5 鎳/矽尖錐狀奈米線蕭基接面結構製備 15
2-2 試片分析 15
2-2-1 掃描式電子顯微鏡 15
2-2-2 穿透式電子顯微鏡 16
2-2-3 可見光-近紅外光譜儀 16
2-2-4 影像式水滴接觸角量測儀 17
2-2-5 近紅外光偵測系統 17
第三章 結果與討論 18
3-1製備矽單晶奈米線陣列 18
3-2尖錐狀矽單晶奈米線陣列 19
3-2-1 尖錐狀矽單晶奈米線陣列之製備 19
3-2-2 矽單晶奈米線陣列尖錐化的水滴接觸角變化 20
3-2-3 可見光-近紅外光積分球光譜儀分析 21
3-3 以無電鍍金屬催化蝕刻法製備超薄矽單晶基材並結合金屬催化蝕刻法在其上製備矽單晶奈米線陣列 22
3-3-1超薄可撓曲矽單晶基材之製備與性質量測 23
3-3-2 在超薄可撓曲矽單晶基材上製備矽單晶奈米線陣列 25
3-4 近紅外光偵測系統 27
3-4-1 鎳/尖錐狀矽單晶奈米線之蕭基接面製備 27
3-4-2 鎳/矽單晶奈米線蕭基接面結構與鎳/尖錐狀矽單晶奈米線蕭基接面結構之光感測特性量測與探討 29
3-4-3 在超薄矽單晶基材上之鎳/矽單晶奈米線蕭基接面結構與鎳/尖錐狀矽單晶奈米線蕭基接面結構之光感測特性量測與探討 31
3-4-4 光偵測器響應度與響應時間 32
第四章 結論與未來展望 34
參考文獻 36
表目錄 41
表3-1鎳/矽蕭基接面結構與各式文獻之光感測器 42
圖目錄 43
參考文獻 [1] S. L. Cheng, C. H. Chung and H. C. Lee, “A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001)Si substrates,” J. Electrochem. Soc.155.11 (2008) D711.
[2] W. I. Park and G. C. Yi, “Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN,” Adv. Mater. 16 (2004) 87.
[3] X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong and Y. Li, “Hydrogenated TiO2 nanotube arrays for supercapacitors,” Nano Lett. 12 (2012) 1690.
[4] S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12 (2012) 2971.
[5] M. Ge, J. Rong, X. Fang and C. Zhou, “Porous doped silicon nanowires for lithium ion battery anode with long cycle life,” Nano Lett. 12 (2012) 2318.
[6] S. L. Wu, L. Wen, G. A. Cheng, R. T. Zheng and X. L. Wu, “Surface morphology-dependent photoelectrochemical properties of one-dimensional Si nanostructure arrays prepared by chemical etching,” ACS Appl. Mater. Interfaces 5 (2013) 4769.
[7] W. C. Tian, Y. H. Ho, C. H. Chen and C. Y. Kuo, “Sensing performance of precisely ordered TiO2 nanowire gas sensors fabricated by electron-beam lithography,” Sens. Basel. 13 (2013) 865.
[8] P. Livi, M. Kwiat, A. Shadmani, A. Pevzner, G. Navarra, J. Rothe, A. Stettler, Y. Chen, F. Patolsky and A. Hierlemann, “Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications,” Anal. Chem. 87 (2015) 9982.
[9] B. R. Huang, Y. K. Yang, T. C. Lin and W. L. Yang, “A simple and low-cost technique for silicon nanowire arrays based solar cells,” Sol. Energy Mater Sol. Cells 98 (2012) 357.
[10] J. Bae, H. Kim, X. M. Zhang, C. H. Dang, Y. Zhang, Y. J. Choi, A. Nurmikko and Z. L. Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnol. 21 (2010) 095502.
[11] Y. Dai, X. Wang, W. Peng, C. Xu, C. Wu, K. Dong, R. Liu and Z. L. Wang, “Self-Powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro-phototronic effect: An approach for photosensing below bandgap energy,” Adv. Mater. 30 (2018) 1705893.
[12] 曹. 洪清水, ?家林, 万平玉, ???, “基于金/硅?米??列肖特基?的自??式的可?-近?外光探?器性能研究,” Imaging Sci. Photochem. 32 (2014) 532.
[13] Y. Berencen, S. Prucnal, F. Liu, I. Skorupa, R. Hubner, L. Rebohle, S. Zhou, H. Schneider, M. Helm and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7 (2017) 43688.
[14] S. Roy, K. Midya, S. P. Duttagupta and D. Ramakrishnan, “Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation,” J. Appl. Phys. 116 (2014) 124507.
[15] F. Bai, M. Li, D. Song, H. Yu, B. Jiang and Y. Li, “Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer,” Appl. Surf. Sci. 273 (2013) 107.
[16] K. S. Do, T. h. Baek, M. G. Kang, S. J. Choi, G. H. Kang, G. J. Yu, J. C. Lee, J.-m. Myoung and H.-e. Song, “Experimental and simulation study for ultrathin (?100 μm) mono crystalline silicon solar cell with 156×156 mm2 area,” Met. Mater. Int. 20 (2014) 545.
[17] S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13 (2013) 4393.
[18] S. Li, Z. Pei, F. Zhou, Y. Liu, H. Hu, S. Ji and C. Ye, “Flexible Si/PEDOT:PSS hybrid solar cells,” Nano Research 8 (2015) 3141.
[19] J. N. Burghartz, W. Appel, C. Harendt, H. Rempp, H. Richter and M. Zimmermann, “Ultra-thin chip technology and applications, a new paradigm in silicon technology,” Solid-State Electron. 54 (2010) 818.
[20] R. Bao, C. Wang, L. Dong, C. Shen, K. Zhao and C. Pan, “CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping,” Nanoscale 8 (2016) 8078.
[21] M. Chen, C. Pan, T. Zhang, X. Li, R. Liang and Z. L. Wang, “Tuning light emission of a pressure-sensitive Silicon/ZnO nanowires heterostructure matrix through piezo-phototronic effects,” ACS Nano 10 (2016) 6074.
[22] B. R. Huang, J. F. Hsu and C. S. Huang, “The effects on the field emission properties of silicon nanowires by different pre-treatment techniques of Ni catalysts layers,” Diamond Relat. Mater. 14 (2005) 2105.
[23] Y. Yao, F. Li and S. T. Lee, “Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts,” Chem. Phys. Lett. 406 (2005) 381.
[24] A. I. Klimovskaya, O. E. Raichev, A. A. Dadykin, Y. M. Litvin, P. M. Lytvyn, I. V. Prokopenko, T. I. Kamins, S. Sharma and Y. Moklyak, “Quantized field-electron emission at 300K in self-assembled arrays of silicon nanowires,” Physica. E 37 (2007) 212.
[25] Y. J. Xing. H. F. Yan, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism,” Chem. Phys. Lett. 323 (2000) 224.
[26] Y. J. Xing. D. P. Yua, Q. L. Hang, H. F. Yana, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism,” Physica. E 9 (2001) 305.
[27] H. Fang, Y. Wu, J. Zhao and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnol. 17 (2006) 3768.
[28] K. Q. P, M. L. Zhang, Xia Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, “Preparation of large-Area uniform silicon nanowires arrays through metal-assisted chemical etching,” J. Phys. Chem. C 112.12 (2008) 4444.
[29] H. Chen, H. Wang, X. H. Zhang, C. S. Lee and S. T. Lee, “Wafer-scale synthesis of single-crystal zigzag silicon nanowire arrays with controlled turning angles,” Nano Lett. 10 (2010) 864.
[30] X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett. 77 (2000) 2572.
[31] K. Peng, A. Lu, R. Zhang and S.-T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18 (2008) 3026.
[32] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub and O. Elkechai, “Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution,” Appl. Surf. Sci. 255 (2009) 6210.
[33] J. Kumar and S. Ingole, “Effect of silicon conductivity and HF/H2O2 Ratio on morphology of silicon nanostructures obtained via metal-assisted chemical etching,” J. Electron. Mater. 47 (2017) 1583.
[34] S. Z. Yonghao Xiu, V. Yelundur, A. Rohatg, D. W. Hess, and C. P. Wong, “Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching,” Langmuir 24 (2008) 10421.
[35] Y. Jiang, X. Gong, R. Qin, H. Liu, C. Xia and H. Ma, “Efficiency enhancement mechanism for poly(3, 4-ethylenedioxythiophene): Poly(styrenesulfonate)/silicon nanowires hybrid solar cells Using alkali treatment,” Nanoscale Res. Lett. 11 (2016) 267.
[36] Q. Wang, Z. Tian, Y. Li, S. Tian, Y. Li, S. Ren, C. Gu and J. Li, “General fabrication of ordered nanocone arrays by one-step selective plasma etching,” Nanotechnol. 25 (2014) 115301.
[37] H. Y. Hsieh, S. H. Huang, K. F. Liao, S. K. Su, C. H. Lai and L. J. Chen, “High-density ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication and excellent field emission properties,” Nanotechnol. 18 (2007) 505305
[38] M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. Thong and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires,” Nanotechnol. 21 (2010) 205305.
[39] S. Lv, Z. Li, S. Su, L. Lin, Z. Zhang and W. Miao, “Tunable field emission properties of well-aligned silicon nanowires with controlled aspect ratio and proximity,” RSC Adv. 4 (2014) 31729.
[40] Z. G, J. Y. Jung, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” OSA 18 (2010) A286
[41] G. C. N. Ucarb, “Schottky barrier height dependence on the metal work function for p-type Si Schottky diodes,” Z Naturforsch. 59a (2004) 795.
[42] S. D. S. Chakrabarti, “Electroless Ni plating on n- and p-type porous Si for ohmic and rectifying contacts,” Semicond. Sci. Technol. 11 (1996) 1231.
[43] C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46 (2010) 633.
[44] R. Lu, C. W. Ge, Y. F. Zou, K. Zheng, D. D. Wang, T. F. Zhang and L. B. Luo, “A localized surface plasmon resonance and light confinement-enhanced near-infrared light photodetector,” Laser Photonics Rev. 10 (2016) 595.
[45] B. Y. Zheng, Y. Wang, P. Nordlander and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26 (2014) 6318.
[46] Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14 (2014) 299.
[47] P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photonics Rev. 8 (2014) 197.
[48] Z. Zhai, L. Ma, Y. Jiang, Q. Xie, F. Zhang, X. Wu and J. Gao, “Giant photosensitivity of a-C:Co/GaAs/Ag p-n-metal junctions,” Opt. Mater. Express 5 (2015) 2667.
[49] B. S. Kim, S. H. Tamboli, J. B. Han, T. Kim and H. H. Cho, “Broadband radiative energy absorption using a silicon nanowire forest with silver nanoclusters for thermal energy conversion,” Int. J. Heat Mass Transfer 82 (2015) 267.
[50] B. Parida, S. Kim, M. Oh, S. Jung, M. Baek, J.-H. Ryou and H. Kim, “Nanostructured-NiO/Si heterojunction photodetector,” Mater. Sci. Semicond. Process. 71 (2017) 29.
[51] D. Wu, Z. Lou, Y. Wang, Z. Yao, T. Xu, Z. Shi, J. Xu, Y. Tian, X. Li and Y. H. Tsang, “Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction,” Sol. Energy Mater. Sol. Cells 182 (2018) 272.
[52] R. Kumar and S. Chand, “Fabrication and electrical characterization of nickel/p-Si Schottky diode at low temperature,” Solid State Sci. 58 (2016) 115.
[53] B. Das, N. S. Das, S. Sarkar, B. K. Chatterjee and K. K. Chattopadhyay, “Topological insulator Bi2Se3/Si-nanowire-based p-n junction diode for high-performance near-infrared photodetector,” ACS Appl. Mater. Interfaces 9 (2017) 22788.
[54] L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5 (2013) 9362.
[55] J. Yao, Z. Zheng, J. Shao and G. Yang, “Promoting photosensitivity and detectivity of the Bi/Si heterojunction photodetector by inserting a WS2 layer,” ACS Appl. Mater. Interfaces 7 (2015) 26701.
[56] Y. Cao, J. Zhu, J. Xu, J. He, J. L. Sun, Y. Wang and Z. Zhao, “Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions,” Small 10 (2014) 2345.
[57] P. L. Ong, W. B. Euler and I. A. Levitsky, “Carbon nanotube-Si diode as a detector of mid-infrared illumination,” Appl. Phys. Lett. 96 (2010) 033106.
[58] X. An, F. Liu, Y. J. Jung and S. Kar, “Tunable graphene-silicon heterojunctions for ultrasensitive photodetection,” Nano Lett 13 (2013) 909.
指導教授 鄭紹良 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明