參考文獻 |
[1] S. L. Cheng, C. H. Chung and H. C. Lee, “A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001)Si substrates,” J. Electrochem. Soc.155.11 (2008) D711.
[2] W. I. Park and G. C. Yi, “Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN,” Adv. Mater. 16 (2004) 87.
[3] X. Lu, G. Wang, T. Zhai, M. Yu, J. Gan, Y. Tong and Y. Li, “Hydrogenated TiO2 nanotube arrays for supercapacitors,” Nano Lett. 12 (2012) 1690.
[4] S. Jeong, E. C. Garnett, S. Wang, Z. Yu, S. Fan, M. L. Brongersma, M. D. McGehee and Y. Cui, “Hybrid silicon nanocone-polymer solar cells,” Nano Lett. 12 (2012) 2971.
[5] M. Ge, J. Rong, X. Fang and C. Zhou, “Porous doped silicon nanowires for lithium ion battery anode with long cycle life,” Nano Lett. 12 (2012) 2318.
[6] S. L. Wu, L. Wen, G. A. Cheng, R. T. Zheng and X. L. Wu, “Surface morphology-dependent photoelectrochemical properties of one-dimensional Si nanostructure arrays prepared by chemical etching,” ACS Appl. Mater. Interfaces 5 (2013) 4769.
[7] W. C. Tian, Y. H. Ho, C. H. Chen and C. Y. Kuo, “Sensing performance of precisely ordered TiO2 nanowire gas sensors fabricated by electron-beam lithography,” Sens. Basel. 13 (2013) 865.
[8] P. Livi, M. Kwiat, A. Shadmani, A. Pevzner, G. Navarra, J. Rothe, A. Stettler, Y. Chen, F. Patolsky and A. Hierlemann, “Monolithic integration of a silicon nanowire field-effect transistors array on a complementary metal-oxide semiconductor chip for biochemical sensor applications,” Anal. Chem. 87 (2015) 9982.
[9] B. R. Huang, Y. K. Yang, T. C. Lin and W. L. Yang, “A simple and low-cost technique for silicon nanowire arrays based solar cells,” Sol. Energy Mater Sol. Cells 98 (2012) 357.
[10] J. Bae, H. Kim, X. M. Zhang, C. H. Dang, Y. Zhang, Y. J. Choi, A. Nurmikko and Z. L. Wang, “Si nanowire metal-insulator-semiconductor photodetectors as efficient light harvesters,” Nanotechnol. 21 (2010) 095502.
[11] Y. Dai, X. Wang, W. Peng, C. Xu, C. Wu, K. Dong, R. Liu and Z. L. Wang, “Self-Powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro-phototronic effect: An approach for photosensing below bandgap energy,” Adv. Mater. 30 (2018) 1705893.
[12] 曹. 洪清水, ?家林, 万平玉, ???, “基于金/硅?米??列肖特基?的自??式的可?-近?外光探?器性能研究,” Imaging Sci. Photochem. 32 (2014) 532.
[13] Y. Berencen, S. Prucnal, F. Liu, I. Skorupa, R. Hubner, L. Rebohle, S. Zhou, H. Schneider, M. Helm and W. Skorupa, “Room-temperature short-wavelength infrared Si photodetector,” Sci. Rep. 7 (2017) 43688.
[14] S. Roy, K. Midya, S. P. Duttagupta and D. Ramakrishnan, “Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation,” J. Appl. Phys. 116 (2014) 124507.
[15] F. Bai, M. Li, D. Song, H. Yu, B. Jiang and Y. Li, “Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer,” Appl. Surf. Sci. 273 (2013) 107.
[16] K. S. Do, T. h. Baek, M. G. Kang, S. J. Choi, G. H. Kang, G. J. Yu, J. C. Lee, J.-m. Myoung and H.-e. Song, “Experimental and simulation study for ultrathin (?100 μm) mono crystalline silicon solar cell with 156×156 mm2 area,” Met. Mater. Int. 20 (2014) 545.
[17] S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan and Y. Cui, “Large-area free-standing ultrathin single-crystal silicon as processable materials,” Nano Lett. 13 (2013) 4393.
[18] S. Li, Z. Pei, F. Zhou, Y. Liu, H. Hu, S. Ji and C. Ye, “Flexible Si/PEDOT:PSS hybrid solar cells,” Nano Research 8 (2015) 3141.
[19] J. N. Burghartz, W. Appel, C. Harendt, H. Rempp, H. Richter and M. Zimmermann, “Ultra-thin chip technology and applications, a new paradigm in silicon technology,” Solid-State Electron. 54 (2010) 818.
[20] R. Bao, C. Wang, L. Dong, C. Shen, K. Zhao and C. Pan, “CdS nanorods/organic hybrid LED array and the piezo-phototronic effect of the device for pressure mapping,” Nanoscale 8 (2016) 8078.
[21] M. Chen, C. Pan, T. Zhang, X. Li, R. Liang and Z. L. Wang, “Tuning light emission of a pressure-sensitive Silicon/ZnO nanowires heterostructure matrix through piezo-phototronic effects,” ACS Nano 10 (2016) 6074.
[22] B. R. Huang, J. F. Hsu and C. S. Huang, “The effects on the field emission properties of silicon nanowires by different pre-treatment techniques of Ni catalysts layers,” Diamond Relat. Mater. 14 (2005) 2105.
[23] Y. Yao, F. Li and S. T. Lee, “Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts,” Chem. Phys. Lett. 406 (2005) 381.
[24] A. I. Klimovskaya, O. E. Raichev, A. A. Dadykin, Y. M. Litvin, P. M. Lytvyn, I. V. Prokopenko, T. I. Kamins, S. Sharma and Y. Moklyak, “Quantized field-electron emission at 300K in self-assembled arrays of silicon nanowires,” Physica. E 37 (2007) 212.
[25] Y. J. Xing. H. F. Yan, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism,” Chem. Phys. Lett. 323 (2000) 224.
[26] Y. J. Xing. D. P. Yua, Q. L. Hang, H. F. Yana, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism,” Physica. E 9 (2001) 305.
[27] H. Fang, Y. Wu, J. Zhao and J. Zhu, “Silver catalysis in the fabrication of silicon nanowire arrays,” Nanotechnol. 17 (2006) 3768.
[28] K. Q. P, M. L. Zhang, Xia Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, “Preparation of large-Area uniform silicon nanowires arrays through metal-assisted chemical etching,” J. Phys. Chem. C 112.12 (2008) 4444.
[29] H. Chen, H. Wang, X. H. Zhang, C. S. Lee and S. T. Lee, “Wafer-scale synthesis of single-crystal zigzag silicon nanowire arrays with controlled turning angles,” Nano Lett. 10 (2010) 864.
[30] X. Li and P. W. Bohn, “Metal-assisted chemical etching in HF/H2O2 produces porous silicon,” Appl. Phys. Lett. 77 (2000) 2572.
[31] K. Peng, A. Lu, R. Zhang and S.-T. Lee, “Motility of metal nanoparticles in silicon and induced anisotropic silicon etching,” Adv. Funct. Mater. 18 (2008) 3026.
[32] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub and O. Elkechai, “Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution,” Appl. Surf. Sci. 255 (2009) 6210.
[33] J. Kumar and S. Ingole, “Effect of silicon conductivity and HF/H2O2 Ratio on morphology of silicon nanostructures obtained via metal-assisted chemical etching,” J. Electron. Mater. 47 (2017) 1583.
[34] S. Z. Yonghao Xiu, V. Yelundur, A. Rohatg, D. W. Hess, and C. P. Wong, “Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching,” Langmuir 24 (2008) 10421.
[35] Y. Jiang, X. Gong, R. Qin, H. Liu, C. Xia and H. Ma, “Efficiency enhancement mechanism for poly(3, 4-ethylenedioxythiophene): Poly(styrenesulfonate)/silicon nanowires hybrid solar cells Using alkali treatment,” Nanoscale Res. Lett. 11 (2016) 267.
[36] Q. Wang, Z. Tian, Y. Li, S. Tian, Y. Li, S. Ren, C. Gu and J. Li, “General fabrication of ordered nanocone arrays by one-step selective plasma etching,” Nanotechnol. 25 (2014) 115301.
[37] H. Y. Hsieh, S. H. Huang, K. F. Liao, S. K. Su, C. H. Lai and L. J. Chen, “High-density ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication and excellent field emission properties,” Nanotechnol. 18 (2007) 505305
[38] M. K. Dawood, T. H. Liew, P. Lianto, M. H. Hong, S. Tripathy, J. T. Thong and W. K. Choi, “Interference lithographically defined and catalytically etched, large-area silicon nanocones from nanowires,” Nanotechnol. 21 (2010) 205305.
[39] S. Lv, Z. Li, S. Su, L. Lin, Z. Zhang and W. Miao, “Tunable field emission properties of well-aligned silicon nanowires with controlled aspect ratio and proximity,” RSC Adv. 4 (2014) 31729.
[40] Z. G, J. Y. Jung, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, “A strong antireflective solar cell prepared by tapering silicon nanowires,” OSA 18 (2010) A286
[41] G. C. N. Ucarb, “Schottky barrier height dependence on the metal work function for p-type Si Schottky diodes,” Z Naturforsch. 59a (2004) 795.
[42] S. D. S. Chakrabarti, “Electroless Ni plating on n- and p-type porous Si for ohmic and rectifying contacts,” Semicond. Sci. Technol. 11 (1996) 1231.
[43] C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron. 46 (2010) 633.
[44] R. Lu, C. W. Ge, Y. F. Zou, K. Zheng, D. D. Wang, T. F. Zhang and L. B. Luo, “A localized surface plasmon resonance and light confinement-enhanced near-infrared light photodetector,” Laser Photonics Rev. 10 (2016) 595.
[45] B. Y. Zheng, Y. Wang, P. Nordlander and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26 (2014) 6318.
[46] Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. de Abajo, P. Nordlander, X. Zhu and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14 (2014) 299.
[47] P. Berini, “Surface plasmon photodetectors and their applications,” Laser Photonics Rev. 8 (2014) 197.
[48] Z. Zhai, L. Ma, Y. Jiang, Q. Xie, F. Zhang, X. Wu and J. Gao, “Giant photosensitivity of a-C:Co/GaAs/Ag p-n-metal junctions,” Opt. Mater. Express 5 (2015) 2667.
[49] B. S. Kim, S. H. Tamboli, J. B. Han, T. Kim and H. H. Cho, “Broadband radiative energy absorption using a silicon nanowire forest with silver nanoclusters for thermal energy conversion,” Int. J. Heat Mass Transfer 82 (2015) 267.
[50] B. Parida, S. Kim, M. Oh, S. Jung, M. Baek, J.-H. Ryou and H. Kim, “Nanostructured-NiO/Si heterojunction photodetector,” Mater. Sci. Semicond. Process. 71 (2017) 29.
[51] D. Wu, Z. Lou, Y. Wang, Z. Yao, T. Xu, Z. Shi, J. Xu, Y. Tian, X. Li and Y. H. Tsang, “Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction,” Sol. Energy Mater. Sol. Cells 182 (2018) 272.
[52] R. Kumar and S. Chand, “Fabrication and electrical characterization of nickel/p-Si Schottky diode at low temperature,” Solid State Sci. 58 (2016) 115.
[53] B. Das, N. S. Das, S. Sarkar, B. K. Chatterjee and K. K. Chattopadhyay, “Topological insulator Bi2Se3/Si-nanowire-based p-n junction diode for high-performance near-infrared photodetector,” ACS Appl. Mater. Interfaces 9 (2017) 22788.
[54] L. H. Zeng, M. Z. Wang, H. Hu, B. Nie, Y. Q. Yu, C. Y. Wu, L. Wang, J. G. Hu, C. Xie, F. X. Liang and L. B. Luo, “Monolayer graphene/germanium Schottky junction as high-performance self-driven infrared light photodetector,” ACS Appl. Mater. Interfaces 5 (2013) 9362.
[55] J. Yao, Z. Zheng, J. Shao and G. Yang, “Promoting photosensitivity and detectivity of the Bi/Si heterojunction photodetector by inserting a WS2 layer,” ACS Appl. Mater. Interfaces 7 (2015) 26701.
[56] Y. Cao, J. Zhu, J. Xu, J. He, J. L. Sun, Y. Wang and Z. Zhao, “Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions,” Small 10 (2014) 2345.
[57] P. L. Ong, W. B. Euler and I. A. Levitsky, “Carbon nanotube-Si diode as a detector of mid-infrared illumination,” Appl. Phys. Lett. 96 (2010) 033106.
[58] X. An, F. Liu, Y. J. Jung and S. Kar, “Tunable graphene-silicon heterojunctions for ultrasensitive photodetection,” Nano Lett 13 (2013) 909. |