博碩士論文 105324079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.191.198.245
姓名 洪紹桓(Shao-Huan Hong)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 有機穿戴式熱電材料與元件開發
(Development of Organic and Wearable Thermoelectric Materials and Devices)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-31以後開放)
摘要(中) 隨著科技進步與工業的發展,能源的需求與永續發展已是現今人類社會所需面對的議題,生活中大量的低品廢熱(Low−grade thermal energy)若能善加利用便可得到可觀的能源。熱電發電裝置(Thermoelectric generators, TEGs)由於可直接將熱能轉換成電能的特性使其成為重點研究的對象,其次,由於穿戴式感測元件的日益發展,持續且穩定的供電需求使得TEGs於穿戴式發電元件上亦受重視。傳統無機熱電材料其本質剛硬與有毒的特性使其不適合做為穿戴式元件,相較之下有機熱電與離子熱電具備可彎曲性且有較高的Seebeck係數(數百至數千µV K−1),於穿戴式發電領域更有發展的潛力。
本研究分為兩部分。第一部分為單壁奈米碳管(Single−walled carbon nanotubes, SWCNTs)-聚3−己烷基噻吩(poly (3−hexylthiophene), P3HT)之奈米複合物(SWCNT/P3HT nanocomposites)熱電元件結合生物可相容性(Biocompatibility)材料蠶絲蛋白(Silk fibroin),透過全溶液製程(All−solution processing)製備穿戴式熱電元件。透過薄膜厚度的優化可得到41.8 ± 0.9 µV K−1的Seebeck係數、1170 ± 52.8 S cm−1的電導率(Electrical conductivity)以及204 ± 4.6 μW m−1 K−2的功率因子(Power factor)。透過14個熱電元件單元的串聯,TEGs元件於溫差28.8 ℃下可達到22.6 mV的開路電壓(Open−circuit voltage)以及25.1 nW的功率輸出。第二部分為生物可相容性甲基丙烯酸明膠(Gelatin methacrylate, GelMA)製備高Seebeck係數之準固態熱電化學電池(Thermogalvanic cells, TGCs)。透過添加劑鹽酸胍 (Guanidium chloride, GdmCl)於水凝膠(Hydrogels)中之比例與水凝膠自身的空隙結構,經過優化後得到−22.2 mV K−1的Seebeck係數,此為純TGCs系統的最高值,並將9個TEGs元件串聯後於9 ℃的溫差下產生1.6 V的輸出電壓,在不外接電壓增壓器的情形下可直接點亮發光二極體。上述研究對於熱電元件製程與TGCs奈米結構分析提供製備高輸出穿戴式TEG一項解決的方案。
摘要(英) With the development of the technology and industry, the demand for energy and sustainable development has become a critical issue in human society. The effective utilization of abundant low−grade thermal energy holds significant potential for obtaining substantial energy resources. Thermoelectric generators (TEGs) have garnered attention due to their capability of directly converting heat energy into electrical energy. Furthermore, the continuous and stable power supply requirements for wearable sensing devices have highlighted the importance of TEGs in the field of wearable power generation. Unlike traditional inorganic thermoelectric materials with the characteristics of inherently rigid and toxicity, in which are unsuitable for wearable applications. Instead, organic and ionic thermoelectric materials possess higher Seebeck coefficient (hundred to thousand μV K−1) and flexibility, making them promising candidates for wearable power generation devices.
This research consists of two parts. The first part focused on the development of wearable thermoelectric devices using organic−inorganic hybrid materials (SWCNT/P3HT) combined with biocompatible silk−fibroin substrate. All−solution−processing fabrication was employed to produce the wearable TEGs. By optimizing the film thickness, the devices exhibited the Seebeck coefficient of 41.8 ± 0.9 µV K−1, an electrical conductivity of 1170 ± 52.8 S cm−1, and a power factor of 204 ± 4.6 μW m−1 K−2, respectively. By connecting 14 legs of these devices in series, a TEG achieved the open−circuit voltage of 22.6 mV and output power of 25.1 nW, under a temperature difference of 28.8 ℃.
The second part was committed to the development of quasi−solid−state thermogalvanic cells (TGCs) with giant Seebeck coefficient by using biocompatible GelMA hydrogels. By adjusting the contents of GdmCl and optimizing the porous structure of the hydrogels, the maximum Seebeck coefficient of −22.2 mV K−1 was achieved, which was the highest value reported in TGCs systems. These investigations with the fabrication process and nanostructural analysis of thermoelectric devices provide a way for fabricating high−output wearable TEGs.
關鍵字(中) ★ 有機熱電材料
★ 有機—無機奈米複合物
★ 生物可相容性
★ 水凝膠
★ 熱電化學電池
關鍵字(英) ★ Organic thermoelectrics
★ Organic−inorganic nanocomposites
★ Biocompatible
★ Hydrogels
★ Thermogalvanic cells
論文目次 摘要 i
ABSTRACT iii
致謝 v
目錄 vi
圖目錄 x
表目錄 xvi
第一章 緒論 1
1-1 前言 1
1-2 Seebeck效應 3
1-3 熱電元件性能參數 4
1-3-1 Seebeck係數 4
1-3-2 電導率 5
1-3-3 熱導率 6
1-3-4 熱電優值 6
1-4 有機熱電材料 7
1-4-1 有機−無機複合物發展背景 8
1-4-2 聚噻吩−奈米碳管複合物 8
1-4-3 有機穿戴式TEG製備方式 10
1-5 有機離子熱電材料 13
1-5-1 熱充電電容器 13
1-5-2 熱電化學電池 15
1-5-2-1 氧化還原對 16
1-5-2-2 高分子網路 19
1-6 研究動機 21
第二章 實驗方法 24
2-1 藥品清單 24
2-1-1 SWCNT/P3HT奈米複合物熱電元件 24
2-1-2 熱電化學電池元件 25
2-2 實驗設備與量測儀器 26
2-3 實驗步驟 29
2-3-1 SWCNT/P3HT奈米複合物熱電元件 29
2-3-1-1 奈米複合物薄膜轉印於蠶絲蛋白基板 29
2-3-1-2 SWCNT/P3HT奈米複合物TEG的製備 30
2-3-2 熱電化學電池元件 31
2-3-2-1 GelMA高分子合成 32
2-3-2-2 準固態TGCs製備 32
2-3-2-3 準固態TGCs之穿戴式TEGs元件製備 33
2-4 熱電元件性能量測 33
第三章 透過全溶液製程製備以蠶絲蛋白為基板之聚噻吩/奈米碳管奈米複合物材料的穿戴式熱電發電裝置 36
3-1 SWCNT/P3HT前驅物分散性與穩定性研究 36
3-2 SWCNT/P3HT奈米複合物熱電性能 40
3-3 SWCNT/P3HT奈米複合物薄膜型貌分析 43
3-4 穿戴式TEGs 45
3-5 結論 49
第四章 透過離子誘導結晶效應與控制奈米通道尺寸製備高Seebeck係數之甲基丙烯酸明膠準固態熱電化學電池 50
4-1 GelMA高分子合成 50
4-2 GelMA水凝膠性質 51
4-3 GelMA−based水凝膠形貌分析 53
4-4 GelMA−based水凝膠機械性質分析 54
4-5 GelMA−based水凝膠熱電性能 55
4-6 GelMA−based水凝膠奈米結構分析 61
4-7 GelMA_5G TGCs之穿戴式發電裝置應用 66
4-8 結論 68
第五章 結論與未來展望 70
參考文獻 71
A. 附錄:以全無機鈣鈦礦量子點混摻N型有機小分子半導體製備感測紫外線之光電晶體元件 88
摘要 88
A-1 緒論 89
A-1-1 光偵測器 89
A-1-2 可溶液製程之光偵測器半導體材料 89
A-1-3 研究動機 92
A-2 實驗方法 94
A-2-1 藥品清單 94
A-2-2 實驗設備 94
A-2-3 光電晶體量測設備 95
A-2-4 其他量測設備 96
A-2-5 實驗步驟 97
A-2-5-1 CsPbBr3鈣鈦礦QDs合成 97
A-2-5-2 DTTQ:QD 前驅物配置 98
A-2-5-3 光電晶體元件製備 98
A-2-6 光電晶體電性量測 100
A-3 結果與討論 101
A-3-1 CsPbBr3 QDs材料鑑定 101
A-3-2 DTTQ:QD混摻薄膜形貌分析 103
A-3-3 DTTQ:QD混摻薄膜之光學性質分析 107
A-3-4 DTTQ:QD混摻薄膜光電晶體性能分析 111
A-3-5 DTTQ:QD混摻薄膜光電晶體之動態切換分析 119
A-4 結論 123
Resume 124
參考文獻 1. L. Chen, G. Msigwa, M. Yang, A. I. Osman, S. Fawzy, D. W. Rooney and P.-S. Yap, Environ. Chem. Lett., 2022, 20, 2277-2310.
2. Z. Su, M. Zhang, P. Xu, Z. Zhao, Z. Wang, H. Huang and T. Ouyang, Energy Convers. Manag., 2021, 229, 113769.
3. N. Toshima, Synth. Met., 2017, 225, 3-21.
4. Fitriani, R. Ovik, B. D. Long, M. C. Barma, M. Riaz, M. F. M. Sabri, S. M. Said and R. Saidur, Renew. Sust. Energ. Rev., 2016, 64, 635-659.
5. D. Zhao and G. Tan, Appl. Therm. Eng., 2014, 66, 15-24.
6. S. Zhang, Z. Wu, Z. Liu and Z. Hu, Adv. Energy Mater., 2023, 13, 2300260.
7. H. Kim, K. R. Pyun, M.-T. Lee, H. B. Lee and S. H. Ko, Adv. Funct. Mater., 2022, 32, 2110535.
8. C. Xu, Y. Song, M. Han and H. Zhang, Microsyst. Nanoeng., 2021, 7, 25.
9. Y. Liu, L. Yin, W. Zhang, J. Wang, S. Hou, Z. Wu, Z. Zhang, C. Chen, X. Li, H. Ji, Q. Zhang, Z. Liu and F. Cao, Cell Rep. Phys. Sci., 2021, 2, 100412.
10. L. Li, W.-D. Liu, Q. Liu and Z.-G. Chen, Adv. Funct. Mater., 2022, 32, 2200548.
11. Y. Jia, Q. Jiang, H. Sun, P. Liu, D. Hu, Y. Pei, W. Liu, X. Crispin, S. Fabiano, Y. Ma and Y. Cao, Adv. Mater., 2021, 33, 2102990.
12. X.-L. Shi, W.-Y. Chen, T. Zhang, J. Zou and Z.-G. Chen, Energy Environ. Sci., 2021, 14, 729-764.
13. Q. Yan and M. G. Kanatzidis, Nat. Mater., 2022, 21, 503-513.
14. J. He and T. M. Tritt, Science, 2017, 357, eaak9997.
15. T. Cao, X.-L. Shi and Z.-G. Chen, Prog. Mater. Sci., 2023, 131, 101003.
16. D. Zhou, H. Zhang, H. Zheng, Z. Xu, H. Xu, H. Guo, P. Li, Y. Tong, B. Hu and L. Chen, Small, 2022, 18, 2200679.
17. Y. Wang, L. Yang, X.-L. Shi, X. Shi, L. Chen, M. S. Dargusch, J. Zou and Z.-G. Chen, Adv. Mater., 2019, 31, 1807916.
18. S. Wang, G. Zuo, J. Kim and H. Sirringhaus, Prog. Polym. Sci., 2022, 129, 101548.
19. Y. Zhang, W. Wang, F. Zhang, K. Dai, C. Li, Y. Fan, G. Chen and Q. Zheng, Small, 2022, 18, 2104922.
20. C.-G. Han, X. Qian, Q. Li, B. Deng, Y. Zhu, Z. Han, W. Zhang, W. Wang, S.-P. Feng, G. Chen and W. Liu, Science, 2020, 368, 1091-1098.
21. Y. Liu, Q. Zhang, G. O. Odunmbaku, Y. He, Y. Zheng, S. Chen, Y. Zhou, J. Li, M. Li and K. Sun, J. Mater. Chem. A, 2022, 10, 19690-19698.
22. Y. Li, Q. Li, X. Zhang, J. Zhang, S. Wang, L. Lai, K. Zhu and W. Liu, Energy Environ. Sci., 2022, 15, 5379-5390.
23. Z. Lei, W. Gao, W. Zhu and P. Wu, Adv. Funct. Mater., 2022, 32, 2201021.
24. P. Yang, K. Liu, Q. Chen, X. Mo, Y. Zhou, S. Li, G. Feng and J. Zhou, Angew. Chem. Int. Ed., 2016, 55, 12050-12053.
25. H. Zhou, T. Yamada and N. Kimizuka, J. Am. Chem. Soc., 2016, 138, 10502-10507.
26. S. Xu, M. Hong, X.-L. Shi, Y. Wang, L. Ge, Y. Bai, L. Wang, M. Dargusch, J. Zou and Z.-G. Chen, Chem. Mater., 2019, 31, 5238-5244.
27. Z. Liao, X. Zhou, G. Wei, S. Wang, C. Gao and L. Wang, ACS Appl. Mater. Interfaces, 2022, 14, 43421-43430.
28. L. Liu, J. Chen, L. Liang, L. Deng and G. Chen, Nano Energy, 2022, 102, 107678.
29. M. Massetti, F. Jiao, A. J. Ferguson, D. Zhao, K. Wijeratne, A. Würger, J. L. Blackburn, X. Crispin and S. Fabiano, Chem. Rev., 2021, 121, 12465-12547.
30. K. H. Lee, S.-i. Kim, J.-C. Lim, J. Y. Cho, H. Yang and H.-S. Kim, Adv. Funct. Mater., 2022, 32, 2203852.
31. Y. Liu, H. Wang, P. C. Sherrell, L. Liu, Y. Wang and J. Chen, Adv. Sci., 2021, 8, 2100669.
32. Y. H. Kang, S.-J. Ko, M.-H. Lee, Y. K. Lee, B. J. Kim and S. Y. Cho, Nano Energy, 2021, 82, 105681.
33. R. Prasad and S. D. Bhame, Mater. Renew. Sustain. Energy, 2020, 9, 3.
34. M. Hong, W. Lyu, Y. Wang, J. Zou and Z.-G. Chen, J. Am. Chem. Soc., 2020, 142, 2672-2681.
35. M. Hong, Z.-G. Chen, L. Yang, Y.-C. Zou, M. S. Dargusch, H. Wang and J. Zou, Adv. Mater., 2018, 30, 1705942.
36. W. Li, Z. Chen, S. Lin, Y. Chang, B. Ge, Y. Chen and Y. Pei, J. Materiomics, 2015, 1, 307-315.
37. L.-D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton and M. G. Kanatzidis, Science, 2016, 351, 141-144.
38. Q. Zhang, F. Cao, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, D. Parker, D. J. Singh, G. Chen and Z. Ren, J. Am. Chem. Soc., 2012, 134, 17731-17738.
39. Z. Liao, S. Wang, C. Gao and L. Wang, Compos. Commun., 2022, 34, 101255.
40. E. H. Suh, M.-K. Jeong, K. Lee, W. Jeong, Y. J. Jeong, I. H. Jung and J. Jang, Adv. Funct. Mater., 2022, 32, 2207886.
41. C. Zhang and X. Zhu, Adv. Funct. Mater., 2020, 30, 2000765.
42. K. A. Peterson, E. M. Thomas and M. L. Chabinyc, Annu. Rev. Mater. Res., 2020, 50, 551-574.
43. W. Zhao, J. Ding, Y. Zou, C.-a. Di and D. Zhu, Chem. Soc. Rev., 2020, 49, 7210-7228.
44. C.-J. Yao, H.-L. Zhang and Q. Zhang, Polymers, 2019, 11, 107.
45. K. Jiang, S.-H. Hong, S.-H. Tung and C.-L. Liu, J. Mater. Chem. A, 2022, 10, 18792-18802.
46. H. Zhou, M. H. Chua, Q. Zhu and J. Xu, Compos. Commun., 2021, 27, 100877.
47. Y.-T. Lin, C.-Y. Lee, C.-Y. Wu, J.-M. Lin, T.-C. Lee, S.-H. Tung and C.-L. Liu, J. Power Sources, 2023, 556, 232516.
48. H. He and J. Ouyang, Acc. Mater. Res., 2020, 1, 146-157.
49. Z. Fan and J. Ouyang, Adv. Electron. Mater., 2019, 5, 1800769.
50. T. P. Kaloni, P. K. Giesbrecht, G. Schreckenbach and M. S. Freund, Chem. Mater., 2017, 29, 10248-10283.
51. S. Chatterjee, S. Jinnai and Y. Ie, J. Mater. Chem. A, 2021, 9, 18857-18886.
52. V. Untilova, J. Hynynen, A. I. Hofmann, D. Scheunemann, Y. Zhang, S. Barlow, M. Kemerink, S. R. Marder, L. Biniek, C. Müller and M. Brinkmann, Macromolecules, 2020, 53, 6314-6321.
53. S. Masoumi, S. O′Shaughnessy and A. Pakdel, Nano Energy, 2022, 92, 106774.
54. Y. Xuan, X. Liu, S. Desbief, P. Leclère, M. Fahlman, R. Lazzaroni, M. Berggren, J. Cornil, D. Emin and X. Crispin, Phys. Rev. B, 2010, 82, 115454.
55. J. Hynynen, D. Kiefer and C. Müller, RSC Adv., 2018, 8, 1593-1599.
56. J. L. Blackburn, A. J. Ferguson, C. Cho and J. C. Grunlan, Adv. Mater., 2018, 30, 1704386.
57. G. Cao, X. Nie, Z. Ren, Y. Wu, J. Yang, J. Wei, J. Wu, L. Wang and C. Gao, ACS Sustainable Chem. Eng., 2022, 10, 12009-12015.
58. Y. Zhang, Q. Zhang and G. Chen, Carbon Energy, 2020, 2, 408-436.
59. Z. Lin, H. Dang, C. Zhao, Y. Du, C. Chi, W. Ma, Y. Li and X. Zhang, Nanoscale, 2022, 14, 9419-9430.
60. X.-z. Jin, X.-d. Qi, Y. Wang, J.-h. Yang, H. Li, Z.-w. Zhou and Y. Wang, ACS Appl. Mater. Interfaces, 2021, 13, 8808-8822.
61. N. Nandihalli, C.-J. Liu and T. Mori, Nano Energy, 2020, 78, 105186.
62. J. Wu, Y. Sun, W.-B. Pei, L. Huang, W. Xu and Q. Zhang, Synth. Met., 2014, 196, 173-177.
63. M. He, J. Ge, Z. Lin, X. Feng, X. Wang, H. Lu, Y. Yang and F. Qiu, Energy Environ. Sci., 2012, 5, 8351-8358.
64. C. Gayner and Y. Amouyal, Adv. Funct. Mater., 2020, 30, 1901789.
65. Y. H. Kang, U.-H. Lee, I. H. Jung, S. C. Yoon and S. Y. Cho, ACS Appl. Electron. Mater., 2019, 1, 1282-1289.
66. X. Guan and J. Ouyang, CCS Chem., 2021, 3, 2415-2427.
67. L. Vaisman, H. D. Wagner and G. Marom, Adv. Colloid Interface Sci., 2006, 128-130, 37-46.
68. C. K. Mytafides, L. Tzounis, G. Karalis, P. Formanek and A. S. Paipetis, J. Power Sources, 2021, 507, 230323.
69. C. Bounioux, P. Díaz-Chao, M. Campoy-Quiles, M. S. Martín-González, A. R. Goñi, R. Yerushalmi-Rozen and C. Müller, Energy Environ. Sci., 2013, 6, 918-925.
70. F. Jiang, J. Xiong, W. Zhou, C. Liu, L. Wang, F. Zhao, H. Liu and J. Xu, J. Mater. Chem. A, 2016, 4, 5265-5273.
71. B. A. MacLeod, N. J. Stanton, I. E. Gould, D. Wesenberg, R. Ihly, Z. R. Owczarczyk, K. E. Hurst, C. S. Fewox, C. N. Folmar, K. Holman Hughes, B. L. Zink, J. L. Blackburn and A. J. Ferguson, Energy Environ. Sci., 2017, 10, 2168-2179.
72. J. Jung, E. H. Suh, Y. J. Jeong, H. S. Yang, T. Lee and J. Jang, ACS Appl. Mater. Interfaces, 2019, 11, 47330-47339.
73. C. T. Hong, Y. H. Kang, J. Ryu, S. Y. Cho and K.-S. Jang, J. Mater. Chem. A, 2015, 3, 21428-21433.
74. C. Cho, P. Kang, A. Taqieddin, Y. Jing, K. Yong, J. M. Kim, M. F. Haque, N. R. Aluru and S. Nam, Nat. Electron., 2021, 4, 126-133.
75. N. Van Toan, T. T. Kim Tuoi and T. Ono, J. Power Sources, 2022, 536, 231504.
76. S. H. Kim, T. Min, J. W. Choi, S. H. Baek, J.-P. Choi and C. Aranas, Energy, 2018, 144, 607-618.
77. B. Zhu, H. Wang, W. R. Leow, Y. Cai, X. J. Loh, M.-Y. Han and X. Chen, Adv. Mater., 2016, 28, 4250-4265.
78. C. Wang, K. Xia, Y. Zhang and D. L. Kaplan, Acc. Chem. Res., 2019, 52, 2916-2927.
79. B. P. Yalagala, S. A. Sankaranarayanan, A. K. Rengan and S. R. K. Vanjari, ACS Sustainable Chem. Eng., 2022, 10, 4473-4485.
80. S. Strassburg, S. Zainuddin and T. Scheibel, Adv. Energy Mater., 2021, 11, 2100519.
81. A. Ahmed, S. Bain, Z. H. Prottoy, Z. Morsada, M. T. Islam, M. M. Hossain and M. Shkir, ACS Mater. Lett., 2022, 4, 68-86.
82. G. Guidetti, L. d′Amone, T. Kim, G. Matzeu, L. Mogas-Soldevila, B. Napier, N. Ostrovsky-Snider, J. Roshko, E. Ruggeri and F. G. Omenetto, Appl. Phys. Rev., 2022, 9, 011302.
83. C. Lee, S. Kim and Y.-H. Cho, Adv. Sustain. Syst., 2022, 6, 2000216.
84. E. Yvenou, M. Sandroni, A. Carella, M. N. Gueye, J. Faure-Vincent, S. Pouget, R. Demadrille and J.-P. Simonato, Mater. Chem. Front., 2020, 4, 2054-2063.
85. S.-H. Hong, T.-C. Lee and C.-L. Liu, ACS Appl. Energy Mater., 2023, 6, 2602-2610.
86. H. Zhou, H. Inoue, M. Ujita and T. Yamada, Angew. Chem. Int. Ed., 2023, 62, e202213449.
87. Y. Liu, M. Cui, W. Ling, L. Cheng, H. Lei, W. Li and Y. Huang, Energy Environ. Sci., 2022, 15, 3670-3687.
88. H. Cheng, X. He, Z. Fan and J. Ouyang, Adv. Energy Mater., 2019, 9, 1901085.
89. X. He, H. Sun, Z. Li, X. Chen, Z. Wang, Y. Niu, J. Jiang and C. Wang, J. Mater. Chem. A, 2022, 10, 20730-20755.
90. R. Hu, B. A. Cola, N. Haram, J. N. Barisci, S. Lee, S. Stoughton, G. Wallace, C. Too, M. Thomas, A. Gestos, M. E. d. Cruz, J. P. Ferraris, A. A. Zakhidov and R. H. Baughman, Nano Lett., 2010, 10, 838-846.
91. T. Kim, J. S. Lee, G. Lee, H. Yoon, J. Yoon, T. J. Kang and Y. H. Kim, Nano Energy, 2017, 31, 160-167.
92. L. Zhang, T. Kim, N. Li, T. J. Kang, J. Chen, J. M. Pringle, M. Zhang, A. H. Kazim, S. Fang, C. Haines, D. Al-Masri, B. A. Cola, J. M. Razal, J. Di, S. Beirne, D. R. MacFarlane, A. Gonzalez-Martin, S. Mathew, Y. H. Kim, G. Wallace and R. H. Baughman, Adv. Mater., 2017, 29, 1605652.
93. H. Wang, X. Zhuang, W. Xie, H. Jin, R. Liu, B. Yu, J. Duan, L. Huang and J. Zhou, Cell Rep. Phys. Sci., 2022, 3, 100737.
94. J. Duan, G. Feng, B. Yu, J. Li, M. Chen, P. Yang, J. Feng, K. Liu and J. Zhou, Nat. Commun., 2018, 9, 5146.
95. B. Yu, J. Duan, H. Cong, W. Xie, R. Liu, X. Zhuang, H. Wang, B. Qi, M. Xu, Z. L. Wang and J. Zhou, Science, 2020, 370, 342-346.
96. K. Kim, J. Kang and H. Lee, Chem. Eng. J., 2021, 426, 131797.
97. Z. Lei, W. Gao and P. Wu, Joule, 2021, 5, 2211-2222.
98. W. Gao, Z. Lei, C. Zhang, X. Liu and Y. Chen, Adv. Funct. Mater., 2021, 31, 2104071.
99. Y. Li, Q. Li, X. Zhang, B. Deng, C. Han and W. Liu, Adv. Energy Mater., 2022, 12, 2103666.
100. Y. Liu, S. Zhang, Y. Zhou, M. A. Buckingham, L. Aldous, P. C. Sherrell, G. G. Wallace, G. Ryder, S. Faisal, D. L. Officer, S. Beirne and J. Chen, Adv. Energy Mater., 2020, 10, 2002539.
101. C. Tian, C. Bai, T. Wang, Z. Yan, Z. Zhang, K. Zhuo and H. Zhang, Nano Energy, 2023, 106, 108077.
102. L. Jin, G. W. Greene, D. R. MacFarlane and J. M. Pringle, ACS Energy Lett., 2016, 1, 654-658.
103. Y. Zhou, S. Zhang, M. A. Buckingham, L. Aldous, S. Beirne, C. Wu, Y. Liu, G. Wallace and J. Chen, Chem. Eng. J., 2022, 449, 137775.
104. D. Zhang, Y. Mao, F. Ye, Q. Li, P. Bai, W. He and R. Ma, Energy Environ. Sci., 2022, 15, 2974-2982.
105. L. Jiang, S. Horike, M. Mukaida, K. Kirihara, K. Seki and Q. Wei, Global Chall., 2023, 7, 2200207.
106. L. Liu, D. Zhang, P. Bai, Y. Mao, Q. Li, J. Guo, Y. Fang and R. Ma, Adv. Mater., 2023, n/a, 2300696.
107. K.-F. Yu, T.-Y. Lu, Y.-C. E. Li, K.-C. Teng, Y.-C. Chen, Y. Wei, T.-E. Lin, N.-C. Cheng and J. Yu, Biomacromolecules, 2022, 23, 2814-2826.
108. T. C. Lai, J. Yu and W. B. Tsai, J. Mater. Chem. B., 2016, 4, 2304-2313.
109. C. Cho, K. L. Wallace, P. Tzeng, J.-H. Hsu, C. Yu and J. C. Grunlan, Adv. Energy Mater., 2016, 6, 1502168.
110. C. T. Hong, W. Lee, Y. H. Kang, Y. Yoo, J. Ryu, S. Y. Cho and K.-S. Jang, J. Mater. Chem. A, 2015, 3, 12314-12319.
111. L.-S. Tsai, J.-C. Hwang, C.-Y. Lee, Y.-T. Lin, C.-L. Tsai, T.-H. Chang, Y.-L. Chueh and H.-F. Meng, Appl. Phys. Lett., 2013, 103, 233304.
112. G. Joshi, D. Mitchell, J. Ruedin, K. Hoover, R. Guzman, M. McAleer, L. Wood and S. Savoy, J. Mater. Chem. C, 2019, 7, 479-483.
113. B.-X. Yang, Y.-H. C. Chien, T. Chang, C.-H. Liao, C.-Y. Liu, A. S.-T. Chiang and C.-L. Liu, Phys. Status Solidi A, 2018, 215, 1800192.
114. Z. Li, S. Zhang, Y. Chen, H. Ling, L. Zhao, G. Luo, X. Wang, M. C. Hartel, H. Liu, Y. Xue, R. Haghniaz, K. Lee, W. Sun, H. Kim, J. Lee, Y. Zhao, Y. Zhao, S. Emaminejad, S. Ahadian, N. Ashammakhi, M. R. Dokmeci, Z. Jiang and A. Khademhosseini, Adv. Funct. Mater., 2020, 30, 2003601.
115. G. Ge, Q. Wang, Y.-Z. Zhang, H. N. Alshareef and X. Dong, Adv. Funct. Mater., 2021, 31, 2107437.
116. B. Liu, Y. Wang, Y. Miao, X. Zhang, Z. Fan, G. Singh, X. Zhang, K. Xu, B. Li, Z. Hu and M. Xing, Biomaterials, 2018, 171, 83-96.
117. X. Yuan, P. Wu, Q. Gao, J. Xu, B. Guo and Y. He, Mater. Horiz., 2022, 9, 961-972.
118. K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi and A. Khademhosseini, Biomaterials, 2015, 73, 254-271.
119. D. F. S. Fonseca, P. C. Costa, I. F. Almeida, P. Dias-Pereira, I. Correia-Sá, V. Bastos, H. Oliveira, C. Vilela, A. J. D. Silvestre and C. S. R. Freire, Macromol. Biosci., 2020, 20, 2000195.
120. D. Sun, Y. Feng, S. Sun, J. Yu, S. Jia, C. Dang, X. Hao, J. Yang, W. Ren, R. Sun, C. Shao and F. Peng, Adv. Funct. Mater., 2022, 32, 2201335.
121. A. Barth, Biochim. Biophys. Acta Bioenerg., 2007, 1767, 1073-1101.
122. O. D. Bonner and C. F. Jordan, Spectrochim. Acta A Mol. Biomol., 1976, 32, 1243-1246.
123. A. Taheri, D. R. MacFarlane, C. Pozo-Gonzalo and J. M. Pringle, ChemSusChem, 2018, 11, 2788-2796.
124. J. Ding, Z. Li, F. Zhang, Y. Zou and C.-a. Di, Organic Thermoelectrics: From Materials to Devices, WILEY-VCH GmbH, Boschstraße 12, 69469 Weinheim, Germany, 2022.
125. G. Beaucage, J. Appl. Crystallogr., 1995, 28, 717-728.
126. Y.-C. Li, K.-B. Chen, H.-L. Chen, C.-S. Hsu, C.-S. Tsao, J.-H. Chen and S.-A. Chen, Langmuir, 2006, 22, 11009-11015.
127. C. D. Putnam, M. Hammel, G. L. Hura and J. A. Tainer, Q. Rev. Biophys., 2007, 40, 191-285.
128. S.-H. Hong, S. N. Afraj, P.-Y. Huang, Y.-Z. Yeh, S.-H. Tung, M.-C. Chen and C.-L. Liu, Nanoscale, 2021, 13, 20498-20507.
129. H.-P. Wang, S. Li, X. Liu, Z. Shi, X. Fang and J.-H. He, Adv. Mater., 2021, 33, 2003309.
130. D. Kufer and G. Konstantatos, ACS Photon., 2016, 3, 2197-2210.
131. Y. Wang, L. Song, Y. Chen and W. Huang, ACS Photon., 2020, 7, 10-28.
132. Y. Xu and Q. Lin, Appl. Phys. Rev., 2020, 7, 011315.
133. C. Xie, C.-K. Liu, H.-L. Loi and F. Yan, Adv. Funct. Mater., 2020, 30, 1903907.
134. F. P. García de Arquer, A. Armin, P. Meredith and E. H. Sargent, Nat. Rev. Mater., 2017, 2, 16100.
135. N. J. Huo and G. Konstantatos, Adv. Mater., 2018, 30, 1801164.
136. H. Gu, S. C. Chen and Q. D. Zheng, Adv. Opt. Mater., 2021, 9, 2001637.
137. J. A. Huang and L. B. Luo, Adv. Opt. Mater., 2018, 6, 1701282.
138. J. C. Zhou and J. Huang, Adv. Sci., 2018, 5, 1700256.
139. K. M. Xu, W. J. Zhou and Z. J. Ning, Small, 2020, 16, 2003397.
140. X. H. Liu, D. J. Yu, X. F. Song and H. B. Zeng, Small, 2018, 14, 1801460
141. Y. X. Wang, G. L. Ding, J. Y. Mao, Y. Zhou and S. T. Han, Sci. Technol. Adv. Mater., 2020, 21, 278-302.
142. H. Wang and D. H. Kim, Chem. Soc. Rev., 2017, 46, 5204-5236.
143. M. Ahmadi, T. Wu and B. Hu, Adv. Mater., 2017, 29, 1605242.
144. C. Li, W. Huang, L. Gao, H. Wang, L. Hu, T. Chen and H. Zhang, Nanoscale, 2020, 12, 2201-2227.
145. Y. Wang, Y. Liu, S. Cao and J. Wang, J. Mater. Chem. C, 2021, 9, 5302-5322.
146. N. Li, Z. Lan, L. Cai and F. Zhu, J. Mater. Chem. C, 2019, 7, 3711-3729.
147. Y. Wei, Z. Y. Cheng and J. Lin, Chem. Soc. Rev., 2019, 48, 310-350.
148. C.-Y. Huang, H. Li, Y. Wu, C.-H. Lin, X. Guan, L. Hu, J. Kim, X. Zhu, H. Zeng and T. Wu, Nano-Micro Lett., 2022, 15, 16.
149. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson and A. J. Heeger, Science, 2009, 325, 1665-1667.
150. C. Tyznik, J. Lee, J. Sorli, X. Liu, E. K. Holland, C. S. Day, J. E. Anthony, Y.-L. Loo, Z. V. Vardeny and O. D. Jurchescu, ACS Appl. Mater. Interfaces, 2021, 13, 10231-10238.
151. H. Wu, Z. Kang, Z. Zhang, H. Si, S. Zhang, Z. Zhang, Q. Liao and Y. Zhang, Small Methods, 2019, 3, 1900117.
152. C. Jo, S. Lee, J. Kim, J. S. Heo, D.-W. Kang and S. K. Park, ACS Appl. Mater. Interfaces, 2020, 12, 58038-58048.
153. H. Wu, H. Si, Z. Zhang, Z. Kang, P. Wu, L. Zhou, S. Zhang, Z. Zhang, Q. Liao and Y. Zhang, Adv. Sci., 2018, 5, 1801219.
154. Y. Hou, L. Wang, X. Zou, D. Wan, C. Liu, G. Li, X. Liu, Y. Liu, C. Jiang, J. C. Ho and L. Liao, Small, 2020, 16, 1905609.
155. Y. Yu, Y. Zhang, Z. Zhang, H. Zhang, X. Song, M. Cao, Y. Che, H. Dai, J. Yang, J. Wang, H. Zhang and J. Yao, J. Phys. Chem. Lett., 2017, 8, 445-451.
156. J. Jiang, X. Zou, Y. Lv, Y. Liu, W. Xu, Q. Tao, Y. Chai and L. Liao, Nat. Commun., 2020, 11, 4266.
157. Z.-Y. Peng, J.-L. Xu, J.-Y. Zhang, X. Gao and S.-D. Wang, Adv. Mater. Interfaces, 2018, 5, 1800505.
158. X. Liu, W. Kuang, H. Ni, Z. Tao, Q. Huang, J. Chen, Q. Liu, J. Chang and W. Lei, Nanoscale, 2018, 10, 10182-10189.
159. L. Qian, Y. Sun, M. Wu, D. Xie, L. Ding and G. Shi, Adv. Mater., 2017, 29, 1606175.
160. A. Surendran, X. Yu, R. Begum, Y. Tao, Q. J. Wang and W. L. Leong, ACS Appl. Mater. Interfaces, 2019, 11, 27064-27072.
161. C. Xie, P. You, Z. Liu, L. Li and F. Yan, Light: Sci. Appl., 2017, 6, e17023-e17023.
162. C. Zou, Y. Xi, C.-Y. Huang, E. G. Keeler, T. Feng, S. Zhu, L. D. Pozzo and L. Y. Lin, Adv. Opt. Mater., 2018, 6, 1800324.
163. K. Wang, S. Dai, Y. Zhao, Y. Wang, C. Liu and J. Huang, Small, 2019, 15, 1900010.
164. X. Xu, W. Deng, X. Zhang, L. Huang, W. Wang, R. Jia, D. Wu, X. Zhang, J. Jie and S.-T. Lee, ACS Nano, 2019, 13, 5910-5919.
165. Y. Chen, Y. Chu, X. Wu, W. Ou-Yang and J. Huang, Adv. Mater., 2017, 29, 1704062.
166. G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger, Science, 1995, 270, 1789.
167. Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chem. Rev., 2009, 109, 5868-5923.
168. A. Facchetti, Chem. Mater., 2011, 23, 733-758.
169. B. Qiu, Z. Chen, S. Qin, J. Yao, W. Huang, L. Meng, H. Zhu, Y. Yang, Z.-G. Zhang and Y. Li, Adv. Mater., 2020, 32, 1908373.
170. Y. J. Su, S. C. Huang, T. W. Chen, L. C. Chueh, Y. Cui, L. Hong, H. F. Yao, J. H. Hou, J. T. Chen and C. S. Hsu, ACS Appl. Mater. Interfaces, 2021, 13, 26247-26255.
171. A. Wadsworth, Z. Hamid, J. Kosco, N. Gasparini and I. McCulloch, Adv. Mater., 2020, 32, 2001763.
172. S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee and J. H. Cho, ACS Nano, 2014, 8, 8285-8291.
173. Y. Huang, F. Zhuge, J. Hou, L. Lv, P. Luo, N. Zhou, L. Gan and T. Zhai, ACS Nano, 2018, 12, 4062-4073.
174. S. Vegiraju, G.-Y. He, C. Kim, P. Priyanka, Y.-J. Chiu, C.-W. Liu, C.-Y. Huang, J.-S. Ni, Y.-W. Wu, Z. Chen, G.-H. Lee, S.-H. Tung, C.-L. Liu, M.-C. Chen and A. Facchetti, Adv. Funct. Mater., 2017, 27, 1606761.
175. T. Chiba, K. Hoshi, Y.-J. Pu, Y. Takeda, Y. Hayashi, S. Ohisa, S. Kawata and J. Kido, ACS Appl. Mater. Interfaces, 2017, 9, 18054-18060.
176. Y. Wang, L. Varadi, A. Trinchi, J. Shen, Y. Zhu, G. Wei and C. Li, Small, 2018, 14, 1803156.
177. S.-W. Dai, B.-W. Hsu, C.-Y. Chen, C.-A. Lee, H.-Y. Liu, H.-F. Wang, Y.-C. Huang, T.-L. Wu, A. Manikandan, R.-M. Ho, C.-S. Tsao, C.-H. Cheng, Y.-L. Chueh and H.-W. Lin, Adv. Mater., 2018, 30, 1705532.
178. B. A. Koscher, J. K. Swabeck, N. D. Bronstein and A. P. Alivisatos, J. Am. Chem. Soc., 2017, 139, 6566-6569.
179. T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa and J. Kido, Nat. Photonics, 2018, 12, 681-687.
180. Y. Lee, J. Kwon, E. Hwang, C.-H. Ra, W. J. Yoo, J.-H. Ahn, J. H. Park and J. H. Cho, Adv. Mater., 2015, 27, 41-46.
181. H. Liu, X. Zhang, L. Zhang, Z. Yin, D. Wang, J. Meng, Q. Jiang, Y. Wang and J. You, J. Mater. Chem. C, 2017, 5, 6115-6122.
182. K.-J. Baeg, M. Binda, D. Natali, M. Caironi and Y.-Y. Noh, Adv. Mater., 2013, 25, 4267-4295.
183. E. Baek, T. Rim, J. Schutt, C. K. Baek, K. Kim, L. Baraban and G. Cuniberti, Nano Lett., 2017, 17, 6727-6734.
184. Y. Zou, F. Li, C. Zhao, J. Xing, Z. Yu, W. Yu and C. Guo, Adv. Opt. Mater., 2019, 7, 1900676.
185. R. Begum, M. R. Parida, A. L. Abdelhady, B. Murali, N. M. Alyami, G. H. Ahmed, M. N. Hedhili, O. M. Bakr and O. F. Mohammed, J. Am. Chem. Soc., 2017, 139, 731-737.
186. S. Pak, Y. Cho, J. Hong, J. Lee, S. Lee, B. Hou, G.-H. An, Y.-W. Lee, J. E. Jang, H. Im, S. M. Morris, J. I. Sohn, S. Cha and J. M. Kim, ACS Appl. Mater. Interfaces, 2018, 10, 38264-38271.
187. D. Kufer, I. Nikitskiy, T. Lasanta, G. Navickaite, F. H. L. Koppens and G. Konstantatos, Adv. Mater., 2015, 27, 176-180.
188. R. Jia, X. Wu, W. Deng, X. Zhang, L. Huang, K. Niu, L. Chi and J. Jie, Adv. Funct. Mater., 2019, 29, 1905657.
189. H. Zhu, A. Liu, H. Kim, J. Hong, J.-Y. Go and Y.-Y. Noh, Chem. Mater., 2021, 33, 1174-1181.
190. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F. P. G. de Arquer, F. Gatti and F. H. L. Koppens, Nat. Nanotechnol., 2012, 7, 363-368.
指導教授 李岱洲 劉振良(Tai−Chou Lee Cheng−Liang Liu) 審核日期 2023-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明