博碩士論文 105326013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.226.172.230
姓名 王奕涵(Wang,Yi-Han)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 王奕涵
(Wang,Yi-Han)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 化學需氧量 COD 是用來檢測水中有機物污染程度的一個重要指標,而電化學伏安法分析相較於傳統分析方法有著高靈敏度,低成本,適合現場監測以及對環境具有友善性等優點,因此相對於重鉻酸鉀迴流法而言,極具有未來的發展性。本研究探討利用金奈米粒子/二氧化鈦/單壁奈米碳管複合材料修飾電極進行線性掃描伏安法分析 (LSV),並選用鄰苯二甲酸氫鉀 (KHP)、水楊酸、葡萄糖、單乙醇胺 (MEA) 作為COD之模擬水樣,在其濃度範圍2-250 ppm內進行分析,分析所得的峰電流值與濃度的線性關係,共分為兩區段,分別為2-90 ppm以及100-250 ppm,而2-90 ppm區段相較於100-250 ppm區段有較好的線性關係存在,並發現LSV圖譜會因為模擬水樣的化學結構不同,其所得到的電流氧化峰值位置而不同。將該修飾電極進行再現性分析,其相對誤差為8.826 %,最後使用KHP作為COD模擬水樣,比較在不同濃度下利用LSV與CODcr偵測方法所得到數值之間的關係,發現其變化數值有相同的趨勢。
摘要(英) Chemical oxygen demand (COD) is an important index for detecting the level of organic pollution in water. Voltammetry, an electrochemical analysis, which has many advantages including high sensitivity, low cost, suitable for on-site monitoring, and environmental friendly. When compared to traditional standard method (potassium dichromate reflow method), using electrochemical method for the COD analysis has the development potential. In this research, from 2 to 250 ppm of the potassium hydrogen phthalate (KHP), salicylic acid, glucose, and monoethanolamine (MEA) are selected as a standard aqueous sample of COD to investigate the linear relationship between the peak current and the concentration through the linear sweep voltammetry analysis (LSV) with the GNPs/TiO2/SWCNT modified electrode. The linear relationship is divided into two sections, one is from 2 to 90 ppm and the other one is from 100 to 250 ppm. It can be found the R square of the 2-90 ppm segment is higher than the 100-250 ppm segment. In addition, the LSV curves are different in each of the organic compounds because of the different chemical structures. The reproducibility of the modified electrode is analyzed with a relative error of 8.826%. Finally, the KHP is used as a standard aqueous sample and the COD value obtained by the LSV and by CODcr at different concentration is compared. The relationship between concentration and COD can be found on both these two methods and the trends are the same.
關鍵字(中) ★ 線性掃描伏安法,化學需氧量,金/二氧化鈦/單壁奈米碳管
★ 線性掃描伏安法
★ 化學需氧量
★ 金/二氧化鈦/單壁奈米碳管
關鍵字(英) ★ Linear sweep voltammetry, Chemical oxygen demand, GNPs/TiO2/SWCNT
★ Linear sweep voltammetry
★ Chemical oxygen demand
★ GNPs/TiO2/SWCNT
論文目次 Contents
摘要 i
Abstract ii
致謝 iv
List of Figures x
List of Tables xiii
Chapter 1 Introduction 1
1.1. Background 1
1.2. Objectives 4
Chapter 2 Literature Reviews 6
2.1. Chemical oxygen demand (COD) 6
2.1.1. Chemical oxygen demand (COD) and theoretical oxygen demand (ThOD) 6
2.1.2. Methods for detecting COD 7
2.2. Voltammetry 13
2.2.1. Electrochemical system 13
2.2.2. Cyclic voltammetry (CV) 15
2.2.3. Linear sweep voltammetry (LSV) 20
2.2.4. Electrochemical impedance spectroscopy (EIS) 21
2.3. Electrode materials for detecting COD 25
2.3.1. Carbon nanotube (CNT) 25
2.3.2. Gold nanoparticles (GNPs) 27
2.3.3. Titanium dioxide 29
Chapter 3 Materials and methods 32
3.1. Instruments 33
3.2. Chemicals 34
3.3. Preparation the modified electrode 34
3.3.1. Modification of SWCNTs by nitric acid 34
3.3.2. Fabrication of TiO2/SWCNT 35
3.3.3. Fabricate the TiO2/SWCNT and GNPs/TiO2/SWCNT electrodes 36
3.4. Characterization analysis of the GNPs/TiO2/SWCNT 38
3.5. Voltammetry analysis 40
3.5.1. Scan conditions of voltammetry 40
3.5.2. COD sample analysis 40
3.5.3. Data analysis 41
Chapter 4 Results and discussions 42
4.1. Optimization of electrode preparation 43
4.1.1. Electrode materials selection 43
4.1.2. Selection of electrodeposition parameters 46
4.2. Characteristic analysis of the material 50
4.2.1. Morphology and element analysis of the material 50
4.2.2. Electrochemical performance analysis of the electrode 57
4.3. Optimization of scanning conditions 68
4.3.1. Scan parameters 68
4.3.2. Optimum electrolyte 72
4.4. COD analysis of modeled water 76
4.4.1. KHP 76
4.4.2. MEA 80
4.4.3. Salicylic acid 85
4.4.4. Glucose 89
4.4.5. LSV analysis of different organic solution 92
4.5. Performance of GNPs/TiO2/SWCNT/GCE 95
4.5.1. Comparison of electrochemical and traditional standard methods 95
4.5.2. Reproducibility 97
Chapter 5 Conclusions and Suggestions 98
5.1. Conclusions 99
5.2. Suggestions 100
References 101
參考文獻 Agrawalla, R.K., Paul, R., Sahoo, P.K., Chakraborty, A.K., and Mitra, A.K.,"A facile synthesis of a novel optoelectric material: a nanocomposite of SWCNT/ZnO nanostructures embedded in sulfonated polyaniline", International Journal of Smart and Nano Materials, 5, 180-193(2014).
Ai, S., Gao, M., Yang, Y., Li, J., and Jin, L.,"Electrocatalytic sensor for the determination of chemical oxygen demand using a lead dioxide modified electrode", Electroanalysis, 16, 404-409(2004a).
Ai, S., Li, J., Yang, Y., Gao, M., Pan, Z., and Jin, L.,"Study on photocatalytic oxidation for determination of chemical oxygen demand using a nano-TiO2–K2Cr2O7 system", Analytica chimica acta, 509, 237-241(2004b).
Almeida, C.A., Gonzalez, P., Mallea, M., Martinez, L.D., and Gil, R.A.,"Determination of chemical oxygen demand by a flow injection method based on microwave digestion and chromium speciation coupled to inductively coupled plasma optical emission spectrometry", Talanta, 97, 273-278(2012).
Almeida, C.A., Savio, M., Gonzalez, P., Martinez, L.D., and Gil, R.A.,"Determination of chemical oxygen demand employed manganese as an environmentally friendly oxidizing reagent by a flow injection method based on microwave digestion and speciation coupled to ICP-OES", Microchemical Journal, 106, 351-356(2013).
Ayati, A., Ahmadpour, A., Bamoharram, F.F., Tanhaei, B., Manttari, M., and Sillanpaa, M.,"A review on catalytic applications of Au/TiO2 nanoparticles in the removal of water pollutant", Chemosphere, 107, 163-174(2014).
Balconi, M., Borgarello, M., Ferraroli, R., and Realini, F.,"Chemical oxygen demand determination in well and river waters by flow-injection analysis using a microwave oven during the oxidation step", Analytica chimica acta, 261, 295-299(1992).
Bard, A.J., Faulkner, L.R., Leddy, J., and Zoski, C.G.,"Electrochemical methods: fundamentals and applications", 2, (1980).
Blake, A.J.,"From 2D to 3D: On the Development of Flexible and Conformal Li-ion Batteries via Additive Manufacturing", (2016).
Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., and Whyman, R.,"Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system", Journal of the Chemical Society, Chemical Communications, 801-802(1994).
Can, W., and Kang-Bing, W.,"Preparation of electrochemical sensor based on morphology-controlled platinum nanoparticles for determination of chemical oxygen demand", Chinese Journal of Analytical Chemistry, 41, 704-708(2013).
Canals, A., and del Remedio Hernandez, M.,"Ultrasound-assisted method for determination of chemical oxygen demand", Analytical and bioanalytical chemistry, 374, 1132-1140(2002).
Chen, B., Wu, H., and Li, S.F.Y.,"Development of variable pathlength UV–vis spectroscopy combined with partial-least-squares regression for wastewater chemical oxygen demand (COD) monitoring", Talanta, 120, 325-330(2014).
Chen, J., Zhang, J., Xian, Y., Ying, X., Liu, M., and Jin, L.,"Preparation and application of TiO2 photocatalytic sensor for chemical oxygen demand determination in water research", Water research, 39, 1340-1346(2005).
Diebold, U.,"The surface science of titanium dioxide", Surface science reports, 48, 53-229(2003).
dos Santos, J., Ogasawara, T., and Correa, R.,"Synthesis of mesoporous titania in rutile phase with pore-stable structure", Brazilian Journal of Chemical Engineering, 26, 555-561(2009).
Ensafi, A., Karimi-Maleh, H., and Mallakpour, S.,"A new strategy for the selective determination of glutathione in the presence of nicotinamide adenine dinucleotide (NADH) using a novel modified carbon nanotube paste electrode", Colloids and Surfaces B: Biointerfaces, 104, 186-193(2013).
Feng, C., Xu, G., Liu, H., Lv, J., Zheng, Z., and Wu, Y.,"A Flow-Injection Photoelectrochemical Sensor Based on TiO2 Nanotube Arrays for Organic Compound Detection", Journal of The Electrochemical Society, 161, H57-H61(2014).
Gooding, J.J.,"Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing", Electrochimica Acta, 50, 3049-3060(2005).
Gutierrez-Capitan, M., Baldi, A., Gomez, R., Garcia, V., Jime?nez-Jorquera, C., and Ferna?ndez-Sa?nchez, C.s.,"Electrochemical nanocomposite-derived sensor for the analysis of chemical oxygen demand in urban wastewaters", Analytical chemistry, 87, 2152-2160(2015).
Hanson, S.,"Evaluation of concrete containing photocatalytic titanium dioxide", (2014).
Hu, Y., and Yang, Z.,"A simple chemiluminescence method for determination of chemical oxygen demand values in water", Talanta, 63, 521-526(2004).
Ivandini, T.A., Saepudin, E., and Einaga, Y.,"Yeast-based biochemical oxygen demand sensors using gold-modified boron-doped diamond electrodes", Analytical Sciences, 31, 643-649(2015).
Ivandini, T.A., Saepudin, E., Wardah, H., Dewangga, N., and Einaga, Y.,"Development of a biochemical oxygen demand sensor using gold-modified boron doped diamond electrodes", Analytical chemistry, 84, 9825-9832(2012).
Jana, N.R., Gearheart, L., and Murphy, C.J.,"Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles", Chemistry of Materials, 13, 2313-2322(2001).
JIANG, R., and ZHANG, C.,"A dual-wavelength spectroscopic method for the low chemical oxygen demand determination", Spectroscopy and Spectral Analysis, 31, 2007-2010(2011).
Jing, T., Zhou, Y., Hao, Q., Zhou, Y., and Mei, S.,"A nano-nickel electrochemical sensor for sensitive determination of chemical oxygen demand", Analytical Methods, 4, 1155-1159(2012).
Kang, Z., Yan, X., Zhao, L., Liao, Q., Zhao, K., Du, H., Zhang, X., Zhang, X., and Zhang, Y.,"Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy", Nano Research, 8, 2004-2014(2015).
Kim, Y.-C., Lee, K.-H., Sasaki, S., Hashimoto, K., Ikebukuro, K., and Karube, I.,"Photocatalytic sensor for chemical oxygen demand determination based on oxygen electrode", Analytical chemistry, 72, 3379-3382(2000).
Kongkanand, A., Kuwabata, S., Girishkumar, G., and Kamat, P.,"Single-wall carbon nanotubes supported platinum nanoparticles with improved electrocatalytic activity for oxygen reduction reaction", Langmuir, 22, 2392-2396(2006).
Kumar, C.,"Carbon Nanotubes and Energy", (2015).
Lee, I., Han, S.W., and Kim, K.,"Production of Au–Ag alloy nanoparticles by laser ablation of bulk alloys", Chemical Communications, 1782-1783(2001).
Li, B., Zhang, Z., Wang, J., and Xu, C.,"Chemiluminescence system for automatic determination of chemical oxygen demand using flow injection analysis", Talanta, 61, 651-658(2003).
Li, H., Li, M., Guo, W., Di, H., Fang, C., and Yang, B.,"Electrochemical application of titanium dioxide nanoparticle/gold nanoparticle/multiwalled carbon nanotube nanocomposites for nonenzymatic detection of ascorbic acid", Journal of Solid State Electrochemistry, 18, 477-485(2014).
Li, J.Q., Li, L.P., Zheng, L., Xian, Y.Z., and Jin, L.T.,"Rh2O3/Ti electrode preparation using laser anneal and its application to the determination of chemical oxygen demand", Measurement Science and Technology, 17, 1995-2000(2006).
Li, S., Zheng, F., Cai, S., Liang, W., and Li, Y.,"A visible light assisted photocatalytic system for determination of chemical oxygen demand using 5-sulfosalicylic acid in situ surface modified titanium dioxide", Sensors and Actuators B: Chemical, 188, 280-285(2013).
Lu, Y.-c.,"以去官能基化二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行 COD 之伏安法分析", 中央大學環境工程研究所學位論文, (2015).
Ma, Y., Tie, Z., Zhou, M., Wang, N., Cao, X., and Xie, Y.,"Accurate determination of low-level chemical oxygen demand using a multistep chemical oxidation digestion process for treating drinking water samples", Analytical Methods, 8, 3839-3846(2016).
Mafune, F., Kohno, J.-y., Takeda, Y., and Kondow, T.,"Dissociation and aggregation of gold nanoparticles under laser irradiation", The Journal of Physical Chemistry B, 105, 9050-9056(2001).
Merlin, T.M.F.,"Novel composite electrodes: Preparation and application to the electroanalytical study of two pharmaceutically active molecules, viz. mangiferin and quercetin", (2016).
Mohamed, R.M., and Mkhalid, I.A.,"Visible light photocatalytic degradation of cyanide using Au-TiO2/multi-walled carbon nanotube nanocomposites", Journal of Industrial and Engineering Chemistry, 22, 390-395(2015).
Niu, C., Sichel, E.K., Hoch, R., Moy, D., and Tennent, H.,"High power electrochemical capacitors based on carbon nanotube electrodes", Applied Physics Letters, 70, 1480-1482(1997).
Ogura, N.,"Ultraviolet absorbing materials in natural water", Nippon Kagaku Zasshi, 86, 1286-1288(1965).
Peerez, T.Z., Geissler, G., and Hernandez, F.,"Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes", Journal of Environmental Sciences, 19, 300-305(2007).
Pande, P.,"Investigation of Charge-Storage Mechanisms of Early-Transition-Metal Nitrides and Carbides as Electrodes for Electrochemical Capacitors", (2013).
Roessler-Fromme, R., and Scholz, F.,"A solid composite electrode for the determination of the electrochemical oxygen demand of aqueous samples", Fresenius′ journal of analytical chemistry, 356, 197-201(1996).
Saha, K., Agasti, S.S., Kim, C., Li, X., and Rotello, V.M.,"Gold nanoparticles in chemical and biological sensing", Chemical reviews, 112, 2739-2779(2012).
Shivalingappa, L., Sheng, J., and Fukami, T.,"Photocatalytic effect in platinum doped titanium dioxide films", Vacuum, 48, 413-416(1997).
Su, Y., Li, X., Chen, H., Lv, Y., and Hou, X.,"Rapid, sensitive and on-line measurement of chemical oxygen demand by novel optical method based on UV photolysis and chemiluminescence", Microchemical Journal, 87, 56-61(2007).
Sun, L., Li, H., Li, M., Li, P., Li, C., and Yang, B.,"Simultaneous determination of small biomolecules and nitrite using an Au/TiO2/Carbon nanotube composite-modified electrode", Journal of The Electrochemical Society, 163, B567-B572(2016).
Tian, L., Qian, K., Qi, J., Liu, Q., Yao, C., Song, W., and Wang, Y.,"Gold nanoparticles superlattices assembly for electrochemical biosensor detection of microRNA-21", Biosensors and Bioelectronics, 99, 564-570(2018).
Tijani, J.O., Fatoba, O.O., Madzivire, G., and Petrik, L.F.,"A review of combined advanced oxidation technologies for the removal of organic pollutants from water", Water, Air, & Soil Pollution, 225, 2102(2014).
Trang, N.T.H., Ali, Z., and Kang, D.J.,"Mesoporous TiO2 spheres interconnected by multiwalled carbon nanotubes as an anode for high-performance lithium ion batteries", ACS applied materials & interfaces, 7, 3676-3683(2015).
Wetchakun, N., and Phanichphant, S.,"Effect of temperature on the degree of anatase–rutile transformation in titanium dioxide nanoparticles synthesized by the modified sol–gel method", Current Applied Physics, 8, 343-346(2008).
Wu, T., and Englehardt, J.D.,"A new method for removal of hydrogen peroxide interference in the analysis of chemical oxygen demand", Environmental science & technology, 46, 2291-2298(2012).
Yang, J., Chen, J., Zhou, Y., and Wu, K.,"A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand", Sensors and Actuators B: Chemical, 153, 78-82(2011).
Ye, X., Okajima, T., and Ohsaka, T.,"Probable problems in the analysis of chemical oxygen demand of wastewaters treated by advanced oxidation process: residual H2O2 and acidity of the treated waters", Desalination and Water Treatment, 57, 27138-27143(2016).
Yi, S., Sun, L., Lenaghan, S.C., Wang, Y., Chong, X., Zhang, Z., and Zhang, M.,"One-step synthesis of dendritic gold nanoflowers with high surface-enhanced Raman scattering (SERS) properties", RSC Advances, 3, 10139-10144(2013).
Yu, Y.-Y., Chang, S.-S., Lee, C.-L., and Wang, C.C.,"Gold nanorods: electrochemical synthesis and optical properties", The Journal of Physical Chemistry B, 101, 6661-6664(1997).
Zhang, Z., Chang, X., and Chen, A.,"Determination of chemical oxygen demand based on photoelectrocatalysis of nanoporous TiO2 electrodes", Sensors and Actuators B: Chemical, 223, 664-670(2016).
Zheng, Q., Han, H., Zhou, B., Li, J., Bai, J., and Cai, W.,"Progress in new methods for rapid determination of chemical oxygen demand (COD)", Chin. Sci. Bull, 54, 3241-3250(2009).
Zheng, Q., Zhou, B., Bai, J., Li, L., Jin, Z., Zhang, J., Li, J., Liu, Y., Cai, W., and Zhu, X.,"Self?Organized TiO2 Nanotube Array Sensor for the Determination of Chemical Oxygen Demand", Advanced Materials, 20, 1044-1049(2008).
胡啟章."電化學原理與方法", (2011).
梁昇致."利用 TiO2 電極檢測生活污水中 COD 之研究", 朝陽科技大學環境工程與管理系學位論文, 1-67(2013).
陳凱欣."以溶膠凝膠法製備 MWCNTs/TiO2 及其光催化特性; Photocatalytic activity of multi-walled carbon nanotube supported TiO2 photocatalyst by sol-gel method", 中央大學環境工程研究所學位論文, (2013).
黃喬渝."單壁奈米碳管修飾電極對硝基酚和銅之電化學分析", 中央大學環境工程研究所學位論文, 1-121(2012).
黃韻寧."以二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行 COD 之伏安法分析; Using the TiO2/SWCNTs composite modified GCE to analyze COD by voltammetry method", 中央大學環境工程研究所學位論文, (2015).
楊昇晃."微型燃料電池設計, 製作與電化學阻抗量測分析", (2005).
環檢署."水中化學需氧量檢測方法─重鉻酸鉀迴流法", (2007).
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2018-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明