博碩士論文 105356015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.135.193.105
姓名 簡琮晟(Tsung-Sheng Chien)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 利用旁流式薄膜生物處理系統(MBR)處理光電業廢水之研究
(Study on Treatment of Photovoltaic Wastewater by side-stream Membrane bio-reactor (MBR))
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究採用2016年6月至2018年4月共 22個月的操作數據為分析資料,將活性污泥槽之溶氧、pH值、溫度等基本因子監控在固定範圍內,將MLSS控制在11,500 mg/L左右,期間添加葡萄糖、尿素等營養源,調整F/M在0.04~0.05 kg COD/kg MLSS - day之間,並觀察活性污泥槽菌相變化,以瞭解不同因子的操作參數,對MBR透過水通量變化造成之影響,使旁流式MBR效能維持在最佳效率。
本研究結果顯示,旁流式MBR之COD去除效率可達到97.5%,且透過薄膜結垢因子之控制,能有效提升透過水通量增加36%,同時讓廠內廢水系統維護費用單價減少45%;維護性線上藥洗能恢復MBR透過水通量9~22%不等,恢復性離線清洗完成之膜管,迴流通量均能恢復10~25%不等,同時也能提升19~20%之透過水通量。
摘要(英) In this study, operational data from June 2016 to April 2018 for a total of 22 months were used to monitor the basic factors such as dissolved oxygen, pH, and temperature in the activated sludge tank within a fixed range, The MLSS was controlled at 11,500 mg/L, during which glucose, urea and other nutrients were added. F/M was adjusted between 0.04~0.05 kg COD/kg MLSS-day. Changes of activated sludge tank phase was observed to understand the operating parameters of different factors’impact on the MBR through the water flux variations to maintain the optimum effectiveness of the side-by-side MBR. The results of this study show that the COD removal efficiency of side-stream MBR can reach 97.5%, and through the control of the membrane fouling factors, the permeate flux can be effectively increased by 36%, while the unit cost for the maintenance of the wastewater system in the plant can be reduced by 45%. The maintenance of online chemical wash can restore the MBR through 9~22% of the water flux, and the membranes recovered from the offline cleaning can recover 10~25% of the flux, and can also increase 19~20% of the flux.
關鍵字(中) ★ 薄膜生物反應槽(MBR)
★ 偏光板
★ 工業區廢水
關鍵字(英) ★ MBR
★ polarizer
★ industrial wastewater treatment
論文目次 目 錄
目次 頁次
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 4
2-1 光電業簡介 4
2-1-1 光電業產品種類及應用 4
2-2 偏光板業廢水 7
2-2-1 製程廢水來源 10
2-2-2 廢水特性分析 17
2-2-3 國內偏光板業廢水處理現況 18
2-3 廢水生物處理技術 19
2-3-1薄膜生物處理系統 21
2-3-2 厭氧生物處理技術 24
2-3-2-1 上流式厭氧污泥床(UASB) 24
2-3-2-2 厭氧與兼氧微生物薄膜系統(MCMFB) 25
2-4 MBR發展與應用 25
2-4-1 MBR薄膜種類與發展 25
2-4-1-1 MBR應用現況 27
2-4-2 MBR原理及分類 29
2-4-2-1 過濾機制 29
2-4-2-2 薄膜型式 30
2-4-3 MBR效能之影響因子 33
2-4-3-1 污泥特性 34
2-4-3-2 薄膜特性 35
2-4-3-3 操作條件 36
2-5 國內相關法規管制 37
2-5-1管制標準 37
2-5-2 全國各科學園區納管標準 39
第三章 研究方法 41
3-1 實驗材料 41
3-1-1 試驗產業別 42
3-1-2 活性污泥實驗操作參數 44
3-1-3 MBR系統 45
3-1-3-1模組規格及型式介紹 45
3-1-3-2 維護方式 47
3-1-3-3 MBR操作條件 48
3-2 實驗儀器與設備 49
3-2-1 實驗儀器 49
3-2-2 實驗藥品 49
3-3 分析項目與方法 50
3-3-1 水質分析 51
第四章 結果與討論 54
4-1 偏光板廠廢水水質特性 54
4-1-1不同廢水來源及其特性 54
4-1-2 水質現況分析 57
4-2 活性污泥槽操作參數與MBR積垢之關係 57
4-2-1活性污泥槽基本特性分析 59
4-2-1-1 溶氧之影響 59
4-2-1-2 pH值之影響 60
4-2-1-3 溫度之變化 62
4-2-1-4 污泥之影響 63
4-2-2 水力停留時間(HRT) 66
4-2-3食微比(F/M) 67
4-2-4污泥停留時間(SRT)之變化 68
4-2-5 活性污泥菌相之觀察 70
4-3 膜管操作參數對積垢之影響 72
4-3-1 MBR系統壓力與薄膜通量變化之分析72
4-3-2污泥迴流量與薄膜通量變化之探討 74
4-3-3混合液懸浮固體濃度與薄膜通量變化之分析 75
4-4 MBR膜管藥劑清洗 76
4-4-1藥劑種類及濃度 77
4-4-1-1 藥劑種類測試 77
4-4-1-2 藥劑濃度測試 79
4-4-2藥洗成效 80
4-5 運作成本與效益分析 81
第五章 結論與建議 84
5-1 結論 84
5-2 建議 85
參考文獻 87
參考文獻 參考文獻
1. Abdullah, “Investigation of effect of dynamic operational conditions on membrane fouling in a membrane enhanced biological phosphorus removal process,” University of British Columbia, 2007.
2. Bezerra, Luiz Fernando, “Avaliacao da remocao de materia organica carbonacea e nitrogenada de aguas residuarias utilizando biorreator de MBR,” Universidade Estadual Paulista, 2010.
3. Bouhabila, E. H., Aim, R. B. and Buisson, H, “Fouling characterisation in membrane bioreactors,” Sep. Purif. Technol., 22-23, 123-132, 2001.
4. Brindle, K. and T. Stephenson, “The application of membrane biological reactors for the treatment of wastewaters,” Biotechnology and Bioengineering 49(6): 601-610, 1996.
5. Chang, I. S., Le-Clech, P., Jefferson, B. and Judd, S, “Membrane fouling in MBRs for wastewater treatment,” J. Environ. Eng., 128, 2002.
6. Chang, I. S. and Lee, C. H , “Membrane filtration characteristics in membrane coupled activated sludge system-the effect of physiological states of activated sludge on membrane fouling,” Desalination, 120, 221-233, 1998.
7. Chang, E. E., P. C. Chiang, Y. W. Ko, and W. H Lan , “Characteristics of organic precursors and their relationship with disinfection by-products,” Chemosphere, 44, pp. 1231-1236, 2001.
8. Cheryan, M, “Ultrafiltration and microfiltration handbook(Second edition),” CRC press, 1998.
9. Cote, P., Buisson, H., Pound, C. and Arakaki, G, “Immersed membrane activated sludge for the reuse of municipal wastewater,” Desalination, 113, 189-196, 1997.
10. Defrance, L. and Jaffrin, M. Y, “Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux : application to a membrane bioreactor used for wastewater treatment,” J. Membr. Sci., 152, 203-210, 1999.
11. Dufresne, R., Lebrun, R.E. and Lavallee, H.C, “Comparative study on fluxes and performances during papermill wastewater treatment with membrane bioreac- tor,” Can. J. Chem. Engng., 75, 95–103, 1997.
12. Gander, M., B. Jefferson, and S. Judd, “Aerobic MBRs for domestic wastewater treatment: a review with cost considerations,” Separation and Purification Technology, 18, pp. 119-130, 2000.
13. Hutter M., Kramer-Schafhalter A. and Mayr B, “Integration of membrane technology in communal wastewater treatment”, operation and cost analysis, Eur Water Manage., 3(3), 33-42, 2000.
14. Janus, Tomasz, “Modelling and simulation of membrane bioreactors for wastewater treatment,” De Montfort University, 2013.
15. Jiang, T. "Characterization and Modelling of Soluble Microbial Products in Membrane Bioreactors", Ghent University, Ghent, Flanders, 2007.
16. Judd, S, “The MBR Book: principles and applications of membrane bioreactors in water and wastewater treatment,” London: Elsevier. 325, 2006.
17. Judd, S., “Submerged membrane bioreactors: Flat plate or hollow fibre”, Filtration and Separation, 39, pp. 30-31, 2002.
18. Khongnakorn, W., Wisniewski, C., Pottier, L. and Vachoud, L, “Physical properties of activated sludge in a submerged membrane bioreactor and relation with membrane fouling,” Separation and purification technology 55, 125-131, 2007.
19. Kim, J. S., Lee, C. H., and Chang, I. S, “Effect of pump shear on the performance of a crossflow membrane bioreactor,” Water Res., 35, 2137-2144, 2001.
20. Kimura, K.; Yamato, N.; Yamamura, H. and Watanabe, Y, “Membrane fouling in pilot-scale membrane bioreactors(MBRs)treating municipal wastewater,” Environmental science and technology 39, 6293-6299, 2005.
21. Le-Clech, P., Chen, V., and Fane, T. A. G, “Fouling in membrane bioreactors used in wastewater treatment,” Journal of Membrane Science, 284, 17-53, 2006.
22. Lim A. L. and Bai R, “Membrane fouling and cleaning in microfiltration of activated sludge wastewater,” J. Membr. Sci., 216(1-2), 279-290, 2003.
23. Lu, S.G., T. Imai, M. Ukita, M. Sekine, T. Higuchi, and M. Fukagawa, “A model for membrane bioreactor process based on the concept of formation and degradation of soluble microbial products,” Water Research, Vol. 35, No. 8, pp. 2038-2048, 2001.
24. Muller E.B., Stouthamber A. H., Versevsld H. W. and Eikelboom D. H, “Aerobic domestic wastewater treatment in a pilot plant with complete sludge retention by crossflow filtration,” Wat. Res. 29, 1179-1189, 1995.
25. Nah Y. M., Ahn K. H. and Yeom I. T, “Nitrogen removal in household wastewater treatment using an intermittently aerated membrane bioreactor,” Environ. Technol., 21(1), 107-114, 2000.
26. Ozcan, Onur Yilmaz, “Development of an Anaerobic-Phototrophic Bioreactor System for Wastewater Treatment,” GraduateTh eses and Dissertations, 2016.
27. Pieracci, J., Crivello, J. V. and Belfort, G, “Photochemical modi-fication of 10 kDa polyethersulfone ultrafiltration membranes for reduction of biofouling,” J. Membr. Sci., 156, 223-240, 1999.
28. Pollice, A., Brookes, A., Jefferson, B. and Judd, S, “Sub-critical flux fouling in membrane bioreactors - a review of recent literature,” Desalination, 174, 221-230, 2005.
29. Rittmann, B. E., & McCarty, P. L, “Environmental biotechnology: principles and applications,” Boston: McGraw-Hill, 2001.
30. Rosenberger, S., Evenblij, H., te Poele, S., Wintgens, T. and Laabs, C, “The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes – six case studies of different European research groups,” Journal of membrane science 263, 113-126, 2005.
31. Smith, C.V., D. Digregorio, et al, “The use of ultrafiltration membranes for activated sludge separation,” Proceedings of Industrial Waste Conference, Purdue University, USA, 1969.
32. Stephenson, T., Judd, S., Jefferson, B. and Brindle, K, “Membrane Bioreactors for Wastewater Treatment,” IWA, London, 2000.
33. Ueda T., Hata K. and Kikuoka Y, “Treatment of domestic sewage from rural settlements by a membrane bioreactor,” Water Sci. Technol., 34, 189-196, 1996.
34. Urbain, V., Mobarry, B., De Silva, V., Stahl, D. A., Rittmann, B. E. and Manem, J, “Integration of performance, molecular biology and modeling to describe the activated sludge process,” Water Sci. Technol., 37, 223-229, 1998.
35. Van Lier, J. B., Tilche, A., Ahring, B. K., Macarie, H., Moletta, R., Dohanyos, M., Hulshoff Pol, L.W., Lens, P., & Verstraete W, “Management New perspectives in anaerobic digestion. Water Science and Technology,” Committee of the IWA Anaerobic Digestion Specialised Group. 43(1), 1–18 , 2001.
36. Visvanathan, C., Aim, R. B. and Parameshwaran, K, “Membrane separation bioreactors for wastewater treatment,” Critical Reviews in Environ. Sci. Technol., 30, 1-48, 2000.
37. Wang, Y., Kim, J. H., Choo, K. H., Lee, Y. S. and Lee, C. H, “Hydrophilic modification of polypropylene microfiltration membrane by ozone-induced graft polymerization,” J. Membr. Sci., 169, 269-276, 2000.
38. Yamamoto, K. M. Hiasa, et al, “Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank,” Water Science & Technology 21(4-5): 43-54, 1989.
39. Yang, W., Cicek, N., and Ilg, J, “State-of-the-art of membrane bioreactors:worldwide research and commercial applications in North America,” Journal of Membrane Science, 207, 201-211, 2006.
40. 朱敬平, “薄膜單元於廢水回收之應用,” 中興社環境工程研究中心, 1995.
41. “廢水薄膜處理技術應用與推廣手冊,” 經濟部工業局, 2000.
42. 陳建銘, “生物薄膜程序處理合成生活污水,” 國立交通大學環境工程研究所碩士論文, 2002.
43. 康美祝, “MBR除氮系統特性之研究,” 國立中央大學環境工程研究所碩士論文, 2002.
44. 李信杰, “沉浸式生物薄膜反應器之積垢特性探討,” 2006.
45. 楊宜掄, “半導體業研磨廢水及光電業廢水水質特性分析及管制標準探討計畫,” 2006.
46. 游惠宋, “厭氧與兼氧微生物薄膜系統開發,” 國立交通大學環境工程研究所博士論文, 2006.
47. 游惠宋, “厭氧-好氧薄膜處理技術應用於偏光版製程廢水,” 工業污染防治工程實務技術研討會, 2006.
48. 游惠宋, “薄膜生物處理技術於廢水處理之應用,” 中工高雄會刊17卷第2期, 2009.
49. “活性污泥膜濾法(MBR)技術與應用,” 台灣水環境再生協會, 2009.
50. 范姜仁茂, 莊連春, 曾迪華, 廖述良, 游勝傑, 梁德明, “薄膜生物反應器(MBR)於廢水處理之技術評析,” 工業污染防治第109期, 2009.
51. 蕭代基, 黃德秀, “台灣水資源需求面管理策略之探討,” 財團法人中技社, 2010.
52. 翁煥廷, “廢水二級生物處理廠操作常見問題與對策,” 桃園縣大學校院產業環保技術服務團, 2012.
53. “光電材料及元件製造業發展趨勢” TTR 台灣趨勢研究報告, 2015.
54. “各項用水統計資料庫-工業用水統計” 經濟部水利署, 2016. 取自http://wuss.wra.gov.tw/facarea.aspx
55. “中華民國行業標準分類,” 行政院主計總處, 2016.
56. “水質檢測標準分析方法,” 環檢所, 2018.
指導教授 李俊福 審核日期 2018-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明