博碩士論文 105521088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.17.175.239
姓名 張瀚元(CHANG HAN-YUAN)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 可調式吸收帶止濾波器之研製
(Design of Tunable Absorptive Bandstop Filters)
相關論文
★ 用於行動上網裝置之智慧型陣列天線★ 吸收式帶止濾波器之研製
★ 一維及二維切換式波束掃描陣列天線★ 寬頻微型化六埠網路接收機
★ 具有良好選擇度的寬頻吸收式帶止濾波器★ 微小化吸收式帶止濾波器之通帶改善
★ 共面波導帶通濾波器之研製★ 微帶耦合線帶通濾波器與雙工器研製
★ 宇宙微波背景輻射陣列望遠鏡接收機 之校準信號源研製★ K-Band及Q-Band毫米波帶通濾波器設計
★ 薄膜製程射頻被動元件設計★ 微波帶通低雜訊放大器設計
★ 積體式微波帶通濾波器之研製★ 應用於高位元率無線傳輸系統之V頻段漸進式開槽天線陣列
★ 以多重耦合線實現多功能帶通濾波器★ 以單刀雙擲帶通濾波器實現高整合度射頻前端收發系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出兩種新式的可調式吸收帶止濾波器設計,能同時具有頻率可調特性與良好的功率消耗效果。本研究藉由在傳統反射式帶止濾波器中加入可變電容,藉此能用電壓控制其電容值而改變傳輸線等效電氣長度與共振頻率,使其具有止帶中心頻率可調之效果,並根據窄頻或寬頻應用,提出兩種設計方式。為了驗證所提出的設計流程,本研究於印刷電路板上實現各電路,在窄頻可調式吸收帶止濾波器設計上,可調頻率範圍為1.95~3.29 GHz,可調度為69%,止帶抑止度為7.621~18.633 dB,3-dB止帶頻寬為7.7~5.2%,功率消耗則從82.687%至98.335%,可看到確實有調頻效果與良好的吸收式止帶特性。而接續並以串接設計使其變為雙頻可調式吸收帶止濾波器,可調頻率範圍分別為2.41~3.88 GHz與3.30~4.89 GHz,其可調度為61%與39%,分別的止帶抑止度為6.759~16.785 dB及6.075~15.010 dB,3-dB止帶頻寬為7.5~5.7%與6.7~5.7%,功率消耗各為78.790%至98.335%與73.494%至95.965%,可看到依然具有功率消耗效果且此兩止帶中心頻率為獨立可調。最後在寬頻可調式吸收帶止濾波器設計方面,實現一頻率可調範圍為520~710 MHz,可調度為37%,止帶中心抑止度為63.893~89.003 dB,其30-dB止帶頻寬為23.9~22.1%,而大於90%之功率消耗頻寬則為35.9~13.5%。本論文提出之兩新型可調式吸收帶止濾波器設計流程簡單,且具有相當高的設計彈性,頻寬、階數、起始頻率選擇與頻率可調範圍,都可隨著系統規格需求而改變,進而快速地設計出可調式吸收帶止濾波器,提升設計效率。
摘要(英) This thesis presents two types of tunable absorptive bandstop filter (TABSF) design, with both a tunable center frequency and a high power dissipation. Specifically, multiple varactors and a resistor are added to the conventional reflective bandstop filter to achieve the proposed tunable absorptive bandstop filter designs. The capacitance of the varator can be controlled by the bias voltage to change the equivalent electrical length and thus the resonance frequency of the transmission line resonators. Therefore, the stopband center frequency becomes tunable. In addition, the resistor provides the proper absorption of the input signal, which turns the reflective bandstop filter into an absorptive one. Two designs are proposed for narrowband or wideband applications. To validate the proposed design methods, test circuits implemented on a printed circuit board are realized, too. For the proposed narrowband tunable absorptive bandstop filter design, the frequency tuning range is 1.95~3.29 GHz (69% tenability). The stopband rejection level is around 7.621~18.633 dB and the 3-dB rejection bandwidth is around 7.7~5.2%.The corresponding power dissipation at the stopband center frequency is around 82.687~98.335%.Next, a dual-band tunable absorptive bandstop filter is realized by the cascade of two proposed narrowband tunable absorptive bandstop filters. The frequency tuning range for the first and second stopbands are 2.41~3.88 GHz (61% tunability) and 3.30~4.89 GHz (39% tunability) respectively. The stopband rejection level is 6.759~16.785 dB for the first stopband while it is 6.075~15.010 dB for the second stopband. The 3-dB rejection bandwidths are 7.5~5.7% and 6.7~5.7% respectively while the power dissipation is 78.790~98.335% and 73.494~95.965% respectively for the first and second stopbands. Finally, the stopband center frequency of the proposed wideband tunable absorptive bandstop filter can be tuned from 520 to 710 MHz (37% tunability). The stopband rejection level is around 63.893~89.003 dB and the 30-dB rejection bandwidth is 23.9~22.1%. The bandwidth for larger than 90% power dissipation is around 35.9~13.5%. The proposed tunable absorptive bandstop filters feature a simple design flow and a high design flexibility. They can be easily designed with the desired stopband center frequency, stopband bandwidth and filter order to meet the system specifications.
關鍵字(中) ★ 帶止濾波器
★ 可調式
★ 吸收式
關鍵字(英)
論文目次 目錄
論文摘要 I
Abstract II
致謝 III
目錄 IV
圖形列表 VI
表格列表 XIII
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 1
1.3 章節介紹 5
第二章 窄頻可調式吸收帶止濾波器設計 6
2.1 窄頻可調式帶止濾波器-電路架構 6
2.2 窄頻可調式帶止濾波器-電路設計 9
2. 2. 1 設計流程 9
2. 2. 2 設計理論驗證 10
2. 2. 3 電路實作與結果比較 14
2.3 窄頻可調式吸收帶止濾波器-電路架構 27
2.4 窄頻可調式吸收帶止濾波器-電路設計 29
2. 4. 1 設計流程 29
2. 4. 2 設計理論驗證 29
2. 4. 3 電路實作與結果比較 32
2.5 小結 43
第三章 雙頻可調式吸收帶止濾波器設計 44
3.1 雙頻可調式帶止濾波器-電路架構 44
3.2 雙頻可調式帶止濾波器-電路設計 45
3. 2. 1 理想電路設計 45
3. 2. 2 電路實作與結果比較 47
3.3 雙頻可調式吸收帶止濾波器-電路架構 57
3.4 雙頻可調式吸收帶止濾波器-電路設計 58
3. 4. 1 理想電路設計 58
3. 4. 2 電路實作與結果比較 60
3.5 小結 72
第四章 寬頻可調式吸收帶止濾波器設計 73
4.1 寬頻可調式帶止濾波器-電路架構 73
4.2 寬頻可調式帶止濾波器-電路設計 75
4. 2. 1 設計流程 75
4. 2. 2 設計理論驗證 76
4. 2. 3 電路實作與結果比較 79
4.3 寬頻可調式吸收帶止濾波器-電路架構 87
4.4 寬頻可調式吸收帶止濾波器-電路設計 89
4. 4. 1 設計流程 89
4. 4. 2 設計理論驗證 89
4. 4. 3 電路實作與結果比較 91
4.5 小結 100
第五章 結論 101
參考文獻 106
參考文獻 [1] Y. Ou and G. M. Rebeiz, "Lumped-element fully tunable bandstop filters for cognitive radio applications," in IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 10, pp. 2461-2468, Oct. 2011.
[2] K. W. Wong, R. R. Mansour and G. Weale, "Compact tunable bandstop filter with wideband balun using IPD technology for frequency agile applications," 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, 2015, pp. 1-3.
[3] J. Cai, Y. Yang, W. Qin and J. Chen, "Wideband tunable differential bandstop filter based on double-sided parallel-strip line," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 8, no. 10, pp. 1815-1822, Oct. 2018.
[4] A. Ebrahimi, T. Baum, J. Scott and K. Ghorbani, "Continuously tunable dual-mode bandstop flter," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 5, pp. 419-421, May 2018.
[5] E. J. Naglich, A. C. Guyette and D. Peroulis, "High-Q intrinsically-switched quasi-absorptive tunable bandstop filter with electrically-short resonators," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, 2014, pp. 1-4.
[6] M. D. Hickle, M. D. Sinanis and D. Peroulis, "Design and implementation of an intrinsically-switched 22–43 GHz tunable bandstop filter," 2016 IEEE 17th Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, FL, 2016, pp. 1-3.
[7] M. Abdelfattah, M. Hickle, M. D. Sinanis, Y. Wu and D. Peroulis, "A 12–20 GHz passively-compensated tunable bandstop filter with 40-dB notch level," 2018 IEEE/MTT-S International Microwave Symposium - IMS, Philadelphia, PA, 2018, pp. 571-574.
[8] E. J. Naglich, M. Sinani, Sungwook Moon and D. Peroulis, "High-Q MEMS-tunable W-band bandstop resonators," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, 2014, pp. 1-3..
[9] M. D. Hickle, M. D. Sinanis and D. Peroulis, "Tunable high-isolation W-band bandstop filters," 2015 IEEE MTT-S International Microwave Symposium, Phoenix, AZ, 2015, pp. 1-4.
[10] L. Cai, H. Xu, M. Pivnenko and D. Chu, "A tunable wideband microstrip bandstop filter based on liquid crystal materials," 2014 IEEE International Conference on Communiction Problem-solving, Beijing, 2014, pp. 656-657.
[11] W. Yang, M. D. Hickle, D. Psychogiou and D. Peroulis, "L-band high-Q tunable quasi-absorptive bandstop-to-all-pass filter," 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, 2017, pp. 271-273.
[12] B. Kim, J. Lee, J. Lee, B. Jung and W. J. Chappell, "RF CMOS integrated on-chip tunable absorptive bandstop filter using Q-tunable resonators," in IEEE Transactions on Electron Devices, vol. 60, no. 5, pp. 1730-1737, May 2013.
[13] T. Lee, J. Lee, E. J. Naglich and D. Peroulis, "Octave tunable lumped-element notch filter with resonator-Q-independent zero reflection coefficient," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, 2014, pp. 1-4.
[14] T. Lee, B. Kim, K. Lee, W. J. Chappell and J. Lee, "Frequency-tunable low-Q lumped-element resonator bandstop filter with high attenuation," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 11, pp. 3549-3556, Nov. 2016.
[15] J. S. Chieh and J. Rowland, "A fully tunable C-band reflectionless bandstop filter using L-resonators," 2016 46th European Microwave Conference (EuMC), London, 2016, pp. 131-133.
[16] T. Snow, J. Lee and W. J. Chappell, "Tunable high quality-factor absorptive bandstop filter design," 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, 2012, pp. 1-3.
[17] M. D. Hickle and D. Peroulis, "Tunable absorptive bandstop filter with an ultra-broad upper passband," 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, 2017, pp. 733-736.
[18] Y. Wang, F. Wei, H. Xu, B. Liu and X. Shi, "A tunable dual-stop-band filter using spurlines," 2012 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shenzhen, 2012, pp. 1-4.
[19] Y. Cho and G. M. Rebeiz, "Tunable 4-pole dual-notch filters for cognitive radios and carrier aggregation systems," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 4, pp. 1308-1314, April 2015.
[20] C. Ko, A. Tran and G. M. Rebeiz, "Tunable 500–1200-MHz dual-band and wide bandwidth notch filters using RF transformers," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 6, pp. 1854-1862, June 2015.
[21] D. Psychogiou, R. Mao and D. Peroulis, "Series-cascaded absorptive notch-filters for 4G-LTE radios," 2015 IEEE Radio and Wireless Symposium (RWS), San Diego, CA, 2015, pp. 177-179.
[22] T. Sinha, A. K. Pandey and R. K. Chauhan, "A compact dualband bandpass-to-bandstop tunable filter for wireless applications," 2016 International Conference on Emerging Trends in Communication Technologies (ETCT), Dehradun, 2016, pp. 1-4.
[23] H. G. Alrwuili and T. S. Kalkur, "A novel compact dual-band bandstop filter (DBBSF) using spurline & stepped-impedance resonator with a tunable BST capacitors," 2017 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF)/International Workshop on Acoustic Transduction Materials and Devices (IWATMD)/Piezoresponse Force Microscopy (PFM), Atlanta, GA, 2017, pp. 9-14.
[24] Z. Chen, S. Zhang and Q. Chu, "Dual-band reconfigurable bandstop filter with independently controlled stopbands and constant absolute bandwidths," 2017 IEEE MTT-S International Microwave Symposium (IMS), Honololu, HI, 2017, pp. 926-928.
[25] 邵致穎, "吸收式帶止濾波器之研製,"碩士論文 國立中央大學, June 2014.
[26] 簡世桓, "具有良好選擇度的寬頻吸收式帶止濾波器,"碩士論文 國立中央大學, January 2017.
[27] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Micro-wave Applications. New York: Wiley, 2001.
[28] K. Hettak, G. A. Morin and M. G. Stubbs, "The integration of thin-film microstrip and coplanar technologies for reduced-size MMICs," in IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 1, pp. 283-291, Jan. 2005.
[29] T.-S. Horng, J.-M. Wu, L.-Q. Yang and S.-T. Fang, "A novel modified-T equivalent circuit for modeling LTCC embedded inductors with a large bandwidth," in IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 12, pp. 2327-2333, Dec. 2003.
指導教授 林祐生 審核日期 2019-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明