博碩士論文 105326001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.117.254.236
姓名 蔡謹蓮(Chin-Lien Tsai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 結合活性碳及鈣鈦礦型觸媒去除氣流中NO及N2O之可行性探討
(Removal of NO and N2O by combining activated carbon with perovskite-type catalyst)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氮氧化物(NOx) 不僅對人體造成健康危害,亦對環境造成不利影響。此外,N2O具有較高的全球暖化潛勢(GWP = 310)和較長的生命週期(150年),被列為重要的溫室氣體之一。因此,開發有效技術以去除NO及N2O為一大重要議題。本研究以溶膠凝膠法製備三種不同之鈣鈦礦型觸媒,包括一種鈣鈦礦型觸媒La0.7Ce0.3SrNiO4和兩種雙鈣鈦礦型觸媒LaSrFeNiO6和LaBaFeNiO6,並研究了此三種觸媒在氣流中對於NO及N2O之分解效率。結果表明,三種觸媒皆對於NO和N2O的直接分解具有良好的活性。尤其是應用雙鈣鈦礦型觸媒(LaSrFeNiO6或LaBaFeNiO6)時,可在500℃可以達到100%的NO分解效率;在400℃亦可以對N2O的分解效率達到100%。然而,氧氣總是存在在固定污染源的排放煙氣中,氧氣可能佔據觸媒之活性位置並進一步降低觸媒對NO和N2O之分解效率。為了克服氧氣對於觸媒活性所產生之負面影響,本研究結合活性碳及鈣鈦礦型觸媒形成兩段式系統,並用於NO的去除。活性碳具有對NOx分解和吸附的良好性能,且活性碳在加溫情況下與氧氣反應形成一氧化碳,一氧化碳可以作為還原NOx的良好還原劑,並進一步降低氧氣對於鈣鈦礦型觸媒的負面影響。單階段式與兩段式的催化系統分別在不同參數條件下進行活性測試實驗,結果顯示兩段式系統即使在6%O2,5%H2O(g)和50 ppm SO2存在下,此兩段式系統操作於300℃可達100%之NO去除效率。總氣體流量控制在1300 mL / min,相當於10,000 hr-1的空間流速(GHSV)。整體而言,本研究所開發之雙鈣鈦礦型觸媒展現對NO和N2O的高去除效率。總體而言,在兩段式系統中,氧氣毒化觸媒之問題能被有效控制且高NO及N2O之去除效率可以被實現。
摘要(英) Various perovskite-type catalysts including single-type La0.7Ce0.3SrNiO4, and double-type LaSrFeNiO6 and LaBaFeNiO6 have been prepared and investigated for the effectiveness in removing NO and N2O from gas stream. The results indicate that three catalysts developed are of good activity for decomposition of NO and N2O. Especially, 100% NO decomposition efficiency could be achieved at 500℃ as double-type perovskite (LaSrFeNiO6 or LaBaFeNiO6) is applied. Also, N2O decomposition efficiency achieved with double perovskites reaches 100%. However, oxygen always exists in the flue gas of stationary sources to occupy active sites of catalyst and decrease the conversions of NO and N2O. In order to overcome the negative effect of O2 on catalyst activity, activated carbon and double perovskite-type catalysts are combined to form a two-staged system for simultaneous removal of NO. Activated carbon is considered as good material for the treatment of NOx due to its good catalytic property toward removal and adsorption of NOx. More importantly, O2 could react with activated carbon to form CO which can serve as good reducing agent for effective removal of NOx. Decomposition tests of NO and N2O are performed with perovskite-alone and two-staged system (perovskite + activated carbon), respectively. The results obtained indicate that 100% NO removal efficiencies can be achieved at 300oC even in the presence of 6% O2, 5% H2O(g), and 50 ppm SO2. Total gas flow rate is controlled at 1300 mL/min, corresponding to a gas hourly space velocity (GHSV) of 10,000 hr?1. Overall, double perovskite-type catalysts developed show high efficiencies for NO and N2O removal, and they are characterized with XRD, BET, SEM, XPS and H2-TPR. Overall, the results indicate that high NO and N2O removal efficiencies can be achieved with the two-staged system.
關鍵字(中) ★ 氮氧化物
★ 一氧化二氮
★ Perovskite-type觸媒
★ 活性碳
★ NO直接分解
關鍵字(英) ★ Nitrogen oxides (NOx)
★ nitrous oxide (N2O)
★ Perovskite-type catalyst
★ activated carbon
★ NO decomposition
論文目次 目錄
摘要 I
Abstract I
目錄 III
圖目錄 VI
表目錄 VIII
第一章 前言 1
1.1研究緣起 1
2.2氮氧化物之生成機制 8
2.2.1 NOx生成機制 8
2.2.2 N2O生成機制 11
1.2研究目的 3
第二章 文獻回顧 4
2.1氮氧化物的特性、危害與來源 4
2.1.1 氮氧化物的特性與危害 4
2.1.2 氮氧化物的來源及管控 6
2.3氮氧化物之控制技術 11
2.3.1 燃燒前處理 (Precombustion Treatment) 12
2.3.2 燃燒程序修正 (Combustion Modification) 12
2.3.3 燃燒後處理 (Post Combustion Removal ) 13
2.4 NO及N2O直接分解 20
2.5 觸媒催化之反應動力探討 23
2.6 CO-SCR 26
2.7 Perovskite-type 觸媒應用於NOx之直接分解 28
2.7.1 Perovskite oxide 型觸媒 28
2.7.2 Perovskite-type觸媒之改質影響 33
2.8 Double perovskite-type觸媒 34
第三章 研究方法 36
3.1研究流程及架構 36
3.2預備實驗 38
3.2.1觸媒材料製備 38
3.2.2觸媒材料之物化特性分析 41
3.3實驗分析方法 44
3.3.1檢量線製作 44
3.3.2觸媒測試方法及實驗配置 45
3.4 實驗設備及材料 49
3.4.1實驗設備 49
3.4.2實驗藥品與氣體 51
3.5實驗結果之計算 53
第四章 結果與討論 55
4.1 Perovskite-type觸媒物化特性分析 55
4.1.1 XRD晶相分析 55
4.1.2 BET氮氣吸脫附 56
4.1.3 SEM分析及EDS元素分析 57
4.1.4 H2-TPR特性分析 58
4.1.5 FT-IR特性分析 60
4.1.6 ESCA特性分析 62
4.2 Perovskite-type觸媒對NO之活性測試 64
4.2.1溫度對NO直接分解之影響 64
4.2.2水氣對NO直接分解之影響 65
4.2.3氧氣對NO直接分解之影響 66
4.2.4 CO對NO去除效率之影響 67
4.2.5 NO直接分解氮氣選擇性 69
4.3 Perovskite-type觸媒對N2O之活性測試 70
4.3.1 N2O FT-IR圖譜分析 70
4.3.2溫度對N2O分解之影響 72
4.3.3氧氣對N2O直接分解之影響 73
4.4 NO及N2O直接分解之動力分析 74
4.5 活性碳結合perovskite觸媒對NO之活性測試 80
4.5.1活性碳對NO去除之影響 80
4.5.2溫度對兩段式系統NO去除之影響 83
第五章 結論與建議 86
5.1結論 86
5.2建議 87
參考文獻 88
參考文獻 Alini S., Basile F., Blasioli S., Rinaldi C., Vaccari A., “Development of new catalysts for N2O-decomposition from adipic acid plant”, Applied Catalysis B: Environmental, Vol. 70, 323–329 (2007).
Beer J.M., Martin G.B., “Application of advanced technology for NO control: alternate fuels and fluidized bed coal combustion”, AIChE Symposium Series, Vol. 74, 93-114 (1978).
Bosch H., Janssen F., “Formation and control of nitrogen oxides”, Catalysis Today, Vol. 2, 369-379 (1988).
Castoldia L., Matarresea R., Morandib S., Righinia L., Lietti L., “New insights on the adsorption, thermal decomposition and reduction of NOx over Pt- and Ba-based catalysts”, Applied Catalysis B: Environmental, Vol. 224, 249-263 (2018).
Charles A. P., Ronald P. D., “Comparative study of coal based catalysts for NO adsorption and NO reduction by CO”, Ind. Eng. Chem. Process Des. Develop., 12. (1973)
Chen L. Q., Niua X. Y., Lia Z. B., Donga Y.L., Wanga D., Yuana F. L., Zhua Y. J., “The effects of BaO on the catalytic activity of La1.6Ba0.4NiO4 in direct decomposition of NO”, Journal of Molecular Catalysis A: Chemical, Vol. 423, 277-284 (2016).
Cheng J., Wang X. P., Yu J., Hao Z. P., Xu Z. P., “Sulfur-resistant NO decomposition catalysts derived from Co-Ca/Ti-Al hydrotalcite-like compounds”, The Journal of Physical Chemistry C, Vol. 115, 6651-6660 (2011).
Cheng X. X., Cheng Y. R., Wang Z.Q., Ma C. Y., “Comparative study of coal based catalysts for NO adsorption and NO reduction by CO”, Fuel, Vol. 214, 230-241 (2018).
Chen L.F., Gonzalez G., Wang J.A., Norena L.E., Toledo A., Castillo S., Moran-Pineda M., “Surfactant-controlled synthesis of Pd/Ce0.6Zr0.4O2 catalyst for NO reduction by CO with excess oxygen”, Applied Surface Science, Vol. 243, 319-328 (2005).
Coq B., Mauvezin M., Delahay G., Kieger S., “Kinetics and mechanism of the N2O reduction by NH3 on a Fe-Zeolite-Beta catalyst”, Journal of Catalysis, Vol. 195, 298-303 (2000).
Dai X., Jiang W., Wang W., Weng X., Shang Y., Xue Y., Wu Z., “Supercritical water syntheses of transition metal?doped CeO2 nano?catalysts for selective catalytic reduction of NO by CO: An in situ diffuse reflectance Fourier transform infrared spectroscopy study”, Chinese Journal of Catalysis, Vol. 39, 728-735 (2018).
Fenimore C.P., Moore J., “Quenched carbon monoxide in fuel-lean flame gas”, Combustion and Flame, Vol. 22, 343-351 (1974).
Goto K., Ishiharaa T., “Direct decomposition of NO into N2 and O2 over Ba3Y3.4Sc0.6O9”, Applied Catalysis A: General, Vol. 409, 66-73 (2011).
Hao J., Liu Z., Fu L., Zhu T., “Study of Ag/La0.6Ce0.4CoO3 catalysts for direct decomposition and reduction of nitrogen oxides with propene in the presence of oxygen”, Applied Catalysis B: Environmental, Vol. 44, 355-370 (2003).
He Y. Y., Ford M. E., Zhu M. H., Liu Q. C., Tumuluri U., Wu Z. L., Wachs I. E., “Influence of catalyst synthesis method on selective catalytic reduction (SCR) of NO by NH3 with V2O5-WO3/TiO2 catalysts”, Applied Catalysis B: Environmental, Vol.193, 141-150 (2016).
Huang Z., Peng X., Lin H., Shangguan W., “A highly efficient and porous catalyst for simultaneous removal of NOx and diesel soot”, Catalysis Communications, Vol. 8, 157-161 (2007).
Hu R., Ding R., Chen J., Hu J., Zhang Y., “Preparation and catalytic activities of the novel double perovskite-type oxide La2CuNiO6 for methane combustion,” Catalysis Communications, Vol. 21, 38-41 (2012).
IEA Greenhouse Gas R&D Programme, “Abatement of other greenhouse gases-nitrous oxide”, (2000).
Imanaka N., Masui T., “Advances in direct NOx decomposition catalysts”, Applied Catalysis A: General, Vol. 431, 1-8 (2012).
Inomata H., Shimokawabe M., Kuwana A., Arai M., “Selective reduction of NO with CO in the presence of O2 with Ir/WO3 catalysts: Influence of preparation variables on the catalytic performance”, Applied Catalysis B: Environmental, Vol. 84, 783-789 (2008).
Iwamoto M., “Heterogeneous catalysis for removal of NO in excess oxygen. Progress in 1994”, Catalysis Today, Vol. 29, 29-35 (1996).
Jacob D.J., “Introduction to Atmosphere Chemistry”, Princeton, NJ: Princeton University Press. (1999).
Zhong J., Gao Z. Y., Ding Y., “Heterogeneous reduction reaction of N2O by char based on Zigzag carbonaceous model”, Journal of China Coal Society, Vol. 42, 3028-3034. (2017)
Kang Z., Yuan Q., Zhao L., Dai Y., Sun B., Wang T., “Study of the performance, simplification and characteristics of SNCR de-NOx in large-scale cyclone separator”, Applied Thermal Engineering, Vol. 123, 635-645 (2017).
Kumar S., Teraoka Y., Joshi A.G., Rayalu S., Labhsetwar N., “Ag promoted La0.8Ba0.2MnO3 type perovskite catalyst for N2O decomposition in the presence of O2, NO and H2O”, Journal of Molecular Catalysis A: Chemical, Vol. 348, 42-54 (2011).
Kumar S., Vinu A., Subrt J., Bakardjieva S., Rayalu S., Teraoka Y., Labhsetwar N., “Catalytic N2O decomposition on Pr0.8Ba0.2MnO3 type perovskite catalyst for industrial emission control”, Catalysis Today, Vol. 198, 125-132 (2012).
Li J., Hu R., Zhang J., Meng W., Du Y., Si Y., Zhang Z., “Influence of preparation methods of La2CoMnO6/CeO2 on the methane catalytic combustion”, Fuel, Vol. 178, 148-154 (2016).
Li X. L., Li Y. H., “Molybdenum modified CeAlOx catalyst for the selective catalytic reduction of NO with NH3”, Journal of Molecular Catalysis A: Chemical, Vol. 386, 69-77 (2014).
Li Z., Ma Z., Gao X., Yuan X., Zhang L., Zhu Y., “Simultaneous catalytic removal of NOx and diesel soot particulates over La2?xAxNi1?yByO4 perovskite-type oxides”, Catalysis Communications, Vol. 12, 817-821 (2011).
Liu F., He H., Zhang C., Shan W., Shi Xi., “Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst”, Catalysis Today, Vol. 175, 18-25 (2011).
Liu K., Yu Q., Liu J., Wang K., Han Z., Xuan Y., Qin Q., “Selection of catalytically active elements for removing NO and CO from flue gas at low temperatures”, New Journal of Chemistry, Vol. 41, 13993-13999 (2017).
Liu Z., Fenga X., Zhoua Z., Fenga Y., Li J., “Ce-Sn binary oxide catalyst for the selective catalytic reduction of NOx by NH3”, Applied Surface Science, Vol. 428, 526-533 (2018)
Liu Z., Zhou Z., He F., Chen B., Zhao Y., XumQ., “Catalytic decomposition of N2O over NiO-CeO2 mixed oxide catalyst”, Catalysis Today, Vol. 294, 56-60 (2017).
Mainhardt H., “N2O emissions from adipic acid and nitric acid production,” Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories.
Nakatsuji T., Yamaguchi T., Sato N., Ohno H., “A selective NOx reduction on Rh-based catalysts in lean conditions using CO as a main reductant”, Applied Catalysis B: Environmental, Vol. 88, 61-70 (2008).
Ohnishi C., Iwamoto S., Inoue M., “Direct decomposition of nitrous oxide in the presence of oxygen over iridium catalyst supported on alumina”, Chemical Engineering Science, Vol. 63, 5076-5082 (2008).
Pan K.L., Chen M.C., Yu S.J., Yan S.Y., Chang M.B., “Enhancement of nitric oxide decomposition efficiency achieved with lanthanum-based perovskite-type catalyst”, Journal of the Air & Waste Management Association, Vol. 66, 619-630 (2016).
Pels J.R., Verhaak M.J.F.M., “Selective catalytic reduction of nitrous oxide with hydrocarbons using a SO2 resistant Fe/zeolite catalyst”, Non-CO2 Greenhouse Gases: Scientific Understanding, Control and Implementation, 359-364 (2000).
Phil H.H., Reddy M.P., Kumar P.A., Ju L.K. and Hyo J.S. “SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures”, Applied Catalysis B: Environmental, Vol.78, 301-308. (2008)
Pietraszek A., Da Costa P., Marques R., Kornelak P., Hansen T.W., Camra J., Najbar M., “The effect of the Rh–Al, Pt–Al and Pt–Rh–Al surface alloys on NO conversion to N2 on alumina supported Rh, Pt and Pt–Rh catalysts”, Catal Today, Vol. 119, 187-193 (2007).
Reddy P.S.S., Pasha N., Rao M.G.V.C., Lingaiah N., Suryanarayana I., Prasad P.S.S., “Direct decomposition of nitrous oxide over Ru/Al2O3 catalysts prepared by deposition–precipitation method”, Catalysis Communications, Vol. 8, 1406-1414 (2007).
Rodhe H., “A comparison of the contribution of various gases to the greenhouse effect”, Science, Vol. 248, 1217–1219 (1990).
Shaw J.T., “Emissions of nitrogen oxides in fluidized-bed combustion and applications”, Applied Science Publishers, London and New York, Chap. 6, 227-260 (1983).
Shi C., Zhang Z. C., Crocker M., Xu L., Wang C. Y., Au C. Y., Zhu A. M. “Nonthermal plasma-assisted NOx storage and reduction on a LaMn0.9Fe0.1O3 perovskite catalyst”, Catalysis Today, Vol. 211, 96-103. (2013).
Steward E.G., Rooksby H.P., “Pseudo-cubic alkaline-earth tungstates and molybdates of the R3MX6 type”, Acta Crystallographica, Vol. 4, 503-507 (1951).
Sui Z. J., Vradman L., Reizner I., Landau M. V., Herskowitz M., “Effect of preparation method and particle size on LaMnO3 performance in butane oxidation”, Catalysis Communications, Vol.12, 1437-1441 (2011).
Sui C., Niu X. Y., Wang Z., Yuan F. L., Zhu Y. J., “Activity and deactivation of Ru supported on La1.6Sr0.4NiO4 perovskite-like catalysts prepared by different methods for decomposition of N2O”, Catalysis Science & Technology, Vol.6, 8505-8515 (2016).
Sultana A., Haneda M., Hamada H., “A new concept of combined NH3-CO-SCR system for efficient NO reduction in excess oxygen”, Applied Catalysis B: Environmental, Vol. 88, 180-184 (2009).
Sutthiumporn K., Maneerung T., Kathiraser Y., Kawi S., “CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C-H activation and carbon suppression”, International Journal of Hydrogen Energy, Vol. 37, 11195-11207 (2012).
Tauster S.J., and Murrell L.L., “The NO-CO reaction in the presence of excess O2 as catalyzed by Iridium”, Journal of Catalysis, Vol. 41, 192-195 (1976).
van den Brink R.W., Booneveld S., Pels J.R., Bakker D.F., Verhaak M.J.F.M., “Catalytic removal of N2O in model flue gases of a nitric acid plant using a promoted Fe zeolite”, Applied Catalysis B: Environmenta, Vol. 32, 73-81 (2001).
Waibel. R.T. “Ultralow NOx burners for industrial process heaters”, John Zink company, 19-22. (1993).
Wang Z., Lin F., Jiang S., Qiu K., Kuang M., Whiddon R., Cen K., “Ceria substrate–oxide composites as catalyst for highly efficient catalytic oxidation of NO by O2”, Fuel, Vol. 166, 352-360 (2016).
Wojtowicz M.A., Pels J.R., Moulijn J.A., “Combustion of coal as a source of N2O emission”, Fuel Processing Technology, Vol. 34, 1-71 (1993).
Yan W. X., Li S. G., Fan C. G., Deng S., “Effect of surface carbon-oxygen complexes during NO reduction by coal char”, Fuel, Vol. 204, 40-46 (2017).
Yasuharu Y., Hiroshi U., “Catalytic activity of perovskite-type oxide catalysts for direct decomposition of NO: Correlation between cluster model calculations and temperature-programmed desorption experiments”, Catalysis Today, Vol. 42, 167-174 (1998).
Yokota K., Fukui M., Tanaka T., “Catalytic removal of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen”, Applied Surface Science, Vol. 121-122, 273-277 (1997).
Yu J., Guo F., Wang Y., Zhu J., Liu Y., Su F. and Xu G., “Sulfur poisoning resistant mesoporous Mn-base catalyst for low-temperature SCR of NO with NH3”, Applied Catalysis B: Environmental, Vol. 95, 160-168 (2010).
Zeldovich Y.B. “The oxidation of nitrogen in combustion and explosions”, Acta Physicochimica USSR, Vol. 21, 577-268 (1947).
Zhao Z., Yang X.G., Wu Y., “Comparative study of nickel-based perovskite-like mixed oxide catalysts for direct decomposition of NO”, Applied Catalysis B: Environmental, Vol. 8, 281-297 (1996).
Zhu H., Kim J.R., Ihm S.K., “Selective catalytic reduction of NO with CO on Pt/W–Ce–Zr catalysts”, Reaction Kinetics and Catalysis Letters, Vol. 97, 207-215 (2009).
Zhu J. J., Xiao D. H., Li J., Yang X. G., Wu Y., “Effect of Ce on NO direct decomposition in the absence/presence of O2 over La1?xCexSrNiO4 (0 ? x ? 0.3)”, Journal of Molecular Catalysis A: Chemical, Vol. 234, 99-105. (2005)
Zhu J. J., Xiao D. H., Li J., Yang X. G., Wu Y., “Recycle—new possible mechanism of NO decomposition over perovskite(-like) oxides”, Journal of Molecular Catalysis A: Chemical, Vol. 223, 29-34. (2005)
Zhu Y., Sun Y., Niu X., Yuan F., Fu H., “Preparation of La-Mn-O perovskite catalyst by microwave irradiation method and its application to methane combustion,” Catalysis Letters, Vol. 135, 152-158 (2010).
指導教授 張木彬(Moo-Been Chang) 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明