博碩士論文 105382605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.146.176.112
姓名 喬安娜(Elisabeth Johanna Dippold)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 基於跨感測器雙視運動結構回復的 有效三維重建方法之研究
(Cross-Sensor Two-View Structure-from-Motion for Efficient Three-Dimensional Reconstruction)
相關論文
★ 三維房屋模型實景紋理影像製作與敷貼之研究★ 紋理輔助高解析度衛星影像分析應用於偵測入侵性植物分布之研究
★ 利用高光譜影像偵測外來植物-以恆春地區銀合歡為例★ 以視訊影像進行三維房屋模型實景紋理敷貼之研究
★ 區塊式Level of Detail地景視覺模擬之研究★ 高光譜影像立方體紋理特徵之三維計算
★ 漸變式多重解析度於大型地景視覺模擬之應用★ 區塊式LOD網格細化於大型地形視覺模擬之應用
★ 多層次精緻度三維房屋模型之建置★ 高光譜影像立方體於特徵空間之三維紋理計算
★ 影像修補技術於牆面紋理影像遮蔽去除之應用★ 結合遙測影像與GIS資料以資料挖掘 技術進行崩塌地辨識-以石門水庫集水區為例
★ 利用近景影像提高三維建物模型之細緻化等級★ 以地面及空載光達點雲重建複雜物三維模型
★ 高精緻度房屋模型結合蟻群演算法於室內最佳路徑選擇之應用★ 二次微分法於空載全波形光達之特徵萃取與地物分類
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 此篇論文提出一套改良雙影像運動恢復結構(Structure from Motion, SfM)演算法的影像處理基本架構,以有效地自二維影像中重建三維場景模型。本研究克服了在生成三維點雲過程有效資料不足問題。研究的主要關注分為兩個部分:一方面,通過整體考量各種影像特性以及利用機器學習生成有效的額外資訊以及克服有效資料不足的問題;另一方面,以跨感測器實際應用以及成果的誤差和精度分析驗證所研發方法的有效性。同樣地,資源節省的意圖也常常被低估。整體策略是以個個擊破的方式進行。首先,以所生成的額外資料協助辨識出影像中植披和水體等在三維重建時可能帶來的錯誤匹配的區域。其次,透過改良的方法流程和架構增加辨識出的有效特徵點數量,以提高所產製的三維點雲密度。最後則是根據不同影像切割大小、運算時間、所需計算資源和目標等參數,優化機器學習的模式與訓練。所開發的機器學習模式可用以產製額外的有用資料,以辨識出影像中植被等在以SfM進行三維重建演算過程中容易造成錯誤匹配的區域,改善最後三維重建的成果。而本研究所建立的多重特徵運算子可進一步有效改良以SfM由影像中進行三維重建的效能、改善匹配、節省運算資源並提升點雲的品質。本研究的實驗案例成果證明,本研究所開發的額外影像(波段)生成機器學習可有效地整合進運動結構回復三維重建架構:而本研究所開發的方法流程與處理架構,可以有效率的自二維的影像中重建三維的點雲模型。針對成果的誤差檢驗與分析也顯示,以本論文所提出的方法所產製的三維點雲模型可以獲得良好的精度。整體而言,本研究所開發的三維重建方法與架構,可有效地自二維影像中重建高密度且高精度的三維點雲模型。
摘要(英) The aim of this dissertation is improving the process of generating 3D models from a set of 2D images with Structure-from-Motion. The key focus of this study is divided into two parts: on the one hand, overcoming the lack of data by taking various image properties into account and generating additional useful information using machine learning techniques; and on the other hand, cross-sensor applications to test different sensors and the analysis of error properties and sources. Similarly, the intention of saving resources is often underrated too. The paradigm of dividing and conquering is applied to decompose the Structure-from-Motion algorithm and achieve results in steps. Firstly, this approach allows for tackling vegetation and water as possible mismatch error sources of satellite stereo pairs. Secondly, this increases the number of detected features to accumulate a denser point cloud with a clear property profile. The final step is training cross-sensor and resource-aware image-to-image translation with camera and satellite focusing on tiles, time and target. As a result, segmentation removes features classified as nature. Further, utilising multiple Feature Detector Operators with respect to the same origin and towards man-made targets is implemented. Lastly, the translation of RGB2CIR enables RGB-only sensors to use the multispectral information for further processing. This study has successfully proven that segmentation for natural features decreases noise, improves matching, saves resources, and improves point cloud quality. In addition, the utilisation of multiple Feature Detector Operators increases the number features and can improve motion estimation with respect to conditions change. Moreover, RGB only sensors can then be used to segment for vegetation and remove features classified as vegetation within the Structure-from-Motion algorithm. Successful point cloud generation requires sufficient enough features and a minimisation of noise sources. The lack of sensor knowledge, training data and dynamic target properties can restrict the solutions proposed in this study. Overall, the implementation of multiple Feature Detector Operators increases density of the point cloud improves motion estimation and improves the target’s edges and corners. Image translation increases the versatility of sensors and can be implemented into a Structure-from-Motion framework. This study proves that the developed Structure-from-Motion based framework can generate 3D models effectively and efficiently.
關鍵字(中) ★ 運動恢復結構
★ 三維重建
★ 點雲
★ 特徵運算子
關鍵字(英) ★ Structure-from-Motion
★ 3D Reconstruction
★ Image-to-Image translation
★ Point Cloud
★ NDVI
★ Feature Detector Operators
論文目次 摘要 V
Abstract VI
Table of Contents VII
List of Abbreviations X
List of Figures XIII
List of Equations XV
List of Tables XVI
List of Appendix Content XVII
1. Introduction 1
1.1. Motivation 1
1.2. Research Objective and Scope 3
1.3. Innovation and Contribution 4
2. Literature Review 5
2.1. 3D Reconstruction 5
2.1.1. Artificial Intelligence 5
2.1.2. SLAM, VO and MMS 6
2.1.3. Segmentation 7
2.2. Structure-from-Motion 7
2.2.1. Two-View Structure-from-Motion 9
2.3. Virtual Reality and Active Sensors 9
2.4. Software and Visualisation 11
2.5. Image-to-Image Translation with Artificial Intelligence 11
2.6. Segmentation and Classification with Indices 12
2.7. Summary of Literature Review 14
3. Methodology 15
3.1. Data Requirements 15
3.1.1. Band, Depth and Vision 16
3.2. Procedural Strategy 19
3.3. Image-to-Image Translation 20
3.3.1. Pix2Pix Framework and Initial Run 20
3.3.2. Approach, Training Strategy and Workflow 23
3.3.3. Material and Training Strategy 26
3.3.4. Training and Model selection 29
3.4. Multiple Feature Detector Operators 32
3.4.1. Foundation of Features Detector Operators 32
3.4.2. Approach and Workflow 37
3.4.3. Material and Software 37
3.5. Index Driven Classification and Segmentation 39
3.5.1. NDVI and NDWI 39
3.5.2. Strategy and Workflow 41
3.5.3. Materials and Pre-processing 42
4. Results 44
4.1. RGB2CIR Validation with Target 44
4.2. RGB2CIR Verification with Histogram 47
4.3. RGB2CIR UAV Prediction 51
4.4. Image Condition Changes 53
4.5. Segmentation Driven Stereo Matching 56
4.6. Close-Range Two-view SfM with mFDO 60
4.7. UAV Short-Baseline Two-View SfM with mFDO 63
4.8. UAV Long-Baseline Two-View SfM with mFDO 66
4.9. UAV Long-Baseline Two-View SfM with mFDO and Segmentation 68
5. Conclusions and Discussions 73
5.1. Conclusions 73
5.1.1. Summary 74
5.1.2. RGB2CIR 75
5.1.3. Image Condition Change 77
5.1.4. Segmentation Driven Stereo Matching 78
5.1.5. Close-Range Two-View SfM with mFDO 78
5.1.6. UAV Short- and Long Baseline Two-View SfM with mFDO 78
5.1.7. UAV Long-Baseline Two-View SfM with MFDO and Segmentation 79
5.2. Discussions 80
5.3. Limitations and Applications 81
5.4. Suggestions and Future Work 83
Bibliography XVI
Appendix XXV
參考文獻 Akagic, A., Buza, E., Horvat, M., 2023. Mapping RGB-to-NIR with Pix2Pix Image-to-Image Translation for Fire Detection Applications, Conference: 34th Central European Conference on Information and Intelligent Systems (CECIIS 2023), Dubrovnik, Croatia.
Anantrasirichai, N., Bull, D., 2022. Artificial intelligence in the creative industries: a review. Artificial Intelligence Review 55, 589-656.
Aslahishahri, M., Stanley, K.G., Duddu, H., Shirtliffe, S., Vail, S., Bett, K., Pozniak, C., Stavness, I., 2021. From RGB to NIR: Predicting of near infrared reflectance from visible spectrum aerial images of crops, 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 1312-1322.
Audi, A., Deseilligny, M., Meynard, C., Thom, C., 2017. Implementation of an IMU Aided Image Stacking Algorithm in a Digital Camera for Unmanned Aerial Vehicles. Sensors 17, 1646.
Barroso-Laguna, A., Brachmann, E., Prisacariu, V.A., Brostow, G.J., Turmukhambetov, D., 2023. Two-View Geometry Scoring Without Correspondences. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8979-8989.
Bay, H., Tuytelaars, T., Gool, L.V., 2006. SURF: Speeded Up Robust Features, Proceedings of the 9th European conference on Computer Vision, switzerland.
Bayley, D.T.I., Mogg, A.O.M., 2020. A protocol for the large-scale analysis of reefs using Structure from Motion photogrammetry. Methods in Ecology and Evolution 11, 1410-1420.
Bhowmick, B., Patra, S., Chatterjee, A., Madhav Govindu, V., Banerjee, S., 2017. Divide and conquer: A hierarchical approach to large-scale structure-from-motion. Computer Vision and Image Understanding 157, 190-205.
Bojanić, D., Bartol, K., Pribanic, T., Petković, T., Diez, Y., Mas, J., 2019. On the Comparison of Classic and Deep Keypoint Detector and Descriptor Methods, International Symposium on Image and Signal Processing, pp. 64-69.
Brown, M., Süsstrunk, S., 2011. Multi-spectral SIFT for scene category recognition, CVPR 2011, pp. 177-184.
Calonder, M., Lepetit, V., Strecha, C., Fua, P., 2010. BRIEF: Binary Robust Independent Elementary Features, Eur. Conf. Comput. Vis., pp. 778-792.
Cao, M., Zheng, L., Jia, W., Lu, H., Liu, X., 2020. Accurate 3-D Reconstruction Under IoT Environments and Its Applications to Augmented Reality. IEEE Transactions on Industrial Informatics PP, 1-1.
Cerasoli, S., Campagnolo, M., Faria, J., Nogueira, C., Caldeira, M., 2018. On estimating the gross primary productivity of Mediterranean grasslands under different fertilization regimes using vegetation indices and hyperspectral reflectance. Biogeosciences 15, 5455-5471.
Chadebecq, F., Vasconcelos, F., Lacher, R., Maneas, E., Desjardins, A., Ourselin, S., Vercauteren, T., Stoyanov, D., 2020. Refractive Two-View Reconstruction for Underwater 3D Vision. International Journal of Computer Vision 128, 1101-1117.
Chen, S.Y., Chang, S.F., Yang, C.W., 2021. Generate 3D Triangular Meshes from Spliced Point Clouds with Cloudcompare, 2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE), pp. 72-76.
Chen, W., Kumar, S., Yu, F., 2023. Uncertainty-Driven Dense Two-View Structure From Motion. IEEE Robotics and Automation Letters 8, 1763-1770.
Chen, X., Milioto, A., Palazzolo, E., Giguère, P., Behley, J., Stachniss, C., 2019. SuMa++: Efficient LiDAR-based Semantic SLAM, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4530-4537.
Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., Ranzuglia, G., 2008. MeshLab: an Open-Source Mesh Processing Tool.
Cui, H., Gao, X., Shen, S., Hu, Z., 2017. HSfM: Hybrid Structure-from-Motion, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2393-2402.
Cui, Z., Tan, P., 2015. Global Structure-from-Motion by Similarity Averaging, 2015 IEEE International Conference on Computer Vision (ICCV), pp. 864-872.
Cvišić, I., Marković, I., Petrović, I., 2023. SOFT2: Stereo Visual Odometry for Road Vehicles Based on a Point-to-Epipolar-Line Metric. IEEE Transactions on Robotics 39, 273-288.
d’Angelo, P., Cerra, D., Azimi, S.M., Merkle, N., Tian, J., Auer, S., Pato, M., Reyes, R.d.l., Zhuo, X., Bittner, K., Krauss, T., Reinartz, P., 2019. 3D Semantic Segmentation from Multi-View Optical Satellite Images, IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, pp. 5053-5056.
de Franchis, C., Meinhardt-Llopis, E., Michel, J., Morel, J.-M., Facciolo, G., 2014. An automatic and modular stereo pipeline for pushbroom images.
Dewez, T., Girardeau-Montaut, D., Allanic, C., Rohmer, J., 2016. FACETS : A CLOUDCOMPARE PLUGIN TO EXTRACT GEOLOGICAL PLANES FROM UNSTRUCTURED 3D POINT CLOUDS. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B5, 799-804.
Dippold, E., Tsai, F., 2022. Potential Exploration of Segmentation driven Stereo Matching of very high-resolution Satellite Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B5-2022, 67-72.
Dippold, E.J., Tsai, F., 2023a. TWO-VIEW STRUCTURE FROM MOTION FOR BUILDING MODEL RECONSTRUCTION FROM VHR SATELLITE IMAGERY, Asian Conference on Remote Sensing (ACRS), Taipei
Dippold, E.J., Tsai, F., 2023b. Two-View Structure-from-Motion with Multiple Feature Detector Operators. Remote Sensing 15.
Dippold, E.J., Tsai, F., 2024a. Enhancing Building Point Cloud Reconstruction from RGB UAV Data with Machine-Learning-Based Image Translation, Sensors, p. 2358; 2326p.
Dippold, E.J., Tsai, F., 2024b. TWO-VIEW STRUCTURE FROM MOTION FEATURE ASSESSMENT, International Symposium on Remote Sensing (ISRS), Taichung.
Dubé, R., Cramariuc, A., Dugas, D., Sommer, H., Dymczyk, M., Nieto, J., Siegwart, R., Cadena, C., 2019. SegMap: Segment-based mapping and localization using data-driven descriptors. The International Journal of Robotics Research 39, 339-355.
Farella, E.M., Özdemir, E., Remondino, F., 2021. 4D Building Reconstruction with Machine Learning and Historical Maps. Applied Sciences 11, 1445.
Fawcett, D., Kho, L.K., Hill, T., Bennie, J., Azlan, B., Anderson, K., 2019. Unmanned aerial vehicle (UAV) derived structure-from-motion photogrammetry point clouds for oil palm (Elaeis guineensis) canopy segmentation and height estimation. International Journal of Remote Sensing 40.
Franchis, C.d., Meinhardt-Llopis, E., Michel, J., Morel, J.M., Facciolo, G., 2014. On stereo-rectification of pushbroom images, 2014 IEEE International Conference on Image Processing (ICIP), pp. 5447-5451.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative Adversarial Networks. Advances in Neural Information Processing Systems 3.
Hagstrom, S., Pak, H.W., Ku, S., Wang, S., Hager, G., Brown, M., 2021. Cumulative Assessment for Urban 3D Modeling, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 3261-3264.
Han, Y., Wang, S., Gong, D., Wang, Y., Wang, Y., Ma, X., 2020. STATE OF THE ART IN DIGITAL SURFACE MODELLING FROM MULTI-VIEW HIGH-RESOLUTION SATELLITE IMAGES. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. V-2-2020, 351-356.
Harris, C., Stephens, M., 1988. A COMBINED CORNER AND EDGE DETECTOR, In Proc. of Fourth Alvey Vision Conference, Manchester, pp. 1–6.
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S., 2017. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium, Neural Information Processing Systems (NIPS), Long Beach, California.
Huang, S.S., Ma, Z.Y., Mu, T.J., Fu, H., Hu, S.M., 2020. Lidar-Monocular Visual Odometry using Point and Line Features, 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 1091-1097.
Iglhaut, J., Cabo, C., Puliti, S., Piermattei, L., O’Connor, J., Rosette, J., 2019. Structure from Motion Photogrammetry in Forestry: a Review. Current Forestry Reports 5, 155-168.
Ilci, V., Toth, C., 2020. High Definition 3D Map Creation Using GNSS/IMU/LiDAR Sensor Integration to Support Autonomous Vehicle Navigation, Sensors.
Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A., 2017. Image-to-image translation with conditional adversarial networks, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA pp. 1125-1134.
Jiang, X., Ma, J., Jiang, J., Guo, X., 2020. Robust Feature Matching Using Spatial Clustering With Heavy Outliers. IEEE Transactions on Image Processing 29, 736-746.
Kang, S.W., Bae, S.H., Kuc, T.Y., 2020. Feature Extraction and Matching Algorithms to Improve Localization Accuracy for Mobile Robots, 2020 20th International Conference on Control, Automation and Systems (ICCAS), pp. 991-994.
Kavak, M., Karadoğan, S., Ozdemir, G., 2015. Hevsel Bahçelerinin NDVI Değerlerinin Uzaktan Algılama Teknikleri Kullanarak Uzun Dönem İçin İncelenmesi (A long Term NDVI Investigation of Hevsel Gardens Using Remote Sensing Techniques), p. 7.
Knyaz, V.A., Kniaz, V.V., Remondino, F., Zheltov, S.Y., Gruen, A., 2020. 3D Reconstruction of a Complex Grid Structure Combining UAS Images and Deep Learning, Remote Sensing.
Koch, T., Körner, M., Fraundorfer, F., 2019. Automatic and Semantically-Aware 3D UAV Flight Planning for Image-Based 3D Reconstruction, Remote Sensing.
Kogan, F.N., 1995. Droughts of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data. Bulletin of the American Meteorological Society 76, 655-668.
Li, S., 2017. A review of feature detection and match algorithms for localization and mapping. IOP Conference Series: Materials Science and Engineering 231, 012003.
Liao, L., Liu, W., Liu, S., 2023. Effect of Bit Depth on Cloud Segmentation of Remote-Sensing Images, Remote Sensing.
Lin, Y.-C., Cheng, Y.-T., Zhou, T., Ravi, R., Hasheminasab, S.M., Flatt, J.E., Troy, C., Habib, A., 2019. Evaluation of UAV LiDAR for Mapping Coastal Environments, Remote Sensing.
Liu, J., Hu, J., Li, Z., Ma, Z., Shi, J., Xu, W., Sun, Q., 2022. Three-Dimensional Surface Displacements of the 8 January 2022 Mw6.7 Menyuan Earthquake, China from Sentinel-1 and ALOS-2 SAR Observations, Remote Sensing.
Martinez, A.d.l.I., Labib, S.M., 2023. Demystifying normalized difference vegetation index (NDVI) for greenness exposure assessments and policy interventions in urban greening. Environmental Research 220, 115155.
Mazzanti, P., Scancella, S., Virelli, M., Frittelli, S., Nocente, V., Lombardo, F., 2022. Assessing the Performance of Multi-Resolution Satellite SAR Images for Post-Earthquake Damage Detection and Mapping Aimed at Emergency Response Management, Remote Sensing.
Miao, X., Xiao, G., Wang, S., Yu, J., 2024. BCLNet: Bilateral Consensus Learning for Two-View Correspondence Pruning, Proceedings of the AAAI Conference on Artificial Intelligence, pp. 4225-4232.
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L., 2005. A Comparison of Affine Region Detectors. International Journal of Computer Vision 65, 43-72.
Mohamed El Mahdi, B., Abdelkrim, N., Abdenour, A., Zohir, I., Wassim, B., Fethi, D., A Novel Multispectral Maritime Target classification based on ThermalGAN (RGB-to-Thermal Image Translation). Journal of Experimental & Theoretical Artificial Intelligence, 1-21.
Mokroš, M., Mikita, T., Singh, A., Tomaštík, J., Chudá, J., Wężyk, P., Kuželka, K., Surový, P., Klimánek, M., Zięba-Kulawik, K., Bobrowski, R., Liang, X., 2021. Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives. International Journal of Applied Earth Observation and Geoinformation 104, 102512.
Nakano, G., 2023. Minimal Solutions to Uncalibrated Two-view Geometry with Known Epipoles, 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 13315-13324.
Niroumand-Jadidi, M., Vitti, A., 2017. Reconstruction of River Boundaries at Sub-Pixel Resolution: Estimation and Spatial Allocation of Water Fractions. ISPRS International Journal of Geo-Information 6, 383.
Oniga, E., Savu, A., Negrila, A., 2016. THE EVALUATION OF CLOUDCOMPARE SOFTWARE IN THE PROCESS OF TLS POINT CLOUDS REGISTRATION. RevCAD Journal of Geodesy and Cadastre 21, 117-124.
Pantoja-Rosero, B.G., Achanta, R., Kozinski, M., Fua, P., Perez-Cruz, F., Beyer, K., 2022. Generating LOD3 building models from structure-from-motion and semantic segmentation. Automation in Construction 141, 104430.
Patel, M.S., Patel, N.M., Holia, M.S., 2015. Feature based multi-view image registration using SURF, 2015 International Symposium on Advanced Computing and Communication (ISACC), pp. 213-218.
Peng, R., Wang, R., Wang, Z., Lai, Y., Wang, R., 2022. Rethinking Depth Estimation for Multi-View Stereo: A Unified Representation. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 8635-8644.
Perez-Perez, Y., Golparvar-Fard, M., El-Rayes, K., 2021. Segmentation of point clouds via joint semantic and geometric features for 3D modeling of the built environment. Automation in Construction 125, 103584.
Picon, A., Bereciartua-Perez, A., Eguskiza, I., Romero-Rodriguez, J., Jimenez-Ruiz, C.J., Eggers, T., Klukas, C., Navarra-Mestre, R., 2022. Deep convolutional neural network for damaged vegetation segmentation from RGB images based on virtual NIR-channel estimation. Artificial Intelligence in Agriculture 6, 199-210.
Pontes, J.K., Kong, C., Sridharan, S., Lucey, S., Eriksson, A., Fookes, C., 2017. Image2Mesh: A Learning Framework for Single Image 3D Reconstruction. arXiv preprint arXiv:1711.10669.
Protopapadakis, E., Doulamis, A., Doulamis, N., Maltezos, E., 2021. Stacked Autoencoders Driven by Semi-Supervised Learning for Building Extraction from near Infrared Remote Sensing Imagery. Remote Sensing 13.
Rambour, C., Budillon, A., Johnsy, A.C., Denis, L., Tupin, F., Schirinzi, G., 2020. From Interferometric to Tomographic SAR: A Review of Synthetic Aperture Radar Tomography-Processing Techniques for Scatterer Unmixing in Urban Areas. IEEE Geoscience and Remote Sensing Magazine 8, 6-29.
Ramirez, G., Oca, A.M.d., Flores, G., 2023. 3D maps of vegetation indices generated onboard a precision agriculture UAV, 2023 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 564-571.
Rapp, J., Tachella, J., Altmann, Y., McLaughlin, S., Goyal, V.K., 2020. Advances in Single-Photon Lidar for Autonomous Vehicles: Working Principles, Challenges, and Recent Advances. IEEE Signal Processing Magazine 37, 62-71.
Ren, T., Gong, W., Gao, L., Zhao, F., Cheng, Z., 2022. An Interpretation Approach of Ascending–Descending SAR Data for Landslide Identification, Remote Sensing.
Robila, S., A. , 2008. Toward hyperspectral face recognition, The International Society for Optical Engineering (SPIE), p. 68120X.
Romero-Jarén, R., Arranz, J.J., 2021. Automatic segmentation and classification of BIM elements from point clouds. Automation in Construction 124, 103576.
Rosten, E., Drummond, T., 2006. Machine learning for high-speed corner detection, Proceedings of the 9th European conference on Computer Vision - Volume Part I. Springer-Verlag, Graz, Austria, pp. 430-443.
Rublee, E., Rabaud, V., Konolige, K., Bradski, G., 2011. ORB: An efficient alternative to SIFT or SURF, 2011 International Conference on Computer Vision, pp. 2564-2571.
Rupnik, E., Daakir, M., Pierrot Deseilligny, M., 2017. MicMac – a free, open-source solution for photogrammetry. Open Geospatial Data, Software and Standards 2, 14.
Rupnik, E., Deseilligny, M., Delorme, A., 2018. 3D reconstruction from multi-view VHR-satellite images in MicMac. ISPRS Journal of Photogrammetry and Remote Sensing 139.
Santangelo, M., Cardinali, M., Bucci, F., Fiorucci, F., Mondini, A.C., 2022. Exploring event landslide mapping using Sentinel-1 SAR backscatter products. Geomorphology 397, 108021.
Schmied, A., Fischer, T., Danelljan, M., Pollefeys, M., Yu, F., 2023. R3D3: Dense 3D Reconstruction of Dynamic Scenes from Multiple Cameras. ArXiv abs/2308.14713.
Schönberger, J.L., Frahm, J., 2016. Structure-from-Motion Revisited, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4104-4113.
Shashikant, V., Mohamed Shariff, A.R., Wayayok, A., Kamal, M.R., Lee, Y.P., Takeuchi, W., 2021. Utilizing TVDI and NDWI to Classify Severity of Agricultural Drought in Chuping, Malaysia, Agronomy.
Shukla, A., Upadhyay, A., Sharma, M., Chinnusamy, V., Kumar, S., 2022. High-Resolution NIR Prediction from RGB Images: Application to Plant Phenotyping, 2022 IEEE International Conference on Image Processing (ICIP), pp. 4058-4062.
Sing, K., Xie, W., 2016. Garden: A Mixed Reality Experience Combining Virtual Reality and 3D Reconstruction.
Sra, M., Garrido-Jurado, S., Schmandt, C., Maes, P., 2016. Procedurally generated virtual reality from 3D reconstructed physical space.
Stoyanova, M., Kandilarov, A., Koutev, V., Nitcheva, O., Dobreva, P., 2021. Unmanned drone multispectral imaging for assessment of wheat and oilseed rape habitus. Bul. J. Agric. Sci 27, 875-879.
Strecha, C., Hansen, W., Van Gool, L., Fua, P., Thoennessen, U., 2008. On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery, IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, pp. 1-8.
Tarpley, J.D., Schneider, S.R., Money, R., 1984. Global vegetation indices from the NOAA-7 meteorological satellite.
Uddin, M.S., Kwan, C., Li, J., 2023. MWIRGAN: Unsupervised Visible-to-MWIR Image Translation with Generative Adversarial Network, Electronics.
Wang, G., Ye, J.C., Mueller, K., Fessler, J.A., 2018a. Image Reconstruction is a New Frontier of Machine Learning. IEEE Transactions on Medical Imaging 37, 1289-1296.
Wang, J., Zhong, Y., Dai, Y., Birchfield, S., Zhang, K., Smolyanskiy, N., li, H., 2021. Deep Two-View Structure-from-Motion Revisited, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8953-8962.
Wang, L., Lan, C., Wu, B., Gao, T., Wei, Z., Yao, F., 2022. A Method for Detecting Feature-Sparse Regions and Matching Enhancement. Remote Sensing 14.
Wang, P., Patel, V., 2018. Generating high quality visible images from SAR images using CNNs, IEEE Radar Conference (RadarConf18), pp. 0570-0575.
Wang, R., Peethambaran, J., Chen, D., 2018b. LiDAR Point Clouds to 3-D Urban Models$:$ A Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11, 606-627.
Xu, Y., Yang, Y., Chen, X., Liu, Y., 2022. Bibliometric Analysis of Global NDVI Research Trends from 1985 to 2021, Remote Sensing.
Xue, J., Su, B., 2017. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors 2017, 1-17.
Yang, M.-D., Chao, C.-F., Huang, K.-S., Lu, L.-Y., Chen, Y.-P., 2013. Image-based 3D scene reconstruction and exploration in augmented reality. Automation in Construction 33, 48-60.
Yang, X., Zhou, L., Jiang, H., Tang, Z., Wang, Y., Bao, H., Zhang, G., 2020. Mobile3DRecon: Real-time Monocular 3D Reconstruction on a Mobile Phone. IEEE Transactions on Visualization and Computer Graphics 26, 3446-3456.
Ye, W., Lan, X., Chen, S., Ming, Y., Yu, X.-r., Bao, H., Cui, Z., Zhang, G., 2022. PVO: Panoptic Visual Odometry. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 9579-9589.
Yokoya, N., Yairi, T., Iwasaki, A., 2012. Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion. IEEE Transactions on Geoscience and Remote Sensing 50, 528-537.
Yuan, H., Liu, Z., Cai, Y., Zhao, B., 2018. Research on Vegetation Information Extraction from Visible UAV Remote Sensing Images, 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), pp. 1-5.
Yuniarti, A., Suciati, N., 2019. A Review of Deep Learning Techniques for 3D Reconstruction of 2D Images, 2019 12th International Conference on Information & Communication Technology and System (ICTS), pp. 327-331.
Zhao, C., Sun, L., Stolkin, R., 2020. Simultaneous Material Segmentation and 3D Reconstruction in Industrial Scenarios. Frontiers in Robotics and AI 7.
Zheng, Y., Tang, L., Wang, H., 2021. An improved approach for monitoring urban built-up areas by combining NPP-VIIRS nighttime light, NDVI, NDWI, and NDBI. Journal of Cleaner Production 328, 129488.
Zhu, Q., 2021. Deep Learning for Multi-View Stereo via Plane Sweep: A Survey. arXiv preprint abs/2106.15328.
指導教授 蔡富安(Fuan Tsai) 審核日期 2024-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明