博碩士論文 105356017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.118.154.250
姓名 許元正(Yuan-Cheng Hsu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 熱脫附技術結合高解析氣相層析質譜分析PM2.5中多環芳香烴之方法開發
(Method Development of Thermal Desorption Combined with High-Resolution Gas Chromatography Mass Spectrometry for Measuring PAHs in PM2.5)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 細懸浮微粒(PM2.5)由於顆粒小可隨著呼吸氣流直達人體肺泡,微粒中挾帶之危害性成分易被血液吸收造成人體健康的影響。多環芳香烴為環境中常見的污染物,且其中多是已知或潛在的致癌物質,廣受國際重視。因為多環芳香烴與細懸浮微粒有共通性的產生來源,因此兩者很容易相互結合對人體產生加成性危害。國內對於大氣細懸浮微粒基質部分,目前多僅止於質量濃度調查,至於細懸浮微粒所含有多環芳香烴則受限於分析方法偵測極限,需要大量樣品的採集,導致採樣時程大幅延長與濃縮過濾程序高耗人力,整體分析難度較其他環境基質為高,至今仍未建立完整之環境背景資料,亟待更精良之分析技術藉以突破採樣瓶頸,利於進行全面性空氣品質調查與人體健康危害評估。本研究以熱脫附技術將收集於濾紙上之多環芳香烴直接導入分析儀器,再結合高解析氣相層析質譜儀,得以大幅減少前處理步驟與降低方法偵測極限。本研究27種PAHs之方法偵測極限為0.340-23.2 pg/m3,可有效檢測大氣中微量但毒性較高之多環芳香烴化合物,提供更精確之檢測數據做為健康風險評估之依據。以此檢測技術調查台灣北部、中部及花東三大空品區大氣PM2.5中多環芳香烴濃度範圍介於0.130-6.63 ng/m3,平均濃度為2.23 ng/m3。冬季濃度高於夏季,單位質量PM2.5所含濃度則為0.071-0.280 ng/μg,平均濃度為0.133 ng/μg。本技術因偵測極限低可縮短採樣時間,對於大氣污染研究可提供較小時間尺度之污染變化探討的有效工具,未來可將此技術導入國內空氣細懸浮微粒中持久性有機污染物之調查分析。
摘要(英) PM2.5, known as respirable aerosol contains heavy metals and organic pollutants. PM2.5 may such as PAHs and Dioxins reach human alveoli when inhaled. The soluble contaminants in the particles are easily absorbed by the blood and endanger human health. Polycyclic aromatic hydrocarbons (PAHs) are common pollutants in the environment. Because many of them are definite or potential carcinogens, they have received great attention by the international community such as the World Health Organization (WHO). PAHs and PM2.5 have a common source such as combustion and vehicle exhaust. Therefore, they are easily combined and cause synergistic effect on human health. In the past, investigations on the airborne fine aerosol matrix mostly concentrated on the mass concentration of PM2.5. Studies on the pollutants such as PAHs existing on PM2.5 are limited due to low the detection limit of the analytical method (MDL) and the requirement of a large amount of sample acquisition, leading to prolonged sampling time and complicate pretreatment processes. Due to the difficulty compared to other environmental matrices, investigations on the PAHs in PM2.5 are limited. It is imperative to develop analytical techniques with lower MDL to overcome the sampling bottlenecks such that comprehensive air quality survey can be conducted for the assessment of human health hazards. In this study, thermal desorption technology is applied to directly introduce the PAHs in the PM2.5 into GC/HRMS for the analysis to significantly reduce the pretreatment processes steps and lower MDL, thereby reducing analysis loss and sampling time. The MDLs of the 27 PAHs in this study are in the range of 0.34 to 23.2 pg/m3, which can effectively detect highly toxic PAHs in the atmosphere, providing more accurate data for risk assessment. Pneliminary results indicate that the concentrations of solid-phase PAHs in ambient air of northern, central and eastern Taiwan are in the range of 0.13-6.63 ng/m3 and the average concentration is 2.23 ng/m3. The PAH concentration measured in winter is higher than that in summer, and the concentration per unit mass of PM2.5 range from 0.071 to 0.280 ng/μg and the average concentration is 0.133 ng/μg. In the future, this technology can be applied for the investigation of persistent organic pollutants (POPs) on fine particles.
關鍵字(中) ★ 多環芳香烴
★ PM2.5
★ 大氣
★ 熱脫附
★ 高解析氣相層析質譜儀
關鍵字(英) ★ PAHs
★ PM2.5
★ atmosphere
★ thermal desorption
★ HRGC/HRMS
論文目次 摘 要 I
Abstract II
誌 謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與範疇 2
第二章 文獻回顧 3
2.1 細懸浮微粒(PM2.5) 3
2.1.1細懸浮微粒之物化特性 4
2.1.2細懸浮微粒之毒理效應 6
2.1.3大氣中細懸浮微粒的傳輸 8
2.1.4細懸浮微粒檢測方法 9
2.2 細懸浮微粒之研究與管制 9
2.2.1國內外細懸浮微粒的調查研究 10
2.2.2國內外細懸浮微粒的管制標準 12
2.3 多環芳香烴化合物 13
2.3.1多環芳香烴之物化特性 14
2.3.2多環芳香烴之毒理效應 14
2.3.3多環芳香烴檢測方法 18
2.4 多環芳香烴之調查研究 19
2.4.1大氣 20
2.4.2土壤及底泥 20
2.4.3植物與生物體 23
2.4.4人體 24
2.5 熱脫附進樣系統 25
2.5.1熱脫附進樣原理與特色 25
2.5.2熱脫附進樣在環境分析之應用研究 26
2.6 高解析氣相層析質譜儀 28
2.7 細懸浮微粒中的多環芳香烴 30
2.7.1 PM2.5中多環芳香烴的研究 30
2.7.2 PM2.5中多環芳香烴分析方法 32
第三章 研究方法 34
3.1 研究流程 34
3.2 實驗試劑、材料及設備 34
3.2.1實驗試劑 34
3.2.2實驗材料 40
3.2.3實驗設備 44
3.3 檢測儀器條件優化 45
3.3.1高解析氣相層析質譜儀 45
3.3.2監測離子及質荷比設定 50
3.3.3熱脫附進樣系統 52
3.3.4相對感應因子 59
3.4 品保/品管數據評估 60
3.4.1啟始精密度與準確度 60
3.4.2方法偵測極限 63
3.5 濾紙材質 66
3.6 採樣規劃 66
3.5.1採樣點 68
3.5.2採樣期程 71
3.5.3採樣方法 72
3.5.4樣品保存 76
3.7 真實樣品分析 77
3.7.1濾紙採氣均勻性測試 77
3.7.2取樣分析 79
第四章 結果與討論 82
4.1 PM2.5中多環芳香烴之熱脫附效率 82
4.2多環芳香烴於PM2.5中氣固相分布 84
4.3 PM2.5中多環芳香烴濃度檢測 86
4.4 PM2.5中多環芳香烴物種分佈 89
4.5 PM2.5中多環芳香烴毒性當量濃度 93
4.6多環芳香烴濃度與風向之關係 99
4.7多環芳香烴濃度與雨量之關係 100
第五章 結論與建議 108
5.1結論 108
5.2建議 109
參考文獻 111
參考文獻 Akyuz M., Cabuk H., Gas–particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Science of the Total Environment, 408, 5550–5558 (2010).
Almeida S. M., Pio C. A., Freitas M. C., Reis M. A., Trancoso M. A., Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmospheric Environment, 39, 3127-3138 (2005).
Amagai T., Takahashi Y., Matsushita H., Morknoy D., Sukasem P., Tabucanon M., A survey on polycyclic aromatic hydrocarbon concentrations in soil in Chiang-Mai, Thailand. Environment International, 25, 563-572 (1999).
Ambient air quality. Standard gravimetric measurement method for the determination of the PM2.5 mass fraction of suspended particulate matter, BS EN 14907, 2005.
Anastasopoulos A. T., Wheeler A. J., Karman D., Kulka R. H., Intraurban concentrations, spatial variability and correlation of ambient polycyclic aromatic hydrocarbons (PAH) and PM2.5. Atmospheric Environment, 59, 272-283 (2012).
Bari, M.A., Baumbach, G., Kuch, B., Scheffknecht, G., Particle-phase concentrations of polycyclic aromatic hydrocarbons in ambient air of rural residential areas in southern Germany. Air Quality, Atmosphere & Health, 3, 103-116(2010).
Bates M., Bruno P., Caputi M., Caselli M., Gennaro G. D., Tutino M., Analysis of polycyclic aromatic hydrocarbons (PAHs) in airborne particles by direct sample introduction thermal desorption GC/MS. Atmospheric Environment, 42, 6144– 6151(2008).
Batterman S., Metts T., Kalliokoskia P., Barnett E., Low-flow active and passive sampling of VOCs using thermal desorption tubes: theory and application at an offset printing facility. Journal of Environmental Monitoring, 4, 361-370(2002).
Baumard P., Budzinski H., Internal standard quantification method and gas chromatograph-Mass spectrometer (GC-MS): a reliable tool for polycyclic aromatic hydrocarbon (PAH) quantification in natural matrices. Analusis, 25, 246-252 (1997).
Benjamin A. M. B., Hannah M., Ru-jin H., Kinfai H., Junji C., Thorsten H., Wolfgang W., PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment. Science of the Total Environment, 473-474, 77-87 (2014).
Bian, Q., Alharbi, B., Jr, Jeffrey Collett, Kreidenweis, S., Pasha, M.J., Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in ambient air in Riyadh, Saudi Arabia. Atmospheric Environment, 137, 186–198(2016).
Birgul, A., Tasdemir, Y., Concentrations, gas-particle partitioning, and seasonal variations of polycyclic aromatic hydrocarbons at four sites in Turkey. Archives of Environmental Contamination and Toxicology, 68, 46-63(2015)
Bispo JRL., Navickiene S., Dorea HS., Method validation for SPE applied to determination of PAH in petroliferous industry effluent water. American Journal of Analytical, 2, 971-978 (2011).
Bordajandi L. R., Gomez G., Abad E., Rivera J., Fernandez-Baston M. M., Blasco J., Gonzalez M. J., Survey of persistent organochlorine contaminants (PCBs, PCDD/Fs, and PAHs), heavy metals (Cu, Cd, Zn, Pb, and Hg), and arsenic in food samples from Huelva (Spain):? levels and health implications. Journal of Agricultural and Food Chemistry, 52, 992–1001 (2004).
Broday, D.M., Georgopoulos, P.G., Growth and deposition of hygroscopic particulate matter in the human lungs. Aerosol Science and Technology, 34, 144-159 C (2001).
Brown A. S., Brown R. J. C., Correlations in polycyclic aromatic hydrocarbon (PAH) concentrations in UK ambient air and implications for source apportionment. Journal of Environmental Monitoring, 14, 2072-2082 (2012).
Callen, M.S., Cruz de la M.T., Lopez, J.M., Mastral, A.M. PAH in airborne particulate matter.: carcinogenic character of PM10 samples and assessment of the energy generation impact. Fuel Processing Technology, 92, 176-182 (2011).
Chang K.H., Jeng F.T., Tsai Y.L., Lin P.L., Modeling of long-range transport on Taiwan’s acid deposition under different weather conditions. Atmospheric Environment, 34, 3281-3295 (2000).
Chang M. B., Nguyen-Duy D., Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Science of the Total Environment, 609, 682-693(2017).
Chen Y., Feng Y., Xiong S., Liu D.,Wang G., Sheng G., Fu J., Polycyclic aromatic hydrocarbons in the atmosphere of Shanghai, China. Environmental Monitoring and Assessment, 172, 235–247 (2011).
Chen Yu-Cheng, Chiang Hung-Che, Hsu Chin-Yu, Yang Tzu-Ting, Lin Tzu-Yu, Chen Mu-Jean, Chen Nai-Tzu, Wu Yuh-Shen, Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: Seasonal variation, source apportionment and cancer risk assessment. Environmental Pollution, 218, 372-382 (2016).
Churg A, Brauer M, Human lung parenchyma retains PM2.5. American Journal of Respiratory and Critical Care Medicine, 155, 2109-2111(1997).
Collins J. F., Brown J. P., Alexeeff G. V., Salmon A. G., Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regulatory Toxicology and Pharmacology, 28, 45-54(1998).
Cox FA., Stiller-Winkler R., Hadnagy W., Ranft U., Idel H., Soluble tumor necrosis factor receptor (sTNF RII) in sera of children and traffic-derived particulate air pollution. Zentralblatt fur Hygiene und Umweltmedizin, 202:6. 489-500 (1999).
Djomo J.E., Dauta A., Ferrier V., Narbonne J.F., Monkiedje A., Njine T., Garrigues P. Toxic effects of some major polyaromatic hydrocarbons found in crude oil and aquatic sediments on Scenedesmus subspicatus. Water Research, 38, 1817-1821(2004).
Dong J., Xia X., Zhai Y., Investigating particle concentration effects of polycyclic aromatic hydrocarbon (PAH) sorption on sediment considering the freely dissolved concentrations of PAHs. Journal of Soils and Sediments, 13, 1469-1477 (2013).
Drooge van B. L., Nikolova I., Ballesta P. P., Thermal desorption gas chromatography-mass spectrometry as an enhanced method for the quantification of polycyclic aromatic hydrocarbons from ambient air particulate matter. Journal of Chromatography A, 1216, 4030-4039(2009).
Drooge van B. L., Fernandez, P., Grimalt, J.O., Stuchlik, E., Torres Garcia, C.J., Cuevas, E., Atmospheric polycyclic aromatic hydrocarbons in remote European and Atlantic sites located above the boundary mixing layer. Environmental Science and Pollution Research, 17, 1207-1216 (2010).
Eatough D.J., Eatough D.A., Lewis E.A., Fine particulate chemical composition and extinction apportionment at Canyonlands National Park using organic particulate material concentrations obtained with a multi-system, multi-channel diffusion denuder sampler. Journal of Geophysical Research, 101, 19515-19531 (1996).
Edwards, Nelson T., Polycyclic aromatic hydrocarbons (PAH′s) in the Terrestrial Environment—A Review1. Journal of Environmental Quality, 12, 427-441 (1983).
Elorduy I., Durana N., Garc’?a J. A., Go’mez M. C., Alonso L., Optimization and validation of thermal desorption gas chromatography-mass spectrometry for the determination of polycyclic aromatic hydrocarbons in ambient air. Journal of Analytical Methods in Chemistry, Volume 2018, Article ID 8734013(2018).
Engraff M., Solere C., Smith K. E.C., Mayer P., Dahllof I., Aquatic toxicity of PAHs and PAH mixtures at saturation to benthic amphipods: linking toxic effects to chemical activity. Aquatic Toxicology, 102, 142-149 (2011).
Fisher T. T., Law R. J., Rumney H. S., Kirby M. F., Kelly C., Towards a scheme of toxic equivalency factors (TEFs) for the acute toxicity of PAHs in sediment. Ecotoxicology and Environmental Safety, 74, 2245-2251 (2011).
Gao Y., Guo X., Ji H., Li C., Ding H., Briki M., Tang L., Zhang Y., Potential threat of heavy metals and PAHs in PM2.5 in different urban functional areas of Beijing. Atmospheric Research, 178-179, 6-16 (2016).
Garrido A., Jimenez-Guerrero P., Ratola N., Levels trends and health concerns of atmospheric PAHs in Europe. Atmospheric Environment, 99, 474-484 (2014).
Gil-Molto J., Varea M., Galindo N., Crespo J., Application of an automatic thermal desorption–gas chromatography-mass spectrometry system for the analysis of polycyclic aromatic hydrocarbons in airborne particulate matter. Journal of Chromatography A, 1216, 1285-1289(2009).
Haleyura N., Shahsavaria E., Mansura A. A., Koshlafa E., Morrisona P. D., Osborna A. M., Balla A. S., Comparison of rapid solvent extraction systems for the GC-MS/MS characterization of polycyclic aromatic hydrocarbons in aged, contaminated soil. Methods X, 3, 364-370 (2016).
Han Y.J., Holsen T.M., Hopke P.K., Cheong J.P., Kim H., Yi S.M., Identification of source locations for atmospheric dry deposition of heavy metals during yellow-sand events in Seoul, Korea in 1998 using hybrid receptor models. Atmospheric Environment, 38, 5353-5361 (2004).
Harrison R.M., Yin J., Particulate matter in the atmosphere: which particleproperties are important for its effects on health?. The Science of the Total Environment, 249, 85-101 (2000).
Harvey R. G., Polycyclic aromatic hydrocarbons: chemistry and carcinogenicity, 1991.
He K., Yang F., Ma Y., Zhang Q., Yao X., Chan C. K., Cadle S., Chan T., Patricia M., The characteristics of PM2.5 in Beijing, China, Atmospheric Environment, 35, 4959-4970 (2001).
Ho S. S. H., Yu J. Z., Chow J. C., Zielinsk B., Watsona J. G., Leung S. E. H., Schauerd J. J., Evaluation of an in-injection port thermal desorption-gas chromatography/mass spectrometry method for analysis of non-polar organic compounds in ambient aerosol samples. Journal of Chromatography A, 1200, 217-227(2008).
Ho S. S. H., Chowa J. C., Watson J. G., Ting N. L. P., Kwok Y., Ho K.F., Cao J., Precautions for in-injection port thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) as applied to aerosol filter samples. Atmospheric Environment, 45, 1491-1496(2011).
Hsu W. T., Liu M. C., Hung P. C., Chang S. H., Chang M. B., PAH emissions from coal combustion and waste incineration. Journal of Hazardous Materials, 318, 32-40 (2016).
IARC, Iarc monographs on the evaluation of carcinogenic risks to humans, Volume 46, 1989.
Ichikawa Y., Fujita S., An analysis of wet deposition of sulfate using a trajectory model for East Asia. Water, Air, and Soil Pollution, 85, 1927-1932 (1995).
Ioana G. P., Environmental Forensics Fundamentals, Taylor & Francis Group, 2014.
Ito A., Takahashi I., Nagata Y., Chiba K., Haraguchi H., The long-term evolutions and the regional characteristics of atmospheric methane concentrations in Nagoya. Science of the Total Environment, 263, 37-45(2000).
Jiang Y, Yves UJ, Sun H, Hu X, Zhan H, Wu Y, Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China. Ecotoxicology and Environmental Safety, 126, 154-162 (2016).
Jira W., A GC/MS method for the determination of carcinogenic polycyclic aromatic hydrocarbons (PAH) in smoked meat products and liquid smokes. European Food Research and Technology, 218, 208-212 (2004).
Kim, Y.H., Kim, K.H., A simplemethodological validation of the gas/particle fractionation of polycyclic aromatic hydrocarbons in ambient air. Scientific Reports, 5, 1-12(2015)
Kinga A.J., Readmanb J.W., Zhoua J.L., Determination of polycyclic aromatic hydrocarbons in water by solid-phase microextraction-gas chromatography-mass spectrometry. Analytica Chimica Acta, 523, 259-267(2004).
Kitada T.P., Lee C.S., Ueda H., Numerical modeling of long-range transport of acidic species in association with meso-b-convective-clouds across the Japan Sea resulting in acid snow over coastal Japan - I: model description and qualitative verifications. Atmospheric Environment, 27A, 1061-1076 (1992).
Kong S., Ding X., Bai Z., Han B., Chen L., Shi J., Li Z., A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5–10 in five typical cities of Liaoning Province, China. Journal of Hazardous Materials, 183, 70-80 (2010).
Laden F., Schwartz J., Speizer F. E., Dockery D. W., Reduction in fine particulate air pollution and mortality extended follow-up of the harvard six cities study. American Journal of Respiratory and Critical Care Medicine, 173, 667-672(2006).
Lagrosas, N., Kuze, H., Takeuchi, N., Fukagawa, S., Bagtasa, G., Yoshii, Y., Naito, S., Yabuki, M., Correlation study between suspended particulate matter and portable automated lidar data. Journal of Aerosol Science, 36, 439-454 (2005).
Lai, Y.C., Tsai, C.H., Chen, Y.L., Chang-Chien, G.P., Distribution and sources of atmospheric polycyclic aromatic hydrocarbons at an industrial region in Kaohsiung, Taiwan. Aerosol and Air Quality Research, 17, 776-787 (2017).
Latha, K. Madhavi, Badarinath, K.V.S., Seasonal variations of black carbon aerosols and total aerosol mass concentrations over urban environment in India. Atmospheric Environment, 39, 4129-4141 (2005).
Lave L. B., Seskin E. P., An analysis of the association between U.S. mortality and air pollution. Journal of the American Statistical Association, 68, 284-290 (1973).
Law R. J., Kelly C., Baker K., Jones J., McIntoshb A. D., Moffatb C. F., Toxic equivalency factors for PAH and their applicability in shellfish pollution monitoring studies. Journal of Environmental Monitoring, 4, 383-388 (2002).
Leo’n V.M., A’ lvarez B., Cobollo M.A., Mun?oz S., Valor I., A nalysis of 35 priority semivolatile compounds in water by stir bar sorptive extraction-thermal desorption–gas chromatography-mass spectrometry I. method optimization. Journal of Chromatography A, 999, 91–101(2003).
Liu R., Xiao N., Wei S., Zhao L., An J., Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named fire phoenix. Science of the Total Environment, 473-474, 350-358 (2014a).
Lodovici M., Dolara P., Casalini C., Ciappellano S., Testolin G., Polycyclic aromatic hydrocarbon contamination in the Italian diet. Food Additives & Contaminants, 12, 703-713 (1995).
Lotufo G. R., Fleeg J. W., Toxicity of sediment-associated pyrene and phenanthrene to Limnodrilus hoffmeisteri (oligochaeta: Tubificidae). Environmental Toxicology and Chemistry, 15, 1508-1516 (1996).
Madhavan ND, Naidu KA, Polycyclic aromatic hydrocarbons in placenta, maternal blood, umbilical cord blood and milk of Indian women. Human & Experimental Toxicology, 14, 503-506 (1995).
Maliszewska-Kordybach B., Smreczak B., Klimkowicz-Pawlas A., Terelak H., Monitoring of the total content of polycyclic aromatic hydrocarbons (PAHs) in arable soils in Poland. Chemosphere, 73, 1284-1291 (2008).
Mannino M. R., Orecchio S., Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: extraction, GC-MS analysis, distribution and sources. Atmospheric Environment, 42, 1801-1817 (2008).
Manoli E., Voutsa D., Samara C., Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmospheric Environment, 36, 949-961 (2002).
Matsuda K., Fujimura Y., Hayashi K., Takahashi A., Nakaya K., Deposition velocity of PM2.5 sulfate in the summer above a deciduous forest in central Japan. Atmospheric Environment, 36, 4582-4587 (2010).
McCready S., Slee D.J., Birch G.F., Taylor S.E., The distribution of polycyclic aromatic hydrocarbons in surficial sediments of Sydney Harbour, Australia. Marine Pollution Bulletin, 40, 999-1006 (2000).
Molnar, A., Meszaros, E., On the relation between the size and chemical composition of aerosol particles and their optical properties. Atmospheric Environment, 35, 5053-5058 (2001).
Nam J. J., Thomas G. O., Jaward F. M., Steinnes E., Gustafsson O., Jones K. C., PAHs in background soils from Western Europe: influence of atmospheric deposition and soil organic matter. Chemosphere, 70, 1596-1602 (2008).
Naser T. M., Yoshimura Y., Sekiguchi K., Wang Q., Sakamoto K., Chemical composition of PM2.5 and PM10 and associated polycyclic aromatic hydrocarbons at a roadside and an urban background area in Saitama, Japan. Asian Journal of Atmospheric Environment, 2, 90-101 (2008).
Nisbet C.T. I., LaGoy K. P., Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs), Regulatory Toxicology and Pharmacology, 16, 290-300(1992).
Pereira M. G., Walker L. A., Julian W., Jennifer B., Richard F., Shore, Concentrations of polycyclic aromatic hydrocarbons (PAHs) in the eggs of predatory birds in Britain. Environmental Science & Technology, 43, 9010-9015 (2009).
Perrone M. G., Larsen B. R., Ferrero L., Sangiorgi G., Gennaro de G., Udisti R., Zangrando R., Gambaro A., Bolzacchini E., Sources of high PM2.5 concentrations in Milan, northern Italy: molecular marker data and CMB modelling. Science of The Total Environment, 414, 343-355 (2012).
Pope C.A., Thun M.J., Namboodiri M.M., Particulate air pollution as a predictor of mortality in prospective study of US adults. American Journal of Respiratory and Critical Care Medicine, 151, 669-674 (1995).
Poster D.L., Hoff R.M., Baker J., Measurement of the particle-size distribution of semivolatile organic contaminants in the atmosphere. Environmental Science and Technology, 29, 1990-1997 (1995).
Prieto A., Zuloaga O., Usobiaga A., Etxebarria N., Fern’andez L.A., Development of a stir bar sorptive extraction and thermal desorption–gas chromatography-mass spectrometry method for the simultaneous determination of several persistent organic pollutants in water samples. Journal of Chromatography A, 1147, 40-49(2007)
Rajput P., Sarin M., Rengarajan R., High-Precision GC-MS Analysis of Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) and Isomer Ratios from Biomass Burning Emissions. Journal of Environmental Protection, 2, 445-453 (2011).
Ramirez, N., Cuadras, A., Rovira, E., Marce, R.M., Borrull, F., Risk assessment related to atmospheric polycyclic aromatic hydrocarbons in gas and particle phases near industrial sites. Environ. Health Perspect, 119, 1110-1116(2011).
Rogge W.F., Mazurek M.A., Hildemann L.M., Cass G.R., Simoneit B.R.T., Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment, 27A, 1309-1330 (1993).
Roy G., Vuillemin R., Guyomarch J., On-site determination of polynuclear aromatic hydrocarbons in seawater by stir bar sorptive extraction (SBSE) and thermal desorption GC-MS, Talanta, 66, 540–546(2005).
Sanchez-Avila J., Quintana J.i, Ventura F., Tauler R., Duarte C. M., Lacorte S., Stir bar sorptive extraction-thermal desorption-gas chromatography-mass spectrometry: An effective tool for determining persistent organic pollutants and nonylphenol in coastal waters in compliance with existing Directives. Marine Pollution Bulletin, 60, 103-112(2010)
Seaton, A., Godden D., MacNee W., Donaldson K., Particulate air pollution and acute health effects. The Lancet, 345, 176-178 (1995)
Sofowote U. M., McCarry B. E., Marvin C. H., Source apportionment of PAH in Hamilton Harbour suspended sediments: comparison of two factor analysis methods. Environmental Science & Technology, 42, 6007-6014 (2008).
Sparkman O. D., Mass spectrometry desk reference. Pittsburgh: Global View Pub. 2000. ISBN 0-9660813-2-3.
Spindler G., Muller K., Bruggemann E., Gnauk T., Herrmann H., Long-term size-segregated characterization of PM10, PM2.5, and PM1 at the IfT research station Melpitz downwind of Leipzig (Germany) using high and low-volume filter samplers. Atmospheric Environment, 38, 5333-5347 (2004).
Sram R., Impact of air pollution on reproductive health. Environ Health Perspect, 107, A542-A543 (1999).
Stevens J. L., Northcott G. L., Stern G. A., Tomy G. T., Jones K. C., PAHs, PCBs, PCNs, Organochlorine pesticides, Synthetic musks, and Polychlorinated n-Alkanes in U.K. sewage sludge:? survey results and implications. Environmental Science & Technology, 37, 462-467 (2003).
Swartz R. C., Ferraro S. P., Lamberson J. O., Cole F. A., Ozretich R. J., Boese B. L., Schults D. W., Behrenfeld M., Ankley G. T., Photoactivation and toxicity of mixtures of polycyclic aromatic hydrocarbon compounds in marine sediment. Environmental Toxicology and Chemistry, 16, 2151-2157 (1997).
Takasuga T., Senthilkumar K., Matsumura T., Shiozaki K., Saka S., Isotope dilution analysis of polychlorinated biphenyls (PCBs) in transformer oil and global commercial PCB formulations by high resolution gas chromatography–high resolution mass spectrometry, Chemosphere, 62, 469-484(2006).
Troisi G. M., Bexton S., Robinson I., Polyaromatic hydrocarbon and PAH metabolite burdens in oiled common guillemots (uria aalge) stranded on the east coast of England (2001-2002). Environmental Science & Technology, 40, 7938-7943 (2006).
Tuominen J.., Salomaa S., Pyysalo H., Skytta Eija., Tikkanen L., Nurmela T., Sorsa M., Pohjola V., Sauri M., Himberg K., Polynuclear aromatic compounds and genotoxicity in particulate and vapor phases of ambient air: effect of traffic, season, and meteorological conditions. Environmental Science and Technology, 22, 1228-1234 (1988).
United States Environmental Protection Agency, National Ambient Air Quality Standards. 2012, https://www.epa.gov/criteria-air-pollutants/naaqs-table.
USEPA, Determination of Polycyclic Aromatic Hydrocarbon (PAH) Emissions from Stationary Sources, Method 429. 1997.
Vione D., Barra S., De Gennaro G., De Rienzo M., Gilardoni S., Perrone M.G., Pozzoli L., Polycyclic aromatic hydrocarbons in the atmosphere: monitoring, sources, sinks and fate II: Sinks and fate. Annali Di Chimica, 94, 257-268 (2004).
Walgraeve C., Chantara S., Sopajaree K., Wispelaere P. D., Demeestere K., Langenhove V. H., Quantification of PAHs and oxy-PAHs on airborne particulate matter in Chiang Mai, Thailand, using gas chromatography high resolution mass spectrometry. Atmospheric Environment, 107, 262-272 (2015).
Wang G., Huang L.., Gao S., Gao S., Wang L., Measurements of PM10 and PM2.5 in urban area of Nanjing, China and the assessment of pulmonary deposition of particle mass. Chemosphere, 48, 689-695 (2002).
Wang W., Massey S. S. L., Wang W., Giri B., Zhao J., Xue M., Cao J., Lu X., Tao S., Atmospheric polycyclic aromatic hydrocarbon concentrations and gas/particle partitioning at background, rural village and urban sites in the North China Plain. Atmospheric Research, 99, 197-206(2011)
Wang Z., Sha W., Ueda H., Numerical modeling of pollutant transport and chemistry during a high ozone event in Northern Taiwan. Tellus, 52B, 1189-1205 (2000).
Watson, J.G., Judith, C.C., A wintertime PM2.5 episode at the Fresno, CA, supersite. Atmospheric Environment, 36, 465-475 (2002).
Wautersa E., Caeter V. P., Desmet G., David F., Devos C., Sandra P., Improved accuracy in the determination of polycyclic aromatic hydrocarbons in air using 24 h sampling on a mixed bed followed by thermal desorption capillary gas chromatography–mass spectrometry, Journal of Chromatography A, 1190, 286-293(2008).
Wilson R., Spengler J.D., Particle in our air: Concentrations and health effects, Harvard Univ Press, New York. (1996).
Woodhead R.J, Law R.J, Matthiessen P, Polycyclic aromatic hydrocarbons (PAH) in surface sediments around England and Wales, and their possible biological significance. Marine Pollution Bulletin, 38, 773-779 (1999).
Woolfenden E., Monitoring VOCs in air using sorbent tubes followed by thermal desorption-capillary GC analysis: summary of data and practical guidelines. Journal of the Air & Waste Management Association, 47, 20-36(1997).
Wu C., Feng C., Lo Y., Lin T., Determination of volatile organic compounds in workplace air by multisorbent adsorption/thermal desorption-GC/MS. Chemosphere, 56, 71-80(2004).
Xie M., Xie F., Deng Z., Zhuang G., Determination of polynuclear aromatic hydrocarbons in aerosol by solid-phase extraction and gas chromatography/mass spectrum. Talanta, 60, 1245-1257 (2003).
Yang HY, Pan SY, Hsu WT, Hung PC, Lin CY, Chou CCK, Lin YC, Lee TZ, Chi KH, Source apportionment of atmospheric polycyclic aromatic hydrocarbons (PAHs) in PM2.5 at different area in Taiwan. 37rd The International Symposium on Halogenated Persistent Organic Pollutants, Vancouver, 2017.
Zheng M., Fang M., Wang F., To K. L., Characterization of the solvent extractable organic compounds in PM2.5 aerosols in Hong Kong. Atmospheric Environment, 34, 2691-2702 (2000).
Zheng M., Salmon L.G., Schauer J.J., Zeng L., Kiang C.S., Zhang Y., Cass G.R., Seasonal trends in PM2.5 source contribution in Beijing, China. Atmospheric Environment, 39, 3967-3976 (2005).
Zhu Y., Yang L.X., Yuan Q., Yan C., Dong C., Meng C.P., Sui X., Yao L., Yang F., Lu Y.L., Wang W.X., Airborne particulate polycyclic aromatic hydrocarbon (PAH) pollution in a background site in the North China plain: concentration, size distribution, toxicity and sources. Science of the Total Environment, 466-467, 357-368(2014).
Zhung H., Chan C.K., Fang M., Wexler A.S., Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmospheric Environment, 33, 4223-4233 (1999).
潘峰、耿秋娟、楚紅杰、? 勇、王利利,石油污染土壤中多?芳香?分析及生????价,生?与?村?境??,第27期,42-47頁,2011年。
?天彬、???、 万洪富、? 勇、 高原雪、 夏?生,?莞市土壤中多?芳?的含量、代表物及其?源,土 壤,第37期,265~271頁,2005年。
詹長權、鄭尊仁、黃嵩立、黃景祥、李崇德、王家麟、王鵬堯、何國榮,台灣空氣污染健康風險評估計畫,行政院環保署,2000年。
鄭尊仁、李崇德、趙馨、蘇大成、郭育良,微粒空氣污染特性、毒性和健康風險之研究,行政院國家科學委員會,2007年。
陳佳玫、楊錫賢、鄭詩楷、張簡國平、張鎮南、方國權,以圖譜分析鑑定大氣環境中PAHs 來源研究,朝陽科技大學,2002年。
王鄧安,老年性黃斑部病變之風險因子:城市固體廢棄物焚化爐飛灰中的多環芳香烴,國立清華大學生醫工程與環境科學系碩士論文,2015年。
楊于萱,在肺癌細胞株H1299探討EMT指標vimentin之調控機制:多環芳香烴受體之角色探討,國立臺灣大學毒理學研究所碩士論文,2011年。
張弘澤,楠梓加工出口區大氣懸浮微粒之季節性變化及重金屬特性分析,國立中山大學海洋環境工程學系碩士論文,2012年。
王志中,台灣西部細懸浮微粒(PM2.5)濃度分布與趨勢之探討,國立中興大學環境工程系所碩士論文,2017年。
許雅婷,移動源排放PM2.5化學組成分析與指紋圖譜建置,朝陽科技大學環境工程與管理學系碩士論文,2017年。
陳彥衡,高雄地區硝基多環芳香烴污染物於不同周界環境中之分布調查研究,國立高雄師範大學化學系碩士論文,2010年。
蘇銘千、高年信、蔡佳穎、陳羿孜,多環芳香烴於太魯閣國家公園及高海拔之環境流布研究,國家公園學報,2013年。
楊中豪,大發工業區週邊中土壤PAHs污染分布調查,輔英科技大學環境工程研究所碩士論文,2006年。
吳健銘,多環芳香烴在東海表層浮游生物與沉積物的分佈,國立臺灣海洋大學海洋環境化學與生態研究所碩士論文,2010年。
朱?宏,多環芳香烴在海洋浮游生物之累積與分佈,國立東華大學海洋生物多樣性及演化研究所碩士論文,2014年。
潘韋伶,南極魚類及無脊椎動物體內持久性污染物生物累積分析,國立東華大學海洋生物多樣性及演化研究所碩士論文,2012年。
陳美如,螺絲製造業製程之油霧滴、及多環芳香烴化合物逸散特徵及其勞工之暴露危害評估,國立成功大學環境醫學研究所博士論文,2009年。
杜翰祥,台北縣新莊市老人與學童粒相多環芳香烴之暴露評估,輔仁大學公共衛生學系碩士論文,2008年。
李建億,台灣傳統紙錢製造業作業環境中多環芳香烴化合物特性分析與作業人員暴露危害之探討,國立屏東科技大學環境工程與科學系所碩士論文,2015年。
?宇賢,新竹都會區住家室內外環境中PM2.5多環芳香烴的季節變化與致癌風險評估,元培醫事科技大學環境工程衛生系碩士論文,2016年。
周宜蓁,利用熱脫附氣相層析質譜法分析空氣微粒中多環芳香烴並探討與特定污染源之相關性,國立臺灣大學環境衛生研究所碩士論文,2017年。
環境檢驗所,空氣中懸浮微粒(PM2.5)檢測方法-手動採樣法,NIEA A205.11C,2013年。https://www.niea.gov.tw/niea/pdf/AIR/A20511C.pdf
環境檢驗所,多環芳香族碳氫化合物檢測方法-氣相層析法,NIEA R812.21C,2002年。https://www.niea.gov.tw/niea/REFUSE/R81221C.htm
環境檢驗所,排放管道中多環芳香烴之檢測方法-氣相層析質譜法,NIEA A730.71C,2005年。https://www.niea.gov.tw/niea/pdf/AIR/A73070C.pdf
環境檢驗所,周界空氣中苯駢(a)芘與其他多環芳香烴檢測方法-氣相層析與高效能液相層析儀偵測法,NIEA A801.90C,1997年。https://www.niea.gov.tw/niea/AIR/A80190C.htm
行政院環境保護署,空氣品質監測報告,2016年。https://www.epa.gov.tw/public/Attachment/731716141726.pdf
中華人民共和國環境保護部,環境空氣質量指數(AQI)技術規定(試行), 2012年。
行政院環境保護署,空氣品質標準,2012年。https://taqm.epa.gov.tw/taqm/tw/b0206.aspx
指導教授 張木彬(Moo-Been Chang) 審核日期 2018-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明