博碩士論文 105383005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.137.189.32
姓名 王志根(Zhigen Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 修整型圓柱型齒輪對之動態特性模擬與實驗驗證
(Dynamic Simulation and Experimental Validation of Modified Cylindrical Gears)
相關論文
★ G10液晶玻璃基板之機械手臂牙叉結構改良與最佳化設計★ 線性齒頂修整對正齒輪之傳動誤差與嚙合頻能量影響分析
★ 沖床齒輪分析與改善★ 以互補型盤狀圓弧刀具創成之曲線齒齒輪有限元素應力分析
★ 修整型曲線齒輪對齒面接觸應力與負載下傳動誤差之研究★ 衛載遙測取像儀反射鏡加工缺陷檢測與最佳光學成像品質之運動學裝配設計
★ 應用經驗模態分解法於正齒輪對之傳動誤差分析★ 小軸交角之修整型正齒輪與凹面錐形齒輪組設計與負載下齒面接觸分析
★ 修整型正齒輪對動態模擬與實驗★ 應用繞射光學元件之齒輪量測系統開發
★ 漸開線與切線雙圓弧齒形之諧波齒輪有限元素分析與齒形設計★ 創成螺旋鉋齒刀之砂輪輪廓設計與最佳化
★ 動力刮削創成內正齒輪之刀具齒形輪廓最佳化設計★ 非接觸式章動減速電機結構設計與模擬
★ Helipoid齒輪接觸特性研究與最佳化分析★ 高轉速正齒輪之多目標最佳化與動態特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究針對圓柱型齒輪對之動態嚙合特性進行分析,共分兩案例進行研究,包括一組具有齒頂修整與導程隆齒修整之正齒輪對的動態特性模擬與實驗驗證,以及一組具有導程隆齒修整與齒面扭曲修整之螺旋齒輪對的動態特性最佳化設計。首先,正齒輪組方面,提出一套系統化的動態特性模擬方法,基於齒輪原理與微分幾何,從推導具線性齒頂修整與導程隆齒修整的圓柱型齒輪齒面數學模式開始,逐步進行無負載之齒面接觸分析以及基於有限元素分析與KISSsoft兩方法的負載下齒面接觸分析,計算傳動誤差、接觸齒印與嚙合剛性等靜態傳動特性,並建立正齒輪系統動態模型,將齒面接觸分析所得的結果代入動態方程式,求解不同負載與轉速下的模擬動態傳動誤差,計算其均方根值並繪製曲線,並將兩方法所得結果進行比較。此外,利用實驗室建立的動態試驗平台進行實驗驗證,由四個加速規分別鎖固於兩個齒輪上,擷取不同負載與轉速下的振動訊號,經過訊號處理後計算實驗動態傳動誤差之均方根值,並成功驗證模擬結果的正確性,能夠以模擬方法預先評估齒輪對的實際動態表現。
螺旋齒輪組之動態特性研究方面,首先建立具8自由度之動態模型以考慮螺旋角造成的影響,並進一步將動態模擬分析流程自動化以將其與最佳化設計方法結合,分別以窮舉法與基因演算法進行最佳化設計與分析,以窮舉法建立動態特性等高線圖,呈現導程隆齒修整量及齒面扭曲修整參數對於動態特性的影響,並以基因演算法找出在工作轉速下具有最低動態傳動誤差之均方根值的修整參數搭配,最後確認優化設計的改善效果,驗證最佳化設計的可行性。
摘要(英) This study aims to analyze the dynamic meshing characteristics of cylindrical gear pairs. Two cases were investigated: the dynamic simulation and experimental verification of a pair of spur gears with tooth tip relief and lead crowning modifications, and the dynamic simulation with improved design of a pair of helical gears with lead crowning and bias modifications.
For the spur gear case, a systematic simulation method for analyzing dynamic characteristic was proposed. First, a mathematical model of the cylindrical gear tooth surface with linear tip-relief and lead crowning modifications was derived based on the gear theory and differential geometry. Finite element analysis and KISSsoft software were used to conduct contact analysis under both no-load and loaded conditions, calculating static transmission errors, contact patterns, and mesh stiffness. Subsequently, a dynamic model of the spur gear system was established. The tooth contact analysis results obtained from the finite element analysis and KISSsoft were input into the dynamic equations to simulate the dynamic transmission errors under different loads and speeds. The root-mean-square (RMS) values were calculated and plotted, and the results obtained from both methods were compared.
For experimental verification, a series of dynamic experiments were conducted using a laboratory-built dynamic testing platform. Four accelerometers were mounted on the gears to capture vibration signals under various loads and speeds. After signal processing, the RMS values of experimental dynamic transmission errors were calculated to verify the accuracy of the simulation results. The actual dynamic performance of gear pairs can be pre-evaluated using the proposed simulation method.
In the study of the dynamic characteristics of helical gear pairs, an 8-degree-of-freedom dynamic model was first established, taking into account the influence of the helical angle. Furthermore, the dynamic simulation analysis process was automated and integrated with the optimization design methods. Both exhaustive search and genetic algorithm approaches were employed for optimization design and analysis. Exhaustive search was used to generate the contour maps of dynamic characteristics, illustrating the effects of lead crowning and bias modifications on the dynamic characteristics. Genetic algorithm was utilized to identify the combination of modification parameters that minimizes the RMS value of dynamic transmission error at operating speed. Finally, the improvements of the optimum design were evaluated, confirming the feasibility of the optimization design.
關鍵字(中) ★ 動態特性分析
★ 動態實驗
★ 齒面扭曲修整
★ 最佳化設計
關鍵字(英) ★ Dynamic characteristics analysis
★ Dynamic experiments
★ Bias modification
★ Optimization design
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XII
符號對照表 XIII
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 齒面修整方法 1
1.2.2 齒輪系統動態模擬與實驗 6
1.2.3 嚙合剛性計算方法 14
1.2.4 最佳化齒輪修整參數設計 15
1.3 研究目的與方法 17
1.4 論文架構 18
第2章 圓柱型齒輪齒面數學模式 19
2.1 前言 19
2.2 修整型假想齒條刀數學模式 19
2.3 圓柱型齒輪齒面數學模式 24
2.4 齒面扭曲修整定義 27
第3章 正齒輪對之動態模擬與實驗驗證 32
3.1 前言 32
3.2 齒面接觸分析 33
3.2.1 傳動誤差分析 33
3.2.2 接觸齒印分析 37
3.2.3 齒面接觸分析結果 40
3.3 負載下齒面接觸分析 41
3.3.1 有限元素分析方法 42
3.3.2 嚙合剛性計算 44
3.3.3 負載下齒面接觸分析結果 47
3.4 基於有限元素法計算剛性之動態模擬 49
3.4.1 正齒輪系統動態模型 49
3.4.2 模擬之動態傳動誤差結果 51
3.5 基於KISSsoft計算剛性之動態模擬 52
3.5.1 嚙合剛性 52
3.5.2 模擬之動態傳動誤差結果與比較 54
3.6 動態實驗 57
3.6.1 動態實驗流程 57
3.6.2 動態試驗平台與實驗架構 58
3.6.3 訊號處理方法 59
3.6.4 實驗之動態傳動誤差結果 61
3.7 結果與討論 62
第4章 具齒面扭曲修整之螺旋齒輪動態特性分析 66
4.1 前言 66
4.2 多自由度之螺旋齒輪系統動態模型 66
4.3 三種齒面扭曲修整之動態特性分析 69
4.4 動態特性最佳化設計 72
4.4.1 窮舉法 72
4.4.2 基因演算法 74
4.5 優化設計之改善效果 76
4.5.1 理想裝配狀態 76
4.5.2 組裝誤差分析 79
4.6 結論 83
第5章 結論與未來工作 85
5.1 結論 85
5.2 未來工作 86
參考文獻 88
附錄 93
附錄一、標準齒輪檢測報表 93
Publication List 97
Journal Paper 97
Conference Paper 97
參考文獻 [1] J. D. Smith, “Gear Noise and Vibration (Second Edition),” New York: Marcel Dekker, 2003.
[2] F. L. Litvin, “Theory of Gearing,” NASA Reference Publication 1212, Washington D. C., 1989.
[3] F. L. Litvin and A. Fuentes, “Gear Geometry and Applied Theory, Second Edition,” Cambridge University Press, New York, 2004.
[4] R. E. Smith, “Solving Gear Noise and Vibration Problems,” American Gear Manufacturers Association, 1985.
[5] BS 436-2:1970, “Specification for Spur and Helical Gears. Part2. Basic Rack Form, Modules and Accuracy,” British Standards Institution, London.
[6] ISO 6336:2006, Parts 1-3, Organization for International Standardizations, Belgium.
[7] H. Sigg, “Profile and Longitudinal Corrections on Involute Gears,” AGMA 109.16, 1965.
[8] S. Kato, K. Yonekura and T. Omori, “Analytical Procedure for Gear Tooth Surface Modification Reducing Gear Noise,” SAE Technical Papers, p. 852273, 1985.
[9] R. H. Hsu and Z. H. Fong, “Novel Variable-Tooth-Thickness Hob for Longitudinal Crowning in the Gear-Hobbing Process,” 13th World Congress in Mechanism and Machine Science, Guanajuato, México, 19-25 June, 2011.
[10] R. H. Hsu and H. H. Su, “Tooth Contact Analysis for Helical Gear Pairs Generated by a Modified Hob with Variable Tooth Thickness,” Mechanism and Machine Theory, vol. 71, pp. 40-51, 2014.
[11] V. T. Tran, “Effects of Assembly Errors on Tooth Contact Ellipses and Transmission Errors of a Double-Crowned Meshing Gear Pair,” Asian Research Publishing Network (ARPN), Journal of Engineering and Applied Sciences, vol. 11, pp. 9341-9349, 2016.
[12] V. T. Tran, R. H. Hsu and C. B. Tsay, “A Novel Finish Hobbing Methodology for Longitudinal Crowning of a Helical Gear With Twist-Free Tooth Flanks by Using Dual-Lead Hob Cutters,” Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, vol. 11, 2014.
[13] V. T. Tran, R. H. Hsu and C. B. Tsay, “Tooth Contact Analysis for a Double-Crowned Involute Helical Gear with Twist-Free Tooth Flanks Generated by Dual-Lead Hob Cutters,” ASME, Journal of Mechanical Design, vol. 137, p. 052601, 2015.
[14] V. T. Tran, R. H. Hsu and C. B. Tsay, “Study on the Anti-Twist Helical Gear Tooth Flank With Longitudinal Tooth Crowning,” ASME, Journal of Mechanical Design, vol. 136, p. 061007, 2014.
[15] Y. R. Wu, V. T. Tran and R. H. Hsu, “A Tooth Flank Crowning Method by Applying a Novel Crossed Angle Function Between the Hob Cutter and Work Gear in The Gear Hobbing Process,” MATEC Web of Conferences, vol. 52, p. 03001, 2016.
[16] M. Cirelli, O. Giannini, P. P. Valentini and E. Pennestrì, “Influence of Tip Relief in Spur Gears Dynamic Using Multibody Models with Movable Teeth,” Mechanism and Machine Theory, vol. 152, p. 103948, 2020.
[17] A. Kahraman and G. Blankenship, “Experiments on Nonlinear Dynamic Behavior of an Oscillator with Clearance and Periodically Time-varying Parameters,” ASME, Journal of Applied Mechanics, vol. 64, pp. 217-226, 1997.
[18] R. G. Parker, S. M. Vijayakar and T. Imajo, “Non-linear Dynamic Response of a Spur Gear Pair: Modelling and Experimental Comparisons,” Journal of Sound and Vibration, vol. 237, pp. 435-455, 2000.
[19] S. Cho, J. Choi, J. H. Choi and S. Rhim, “Numerical Estimation of Dynamic Transmission Error of Gear by Using Quasi-flexible-body Modeling Method,” Journal of Mechanical Science and Technology, vol. 29, pp. 2713-2719, 2015.
[20] K. Umezawa, T. Suzuki, H. Houjoh and T. Sato, “Vibration of Power Transmission Helical Gear -The Effect of Contact Ratio on the Vibration,” Bulletin of the JSME, vol. 28, pp. 694-700, 1985.
[21] S. Matsumura, K. Umezawa and H. Houjoh, “Rotational Vibration of a Helical Gear Pair Having Tooth Surface Deviation During Transmission of Light Load (4th Report, Effect of Tooth Profile Deviation),” Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, vol. 62, pp. 4324-4331, 1996.
[22] Y. Ogawa, S. Masumura, H. Houjoh, T. Sato and K. Umezawa, “Rotational Vibration of a Spur Gear Pair Considering Tooth Helix Deviation (Development of Simulator and Verification),” JSME International Journal, Series C: Mechanical Systems, Machine Elements and Manufacturing, vol. 43, pp. 423-431, 2000.
[23] Y. Ogawa, S. Matsumura, H. Houjoh and T. Sato, “Rotational Vibration of a Spur Gear Pair Having Tooth Helix Deviation (Effect of Lead Modifications),” ASME, Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Chicago, IL; United States, pp. 433-440, 2003.
[24] H. Houjoh, C. Ratanasumawong and S. Matsumura, “Utilization of Synchronous Averaging for Inspection of Tooth Surface Undulations on Gears (Localization of Nonmesh Harmonic Components to Individual Gear),” ASME, Journal of Applied Mechanics, vol. 74, p. 269, 2007.
[25] C. Ratanasumawong, S. Matsumura and H. Houjoh, “An Alternative Method for Evaluating Gear Tooth Surface Geometry Based on Synchronous Average of Vibration of a Gear Pair,” ASME, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, NV; United States, pp. 395-403, 2008.
[26] C. Ratanasumawong, S. Matsumura, T. Tatsuno and H. Houjoh, “Estimating Gear Tooth Surface Geometry by Means of the Vibration Measurement: Distinction of the Vibration Characteristics of Gears with Tooth Surface Form Error,” ASME, Journal of Mechanical Design, vol. 131, p. 101003, 2009.
[27] A. Kahraman and R. Singh, “Non-Linear Dynamics of a Spur Gear Pair,” Journal of Sound and Vibration, vol. 142, pp. 49-75, 1990.
[28] A. Kahraman and R. Singh, “Non-Linear Dynamics of a Geared Rotor-Bearing System with Multiple Clearances,” Journal of Sound and Vibration, vol. 144, pp. 469-506, 1991.
[29] A. Kahraman and R. Singh, “Interactions between Time-Varying Mesh Stiffness and Clearance Non-Linearities in a Geared System,” Journal of Sound and Vibration, vol. 146, pp. 135-156, 1991.
[30] A. Kahraman, “Effect of Axial Vibrations on the Dynamics of a Helical Gear Pair,” ASME, Journal of Vibration and Acoustics, vol. 115, pp. 33-39, 1993.
[31] M. Kubur, A. Kahraman, D. M. Zini and K. Kienzle, “Dynamic Analysis of a Multi-Shaft Helical Gear Transmission by Finite Elements: Model and Experiment,” ASME, Journal of Vibration and Acoustics, vol. 126, p. 398, 2004.
[32] M. A. Hotait and A. Kahraman, “Experiments on the Relationship between the Dynamic Transmission Error and the Dynamic Stress Factor of Spur Gear Pairs,” Mechanism and Machine Theory, vol. 70, pp. 116-128, 2013.
[33] A. Kahraman and G. Blankenship, “Effect of Involute Tip Relief on Dynamic Response of Spur Gear Pairs,” ASME, Journal of Mechanical Design, vol. 121, pp. 313-315, 1999.
[34] K. Umezawa, S. Wang, H. Houjoh and S. Matsumura, “Investigation of the Dynamic Behavior of a Helical Gear System (4th Report, Dynamic of Gear Pairs with Bias Modification),” Transactions of the Japan Society of Mechanical Engineers, Part C, vol. 64, pp. 1414-1420, 1998.
[35] B. Yuan, S. Chang, G. Liu, L. Chang and L. Liu, “Optimization of Bias Modification and Dynamic Behavior Analysis of Helical Gear System,” Advances in Mechanical Engineering, vol. 9, pp. 1-14, 2017.
[36] D. C. H. Yang and J. Y. Lin, “Hertzian Damping, Tooth Friction and Bending Elasticity in Gear Impact Dynamics,” ASME, Journal of Mechanisms, Transmissions, and Automation in Design, vol. 109, pp. 189-196, 1987.
[37] P. Sainsot and P. Velex, “Contribution of Gear Body to Tooth Deflections - A New Bidimensional Analytical Formula,” ASME, Journal of Mechanical Design, vol. 126, pp. 748-752, 2004.
[38] P. Velex and M. Ajmi, “On the Modelling of Excitations in Geared Systems by Transmission Errors,” Journal of Sound and Vibration, vol. 290, pp. 882-909, 2006.
[39] J. Bruyère and P. Velex, “A Simplified Multi-Objective Analysis of Optimum Profile Modifications in Spur and Helical Gears,” Mechanism and Machine Theory, vol. 80, pp. 70-83, 2014.
[40] X. Gu, P. Velex, P. Sainsot and J. Bruyère, “Analytical Investigations on the Mesh Stiffness Function of Solid Spur and Helical Gears,” ASME, Journal of Mechanical Design, vol. 137, p. 063301, 2015.
[41] I. Howard, S. Jia and J. Wang, “The Dynamic Modeling of a Spur Gear in Mesh Including Friction and a Crack,” Mechanical Systems and Signal Processing, vol. 15, pp. 831-853, 2001.
[42] Chun Hung Lee, “Non-Linear Contact Analysis of Meshing Gears,” M.S. thesis, San Luis Obispo: The Faculty of California Polytechnic State University, 2009.
[43] G. Bonori, M. barbieri and F. Pellicano, “Optimum Profile Modifications of Spur Gears by Means of Genetic Algorithms,” Journal of Sound and Vibration, vol. 313, pp. 603-616, 2008.
[44] Y. F. Liu, J. B. Lai, H. J. Yue, X. Y. Xu and S. Li, “Research on the Noise and Vibration of the Helical Gear,” Journal of Vibration, Measurement & Diagnosis, vol. 36, pp. 960-966, 2016.
[45] Y. Hu, T. J. Lin, J. Zhao and H. S. Lu, “Meshing Performance Analysis and Gear Modification Optimization of the Helical Gear Pair of Vertical Mill Gearbox,” Chinese Journal of Engineering Design, vol. 23, pp. 276-287, 2016.
[46] ISO 21771:2007, “Gears – Cylindrical Involute Gears and Gear Pairs – Concepts and Geometry,” Organization for International Standardizations.
[47] J. Lange, “How Are You Dealing with the Bias Error in Your Helical Gears,” GearTechnology, pp. 47-54, May, 2009.
[48] KISSsoft AG, “KISSsoft Release 2018 User Manual,” 2018.
[49] J. H. Kuang and J. F. Lin, “Accelerometer Pair Measurements for Shaft Dynamic Parameters Analysis,” Proceedings of SPIE - The International Society for Optical Engineering, pp. 1649-1655, 1994.
指導教授 陳怡呈 審核日期 2023-5-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明