參考文獻 |
Akagic, A., Buza, E., Horvat, M., 2023. Mapping RGB-to-NIR with Pix2Pix Image-to-Image Translation for Fire Detection Applications, Conference: 34th Central European Conference on Information and Intelligent Systems (CECIIS 2023), Dubrovnik, Croatia.
Anantrasirichai, N., Bull, D., 2022. Artificial intelligence in the creative industries: a review. Artificial Intelligence Review 55, 589-656.
Aslahishahri, M., Stanley, K.G., Duddu, H., Shirtliffe, S., Vail, S., Bett, K., Pozniak, C., Stavness, I., 2021. From RGB to NIR: Predicting of near infrared reflectance from visible spectrum aerial images of crops, 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 1312-1322.
Audi, A., Deseilligny, M., Meynard, C., Thom, C., 2017. Implementation of an IMU Aided Image Stacking Algorithm in a Digital Camera for Unmanned Aerial Vehicles. Sensors 17, 1646.
Barroso-Laguna, A., Brachmann, E., Prisacariu, V.A., Brostow, G.J., Turmukhambetov, D., 2023. Two-View Geometry Scoring Without Correspondences. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8979-8989.
Bay, H., Tuytelaars, T., Gool, L.V., 2006. SURF: Speeded Up Robust Features, Proceedings of the 9th European conference on Computer Vision, switzerland.
Bayley, D.T.I., Mogg, A.O.M., 2020. A protocol for the large-scale analysis of reefs using Structure from Motion photogrammetry. Methods in Ecology and Evolution 11, 1410-1420.
Bhowmick, B., Patra, S., Chatterjee, A., Madhav Govindu, V., Banerjee, S., 2017. Divide and conquer: A hierarchical approach to large-scale structure-from-motion. Computer Vision and Image Understanding 157, 190-205.
Bojanić, D., Bartol, K., Pribanic, T., Petković, T., Diez, Y., Mas, J., 2019. On the Comparison of Classic and Deep Keypoint Detector and Descriptor Methods, International Symposium on Image and Signal Processing, pp. 64-69.
Brown, M., Süsstrunk, S., 2011. Multi-spectral SIFT for scene category recognition, CVPR 2011, pp. 177-184.
Calonder, M., Lepetit, V., Strecha, C., Fua, P., 2010. BRIEF: Binary Robust Independent Elementary Features, Eur. Conf. Comput. Vis., pp. 778-792.
Cao, M., Zheng, L., Jia, W., Lu, H., Liu, X., 2020. Accurate 3-D Reconstruction Under IoT Environments and Its Applications to Augmented Reality. IEEE Transactions on Industrial Informatics PP, 1-1.
Cerasoli, S., Campagnolo, M., Faria, J., Nogueira, C., Caldeira, M., 2018. On estimating the gross primary productivity of Mediterranean grasslands under different fertilization regimes using vegetation indices and hyperspectral reflectance. Biogeosciences 15, 5455-5471.
Chadebecq, F., Vasconcelos, F., Lacher, R., Maneas, E., Desjardins, A., Ourselin, S., Vercauteren, T., Stoyanov, D., 2020. Refractive Two-View Reconstruction for Underwater 3D Vision. International Journal of Computer Vision 128, 1101-1117.
Chen, S.Y., Chang, S.F., Yang, C.W., 2021. Generate 3D Triangular Meshes from Spliced Point Clouds with Cloudcompare, 2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE), pp. 72-76.
Chen, W., Kumar, S., Yu, F., 2023. Uncertainty-Driven Dense Two-View Structure From Motion. IEEE Robotics and Automation Letters 8, 1763-1770.
Chen, X., Milioto, A., Palazzolo, E., Giguère, P., Behley, J., Stachniss, C., 2019. SuMa++: Efficient LiDAR-based Semantic SLAM, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4530-4537.
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G., 2008. MeshLab: an Open-Source Mesh Processing Tool.
Cui, H., Gao, X., Shen, S., Hu, Z., 2017. HSfM: Hybrid Structure-from-Motion, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2393-2402.
Cui, Z., Tan, P., 2015. Global Structure-from-Motion by Similarity Averaging, 2015 IEEE International Conference on Computer Vision (ICCV), pp. 864-872.
Cvišić, I., Marković, I., Petrović, I., 2023. SOFT2: Stereo Visual Odometry for Road Vehicles Based on a Point-to-Epipolar-Line Metric. IEEE Transactions on Robotics 39, 273-288.
d’Angelo, P., Cerra, D., Azimi, S.M., Merkle, N., Tian, J., Auer, S., Pato, M., Reyes, R.d.l., Zhuo, X., Bittner, K., Krauss, T., Reinartz, P., 2019. 3D Semantic Segmentation from Multi-View Optical Satellite Images, IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 5053-5056.
de Franchis, C., Meinhardt-Llopis, E., Michel, J., Morel, J.-M., Facciolo, G., 2014. An automatic and modular stereo pipeline for pushbroom images.
Dewez, T., Girardeau-Montaut, D., Allanic, C., Rohmer, J., 2016. FACETS : A CLOUDCOMPARE PLUGIN TO EXTRACT GEOLOGICAL PLANES FROM UNSTRUCTURED 3D POINT CLOUDS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B5, 799-804.
Dippold, E., Tsai, F., 2022. Potential Exploration of Segmentation driven Stereo Matching of very high-resolution Satellite Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B5-2022, 67-72.
Dippold, E.J., Tsai, F., 2023a. TWO-VIEW STRUCTURE FROM MOTION FOR BUILDING MODEL RECONSTRUCTION FROM VHR SATELLITE IMAGERY, Asian Conference on Remote Sensing (ACRS), Taipei
Dippold, E.J., Tsai, F., 2023b. Two-View Structure-from-Motion with Multiple Feature Detector Operators. Remote Sensing 15.
Dippold, E.J., Tsai, F., 2024a. Enhancing Building Point Cloud Reconstruction from RGB UAV Data with Machine-Learning-Based Image Translation, Sensors, p. 2358; 2326p.
Dippold, E.J., Tsai, F., 2024b. TWO-VIEW STRUCTURE FROM MOTION FEATURE ASSESSMENT, International Symposium on Remote Sensing (ISRS), Taichung.
Dubé, R., Cramariuc, A., Dugas, D., Sommer, H., Dymczyk, M., Nieto, J., Siegwart, R., Cadena, C., 2019. SegMap: Segment-based mapping and localization using data-driven descriptors. The International Journal of Robotics Research 39, 339-355.
Farella, E.M., Özdemir, E., Remondino, F., 2021. 4D Building Reconstruction with Machine Learning and Historical Maps. Applied Sciences 11, 1445.
Fawcett, D., Kho, L.K., Hill, T., Bennie, J., Azlan, B., Anderson, K., 2019. Unmanned aerial vehicle (UAV) derived structure-from-motion photogrammetry point clouds for oil palm (Elaeis guineensis) canopy segmentation and height estimation. International Journal of Remote Sensing 40.
Franchis, C.d., Meinhardt-Llopis, E., Michel, J., Morel, J.M., Facciolo, G., 2014. On stereo-rectification of pushbroom images, 2014 IEEE International Conference on Image Processing (ICIP), pp. 5447-5451.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative Adversarial Networks. Advances in Neural Information Processing Systems 3.
Hagstrom, S., Pak, H.W., Ku, S., Wang, S., Hager, G., Brown, M., 2021. Cumulative Assessment for Urban 3D Modeling, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 3261-3264.
Han, Y., Wang, S., Gong, D., Wang, Y., Wang, Y., Ma, X., 2020. STATE OF THE ART IN DIGITAL SURFACE MODELLING FROM MULTI-VIEW HIGH-RESOLUTION SATELLITE IMAGES. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. V-2-2020, 351-356.
Harris, C., Stephens, M., 1988. A COMBINED CORNER AND EDGE DETECTOR, In Proc. of Fourth Alvey Vision Conference, Manchester, pp. 1–6.
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S., 2017. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, Neural Information Processing Systems (NIPS), Long Beach, California.
Huang, S.S., Ma, Z.Y., Mu, T.J., Fu, H., Hu, S.M., 2020. Lidar-Monocular Visual Odometry using Point and Line Features, 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 1091-1097.
Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J., Rosette, J., 2019. Structure from Motion Photogrammetry in Forestry: a Review. Current Forestry Reports 5, 155-168.
Ilci, V., Toth, C., 2020. High Definition 3D Map Creation Using GNSS/IMU/LiDAR Sensor Integration to Support Autonomous Vehicle Navigation, Sensors.
Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A., 2017. Image-to-image translation with conditional adversarial networks, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA pp. 1125-1134.
Jiang, X., Ma, J., Jiang, J., Guo, X., 2020. Robust Feature Matching Using Spatial Clustering With Heavy Outliers. IEEE Transactions on Image Processing 29, 736-746.
Kang, S.W., Bae, S.H., Kuc, T.Y., 2020. Feature Extraction and Matching Algorithms to Improve Localization Accuracy for Mobile Robots, 2020 20th International Conference on Control, Automation and Systems (ICCAS), pp. 991-994.
Kavak, M., Karadoğan, S., Ozdemir, G., 2015. Hevsel Bahçelerinin NDVI Değerlerinin Uzaktan Algılama Teknikleri Kullanarak Uzun Dönem İçin İncelenmesi (A long Term NDVI Investigation of Hevsel Gardens Using Remote Sensing Techniques), p. 7.
Knyaz, V.A., Kniaz, V.V., Remondino, F., Zheltov, S.Y., Gruen, A., 2020. 3D Reconstruction of a Complex Grid Structure Combining UAS Images and Deep Learning, Remote Sensing.
Koch, T., Körner, M., Fraundorfer, F., 2019. Automatic and Semantically-Aware 3D UAV Flight Planning for Image-Based 3D Reconstruction, Remote Sensing.
Kogan, F.N., 1995. Droughts of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data. Bulletin of the American Meteorological Society 76, 655-668.
Li, S., 2017. A review of feature detection and match algorithms for localization and mapping. IOP Conference Series: Materials Science and Engineering 231, 012003.
Liao, L., Liu, W., Liu, S., 2023. Effect of Bit Depth on Cloud Segmentation of Remote-Sensing Images, Remote Sensing.
Lin, Y.-C., Cheng, Y.-T., Zhou, T., Ravi, R., Hasheminasab, S.M., Flatt, J.E., Troy, C., Habib, A., 2019. Evaluation of UAV LiDAR for Mapping Coastal Environments, Remote Sensing.
Liu, J., Hu, J., Li, Z., Ma, Z., Shi, J., Xu, W., Sun, Q., 2022. Three-Dimensional Surface Displacements of the 8 January 2022 Mw6.7 Menyuan Earthquake, China from Sentinel-1 and ALOS-2 SAR Observations, Remote Sensing.
Martinez, A.d.l.I., Labib, S.M., 2023. Demystifying normalized difference vegetation index (NDVI) for greenness exposure assessments and policy interventions in urban greening. Environmental Research 220, 115155.
Mazzanti, P., Scancella, S., Virelli, M., Frittelli, S., Nocente, V., Lombardo, F., 2022. Assessing the Performance of Multi-Resolution Satellite SAR Images for Post-Earthquake Damage Detection and Mapping Aimed at Emergency Response Management, Remote Sensing.
Miao, X., Xiao, G., Wang, S., Yu, J., 2024. BCLNet: Bilateral Consensus Learning for Two-View Correspondence Pruning, Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4225-4232.
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L., 2005. A Comparison of Affine Region Detectors. International Journal of Computer Vision 65, 43-72.
Mohamed El Mahdi, B., Abdelkrim, N., Abdenour, A., Zohir, I., Wassim, B., Fethi, D., A Novel Multispectral Maritime Target classification based on ThermalGAN (RGB-to-Thermal Image Translation). Journal of Experimental & Theoretical Artificial Intelligence, 1-21.
Mokroš, M., Mikita, T., Singh, A., Tomaštík, J., Chudá, J., Wężyk, P., Kuželka, K., Surový, P., Klimánek, M., Zięba-Kulawik, K., Bobrowski, R., Liang, X., 2021. Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. International Journal of Applied Earth Observation and Geoinformation 104, 102512.
Nakano, G., 2023. Minimal Solutions to Uncalibrated Two-view Geometry with Known Epipoles, 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13315-13324.
Niroumand-Jadidi, M., Vitti, A., 2017. Reconstruction of River Boundaries at Sub-Pixel Resolution: Estimation and Spatial Allocation of Water Fractions. ISPRS International Journal of Geo-Information 6, 383.
Oniga, E., Savu, A., Negrila, A., 2016. THE EVALUATION OF CLOUDCOMPARE SOFTWARE IN THE PROCESS OF TLS POINT CLOUDS REGISTRATION. RevCAD Journal of Geodesy and Cadastre 21, 117-124.
Pantoja-Rosero, B.G., Achanta, R., Kozinski, M., Fua, P., Perez-Cruz, F., Beyer, K., 2022. Generating LOD3 building models from structure-from-motion and semantic segmentation. Automation in Construction 141, 104430.
Patel, M.S., Patel, N.M., Holia, M.S., 2015. Feature based multi-view image registration using SURF, 2015 International Symposium on Advanced Computing and Communication (ISACC), pp. 213-218.
Peng, R., Wang, R., Wang, Z., Lai, Y., Wang, R., 2022. Rethinking Depth Estimation for Multi-View Stereo: A Unified Representation. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8635-8644.
Perez-Perez, Y., Golparvar-Fard, M., El-Rayes, K., 2021. Segmentation of point clouds via joint semantic and geometric features for 3D modeling of the built environment. Automation in Construction 125, 103584.
Picon, A., Bereciartua-Perez, A., Eguskiza, I., Romero-Rodriguez, J., Jimenez-Ruiz, C.J., Eggers, T., Klukas, C., Navarra-Mestre, R., 2022. Deep convolutional neural network for damaged vegetation segmentation from RGB images based on virtual NIR-channel estimation. Artificial Intelligence in Agriculture 6, 199-210.
Pontes, J.K., Kong, C., Sridharan, S., Lucey, S., Eriksson, A., Fookes, C., 2017. Image2Mesh: A Learning Framework for Single Image 3D Reconstruction. arXiv preprint arXiv:1711.10669.
Protopapadakis, E., Doulamis, A., Doulamis, N., Maltezos, E., 2021. Stacked Autoencoders Driven by Semi-Supervised Learning for Building Extraction from near Infrared Remote Sensing Imagery. Remote Sensing 13.
Rambour, C., Budillon, A., Johnsy, A.C., Denis, L., Tupin, F., Schirinzi, G., 2020. From Interferometric to Tomographic SAR: A Review of Synthetic Aperture Radar Tomography-Processing Techniques for Scatterer Unmixing in Urban Areas. IEEE Geoscience and Remote Sensing Magazine 8, 6-29.
Ramirez, G., Oca, A.M.d., Flores, G., 2023. 3D maps of vegetation indices generated onboard a precision agriculture UAV, 2023 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 564-571.
Rapp, J., Tachella, J., Altmann, Y., McLaughlin, S., Goyal, V.K., 2020. Advances in Single-Photon Lidar for Autonomous Vehicles: Working Principles, Challenges, and Recent Advances. IEEE Signal Processing Magazine 37, 62-71.
Ren, T., Gong, W., Gao, L., Zhao, F., Cheng, Z., 2022. An Interpretation Approach of Ascending–Descending SAR Data for Landslide Identification, Remote Sensing.
Robila, S., A. , 2008. Toward hyperspectral face recognition, The International Society for Optical Engineering (SPIE), p. 68120X.
Romero-Jarén, R., Arranz, J.J., 2021. Automatic segmentation and classification of BIM elements from point clouds. Automation in Construction 124, 103576.
Rosten, E., Drummond, T., 2006. Machine learning for high-speed corner detection, Proceedings of the 9th European conference on Computer Vision - Volume Part I. Springer-Verlag, Graz, Austria, pp. 430-443.
Rublee, E., Rabaud, V., Konolige, K., Bradski, G., 2011. ORB: An efficient alternative to SIFT or SURF, 2011 International Conference on Computer Vision, pp. 2564-2571.
Rupnik, E., Daakir, M., Pierrot Deseilligny, M., 2017. MicMac – a free, open-source solution for photogrammetry. Open Geospatial Data, Software and Standards 2, 14.
Rupnik, E., Deseilligny, M., Delorme, A., 2018. 3D reconstruction from multi-view VHR-satellite images in MicMac. ISPRS Journal of Photogrammetry and Remote Sensing 139.
Santangelo, M., Cardinali, M., Bucci, F., Fiorucci, F., Mondini, A.C., 2022. Exploring event landslide mapping using Sentinel-1 SAR backscatter products. Geomorphology 397, 108021.
Schmied, A., Fischer, T., Danelljan, M., Pollefeys, M., Yu, F., 2023. R3D3: Dense 3D Reconstruction of Dynamic Scenes from Multiple Cameras. ArXiv abs/2308.14713.
Schönberger, J.L., Frahm, J., 2016. Structure-from-Motion Revisited, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4104-4113.
Shashikant, V., Mohamed Shariff, A.R., Wayayok, A., Kamal, M.R., Lee, Y.P., Takeuchi, W., 2021. Utilizing TVDI and NDWI to Classify Severity of Agricultural Drought in Chuping, Malaysia, Agronomy.
Shukla, A., Upadhyay, A., Sharma, M., Chinnusamy, V., Kumar, S., 2022. High-Resolution NIR Prediction from RGB Images: Application to Plant Phenotyping, 2022 IEEE International Conference on Image Processing (ICIP), pp. 4058-4062.
Sing, K., Xie, W., 2016. Garden: A Mixed Reality Experience Combining Virtual Reality and 3D Reconstruction.
Sra, M., Garrido-Jurado, S., Schmandt, C., Maes, P., 2016. Procedurally generated virtual reality from 3D reconstructed physical space.
Stoyanova, M., Kandilarov, A., Koutev, V., Nitcheva, O., Dobreva, P., 2021. Unmanned drone multispectral imaging for assessment of wheat and oilseed rape habitus. Bul. J. Agric. Sci 27, 875-879.
Strecha, C., Hansen, W., Van Gool, L., Fua, P., Thoennessen, U., 2008. On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery, IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, pp. 1-8.
Tarpley, J.D., Schneider, S.R., Money, R., 1984. Global vegetation indices from the NOAA-7 meteorological satellite.
Uddin, M.S., Kwan, C., Li, J., 2023. MWIRGAN: Unsupervised Visible-to-MWIR Image Translation with Generative Adversarial Network, Electronics.
Wang, G., Ye, J.C., Mueller, K., Fessler, J.A., 2018a. Image Reconstruction is a New Frontier of Machine Learning. IEEE Transactions on Medical Imaging 37, 1289-1296.
Wang, J., Zhong, Y., Dai, Y., Birchfield, S., Zhang, K., Smolyanskiy, N., li, H., 2021. Deep Two-View Structure-from-Motion Revisited, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8953-8962.
Wang, L., Lan, C., Wu, B., Gao, T., Wei, Z., Yao, F., 2022. A Method for Detecting Feature-Sparse Regions and Matching Enhancement. Remote Sensing 14.
Wang, P., Patel, V., 2018. Generating high quality visible images from SAR images using CNNs, IEEE Radar Conference (RadarConf18), pp. 0570-0575.
Wang, R., Peethambaran, J., Chen, D., 2018b. LiDAR Point Clouds to 3-D Urban Models$:$ A Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11, 606-627.
Xu, Y., Yang, Y., Chen, X., Liu, Y., 2022. Bibliometric Analysis of Global NDVI Research Trends from 1985 to 2021, Remote Sensing.
Xue, J., Su, B., 2017. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors 2017, 1-17.
Yang, M.-D., Chao, C.-F., Huang, K.-S., Lu, L.-Y., Chen, Y.-P., 2013. Image-based 3D scene reconstruction and exploration in augmented reality. Automation in Construction 33, 48-60.
Yang, X., Zhou, L., Jiang, H., Tang, Z., Wang, Y., Bao, H., Zhang, G., 2020. Mobile3DRecon: Real-time Monocular 3D Reconstruction on a Mobile Phone. IEEE Transactions on Visualization and Computer Graphics 26, 3446-3456.
Ye, W., Lan, X., Chen, S., Ming, Y., Yu, X.-r., Bao, H., Cui, Z., Zhang, G., 2022. PVO: Panoptic Visual Odometry. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 9579-9589.
Yokoya, N., Yairi, T., Iwasaki, A., 2012. Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion. IEEE Transactions on Geoscience and Remote Sensing 50, 528-537.
Yuan, H., Liu, Z., Cai, Y., Zhao, B., 2018. Research on Vegetation Information Extraction from Visible UAV Remote Sensing Images, 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), pp. 1-5.
Yuniarti, A., Suciati, N., 2019. A Review of Deep Learning Techniques for 3D Reconstruction of 2D Images, 2019 12th International Conference on Information & Communication Technology and System (ICTS), pp. 327-331.
Zhao, C., Sun, L., Stolkin, R., 2020. Simultaneous Material Segmentation and 3D Reconstruction in Industrial Scenarios. Frontiers in Robotics and AI 7.
Zheng, Y., Tang, L., Wang, H., 2021. An improved approach for monitoring urban built-up areas by combining NPP-VIIRS nighttime light, NDVI, NDWI, and NDBI. Journal of Cleaner Production 328, 129488.
Zhu, Q., 2021. Deep Learning for Multi-View Stereo via Plane Sweep: A Survey. arXiv preprint abs/2106.15328. |