以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:50 、訪客IP:18.226.226.241
姓名 周廷諺(Ting-Yen Chou) 查詢紙本館藏 畢業系所 機械工程學系在職專班 論文名稱 迴轉式冷媒壓縮機殼內聲場特性之實驗研究
(Experimental investigation of acoustic characteristics inside the shell of hermetic rotary refrigeration compressor)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 冷媒壓縮機是冷凍空調循環的關鍵元件,在生活品質的提升,用戶端對噪音日漸重視。然而壓縮機所產生的噪音主要有結構傳遞音、馬達電磁音、排氣的壓力脈衝。而消音器是簡單且有效抑制壓縮機所產生的噪音。
本論文以實驗方式,對設置在壓縮機高壓殼內的排氣消音器的效應進行分析,利用壓力感測器量測殼內聲壓,以分析消音器對殼內聲音的影響,由實驗結果可以發現,在有裝置消音器對殼內聲場在150 Hz~250 Hz、800 Hz~1,100 Hz、3,000 Hz~4,800 Hz有很好的抑制效果,但因消音器內部特徵尺度的關係在某些頻率例如300 Hz~350 Hz、1,700 Hz~2,300Hz反而噪音有放大的效果,消音器減音量為聲場特性,可有效抑制特定頻段的流場引發噪音。實驗結果也呈現在馬達上部空間所量測的聲壓與泵浦段所量測到的聲壓有著明顯的差異,尤其是在於400 Hz~900 Hz之間有著顯著的減音效果,這也是殼內空間被馬達所區隔出來的兩個腔室與通道間的聲場特性所造成的影響。此外,分別在有/無消音器的殼外噪音量測結果顯示,消音器對於700 Hz ~1,400 Hz有明顯的抑制,不過此減音量與消音器對殼內噪音的噪音抑制頻段不一致,顯示殼內壓力脈衝所引發的殼內噪音並不是唯一的噪音來源,另有馬達電磁以及泵浦的機械運動所引發的結構傳遞音也是主要來源之一。摘要(英) The refrigerant compressor is a key component of air-conditioning system. Nowadays, end user keeps pushing the quality of products, especially noise level and sound quality. The noise generated inside of compressor includes acoustic noise, electromagnetic noise, and sound from pressure pulses of exhaust gas. Using muffler is a simple way to decrease the noise. In this research, the effects of muffler have been analyzed in terms of the transmission lost according to experimental data. The study also includes the relationship between noise and vibration.
The experimental results show that the muffler is effective in decreasing the internal noise in the compressor from 150 Hz to 250 Hz, from 800 Hz to 1,100 Hz, and from 3,000 Hz to 4,800 Hz. Due to its geometry characteristics, the muffler amplifies the internal noise in the range of 300 Hz to 350 Hz and 1,700 Hz to 2,300 Hz. This research also study the measurement data of the noise outside the compressor. The use of the muffler can reduce the noise in the ranges from 700 Hz to 1,400 Hz of the sound measured outside the compressor. The range is not coincident to the data from the internal noise of the compressor. This reveals that the influences of the noise outside the compressor may also involve other effects, besides internal noise, such as the fluid-induced noise, and a structural transmission sound caused by the motor and the pump rotating.關鍵字(中) ★ 壓縮機
★ 聲場
★ 冷媒
★ 迴轉式
★ 消音器關鍵字(英) 論文目次 目錄
摘要 I
Abstract IIIII
目錄 IVIII
圖目錄 VIIVI
表目錄 XII
一、 前言 1
1-1 壓縮機與冷凍空調系統之噪音問題 2
1-1-1 氣動力噪音 3
1-1-2 冷媒兩相流 3
1-1-3機械振動與結構模態 4
1-1-4 冷媒進排氣脈衝與消音器設計 4
1-2 研究動機與目的 7
二、 相關背景與理論模型 8
2-1 冷凍空調循環與迴轉式壓縮機介紹 8
2-1-1冷凍循環原理 8
2-1-2莫利爾線圖 9
2-1-3冷媒 9
2-1-4應用條件 10
2-2消音理論介紹 15
三、 實驗設備與方法 20
3-1 實驗設備與儀器介紹 20
3-1-1半無響室 20
3-1-2冷凍循環控制系統 20
3-1-3壓力感測器 21
3-1-4 加速規 21
3-1-5 麥克風 22
3-1-6 頻譜分析儀 22
3-2 實驗設定與實驗方法 22
3-2-1 迴轉式壓縮機結構 22
3-2-2壓縮機噪音結構 23
3-2-3量測手法 24
四、 結果討論 26
4-1壓縮機時域資料比較 27
4-2殼外噪音與壓縮機振動行為比較 28
4-3 壓縮機殼內噪音量測 31
4-3-1 壓縮機轉速頻率與殼內聲壓關係 31
4-3-2 馬達段上方聲場特徵行為 33
4-3-3 半密機殼內聲場 34
五、 結論與未來工作 35
5-1 結論 35
5-2 未來工作 36
六、 參考文獻 37參考文獻 [1] Biedermann, T., Hintzen, N., Kameier, F., Chong, T. P., & Paschereit, C. O., 2018, “On the Transfer of Leading Edge Serrations from Isolated Aerofoil to Ducted Low-Pressure Fan Application,” AIAA/CEAS Aeroacoustics Conference.
[2] Han, H. S., Jeong, W. B., Kim, M. S., Lee, S. Y., & Seo, M. Y., 2010, “Reduction of the refrigerant-induced noise from the evaporator-inlet pipe in a refrigerator,” International Journal of Refrigeration, Vol. 33, pp. 1478-1488.
[3] Han, H. S., Jeong, W. B. and Kim, M. S., 2011, “Frequency characteristic of the noise of R600a refrigerant flowing in a pipe with intermittent flow pattern,” International Journal of Refrigeration, Vol. 34, pp. 1497-1506.
[4] Celik, S. and Nsofor, E. C., 2011, “Studies on the flow-induced noise at the evaporator of a refrigerating system,” Applied Thermal Engineering, Vol. 31, pp. 2485-2493.
[5] Miwa, S., Mori, M. and Hibiki, T., 2015, “ Two-phase flow induced vibration in piping system,” Progress in Nuclear Energy, Vol. 78, pp. 270-284.
[6] Gonzalez I., Naseri, A., Rigola, J., Perez-Segarra, C. D. and Oliva, A., 2017, “A fluid-structure interaction solver for the fluid flow through reed type valves,” IOP Conf. Series : Materials Science and Engineering, Vol. 232.
[7] He, Z., Chen, Q., Li, D., Wang, J., Xia, P., and Wang, T., 2017, “Research on noise reduction of reed valves of a hermetic refrigerator compressor,” IOP Conf. Series: Materials Science and Engineering, Vol. 232 .
[8] Kim, S., Cheong, C., Park, J., Kim, H., & Lee, H., 2016, “Investigation of flow and acoustic performances of suction mufflers in hermetic reciprocating compressor,” Internal Journal of Refrigeration, Vol. 69, pp. 74-84.
[9] Yasuda, T., Wu, C., Nakagawa, N., & Nagamura, K., 2013, “Studies on an automobile muffler with the acoustic characteristic of low-pass filterand Helmholtz resonator,” Applied Acoustics, Vol. 74, pp. 49-57.
[10] Singh, N. K. & Rubini, P. A., 2015, “Large Eddy Simulation of acoustic pulse propagation and turbulent flow interaction in expansion mufflers,” Applied Acoustics, Vol. 98, pp. 6-19.
[11] Šteblaj, P., Čudina, M., Lipar, P. & Prezelj J., 2015, “A Muffler with Adaptive Acoustic Properties,” Strojniški vestnik - Journal of Mechanical Engineering, Vol. 61, pp. 553-560.
[12] Cai, C., Mak, C. M. & Shi, X., 2017, “An extended neck versus a spiral neck of the Helmholtz resonator,” Applied Acoustics, Vol. 115, pp. 74-80.
[13] 瑞智精密公司之知識文件
[14] 中華民國國家標準CNS 3615規範
[15] JIS B8616-2006/日本空氣調和衛生工學便覽
[16] 工業技術研究院,能源效率分級標示無風管空氣調節機(冷氣機)指導教授 黃以玫 審核日期 2018-11-29 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare