以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:40 、訪客IP:13.59.95.170
姓名 曾國晉(Guo-Jin Tseng) 查詢紙本館藏 畢業系所 電機工程學系 論文名稱 使用微製程之鐵電可調貼片天線與 E形貼片天線
(Ferroelectric-Based Tunable Patch Antenna and E-Shape Patch Antenna by Microfabrication)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在本論文中,我們開發了微製程流程來製作了兩種微帶貼片天線。在第二章中,我們設計並製作了操作於Ku頻段的可調微帶貼片天線在高電阻率矽基板上。我們將八個鐵電可變電容以一邊各四個的方式等間距負載於微帶貼片天線的兩個輻射槽孔,藉由調整鐵電可變電容的偏壓來改變天線的共振頻率。模擬結果顯示,當鐵電可變電容容值由0.25 pF調至0.1 pF時,天線之操作頻率會由14.5 GHz變化至18 GHz,可調頻率範圍為21.9%。在可調頻率範圍內,最大天線增益為−2.38 dBi。我們開發了矽基板貫孔工序,使得鐵電可變電容可以經由貫孔接至基板背面的地,讓可調微帶貼片天線得以實現。量測結果顯示,當鐵電可變電容偏壓由0 V調至9 V時,天線操作頻率會由16.9 GHz變化至17.98 GHz,可調頻率範圍為6.2%。經重新模擬,我們推測可能有些可變電容的貫孔並未貫通,造成可調頻率範圍的縮減
。
在第三章中,我們設計並製作了操作於28 GHz的孔徑耦合E形貼片天線於兩面拋光的藍寶石基板上。貼片製作於基板正面,孔徑及微帶線則製作於基板背面。我們使用具背曝功能的曝光機來對準正面與背面的圖樣。微帶線的介電質使用苯並環丁烯;我們並開發了蝕刻苯並環丁烯的製程工序來製作貫孔。量測結果顯示,孔徑耦合E形貼片天線返回損耗 > 10 dB之頻率範圍為28.86 GHz至31.09 GHz,頻寬為8.2%。量測到的操作頻率較模擬值高,經重新模擬,我們發現模擬時使用的基板介電常數應由11.5改為10。
摘要(英) In this thesis, microfabrication processes are developed to fabricate two types of microstrip patch antennas. In Chapter 2, a Ku-band tunable microstrip patch antenna is designed and fabricated on high-resistivity silicon substrate. Eight ferroelectric varactors are loaded, equally spaced with four on each side, along the two radiating slots of the patch antenna. By changing the bias voltage of the ferroelectric varactors, the resonant frequency of the antenna can be adjusted. Simulation results show that, when the capacitance of the varactors varies from 0.25 pF to 0.1 pF, the operating frequency of the antenna would go from 14.5 GHz to 18 GHz, corresponding to a frequency tuning range of 21.9%. Within the frequency tuning range, the maximum antenna gain is −2.38 dBi. We have developed the recipe for fabricating through substrate via (TSV), which allows us to connect the ferroelectric varactors to the ground on the back of the substrate, making tunable patch antenna possible. Measurement results show that, when the bias voltage of the ferroelectric varactors is changed from 0 V to 9 V, the operating frequency of the antenna varies from 16.9 GHz to 17.98 GHz, corresponding to a frequency tuning range of 6.2%. After re-simulation, we suspect that TSV for some of the ferroelectric varactors may not be successfully punched through, causing the reduction of the frequency tuning range.
In Chapter 3, a 28-GHz aperture coupled E-shape patch antenna is designed and fabricated on double-side-polished sapphire substrate. Patch is fabricated on the frontside of the substrate, whereas aperture and microstrip line are fabricated on the backside. Double-side mask aligner is used to align the patterns on the front and back sides of the substrate. Benzocyclobutene (BCB) is used as the dielectric material for the microstrip line. Recipe is developed to etch the BCB layer to make via holes. Measurement results of the aperture-coupled E-shape antenna show that, the frequency range where return loss is greater than 10 dB is from 28.86 GHz to 31.09 GHz, the corresponding bandwidth is 8.2%. The measured operating frequency is higher than the value predicted by the simulation. After re-simulation, it is found that the dielectric constant of the substrate used in the simulation should be changed from 11.5 to 10.
關鍵字(中) ★ 天線
★ E形貼片天線
★ 可調貼片天線
★ Ku頻段
★ 苯並環丁烯
★ 微製程關鍵字(英) ★ Antenna
★ E-Shape Patch Antenna
★ Tunable Patch Antenna
★ Ku-band
★ BCB
★ Microfabrication論文目次 摘要 i
Abstract ii
誌 謝 iv
目 錄 V
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1–1 研究動機與簡介 1
1–2 文獻回顧 2
1–2–1 鐵電可調天線之文獻回顧 2
1–2–2 E型貼片天線之文獻回顧 5
1–3 論文架構 7
第二章 使用鐵電可變電容之頻率可調微帶貼片天線 8
2–1 簡介 8
2–2 天線設計流程 9
2–2–1 微帶天線理論 9
2–2–2 負載可變電容電路分析 12
2–2–3微帶天線尺寸設計 13
2–2–4傳輸線饋入方式 18
2–2–5光罩設計方法 27
2–3 電路製作流程 29
2–3–1 製程大綱 29
2–3–2 鐵電電容製作 30
2–3–3 氮化矽保護層開孔 37
2–3–4 接腳層與貼片天線製作流程 38
2–3–5 BCB保護層製作流程 43
2–3–6 矽基板貫孔(Through Substrate Vias, TSV)與背面地製作 44
2–3–7 BCB保護層開孔製作 48
2–4 量測與討論 49
2–4–1 量測結果分析 49
2–4–2 重新模擬與量測比較 54
2–5 結論 56
第三章 E形孔徑耦合貼片天線尺寸設計 57
3–1 簡介 57
3–2 天線設計流程 59
3–2–1 孔徑耦合貼片天線尺寸設計 59
3–2–2 E形天線參數設計 63
3–2–3光罩設計方法 67
3–3 電路製作流程 73
3–3–1 正面天線製作流程 73
3–3–2 背面地製作流程 76
3–3–3 介電層製作流程 77
3–3–4 饋入線製作流程 78
3–4 量測與討論 81
3–4–1 量測結果分析 81
3–4–2 重新模擬與量測比較 87
3–5 結論 91
第四章 結論 92
參考文獻 94
附錄一 97
附錄二 124參考文獻 [1] C. A. Balanis, Antenna Theory: Analysis and Design, 3rd ed. John Wiley & Sons, Inc., 2005.
[2] P. Bhartia and I. J. Bahl, “Frequency agile microstrip antennas,” Microw. J., pp. 67–70, Oct. 1982.
[3] Z. Jin and A. Mortazawi, “An L-band tunable microstrip antenna using multiple varactors,” in IEEE AP-S Symp. Digest, 2003, pp. 524–527.
[4] P.-L. Chi, R. Waterhouse, and T. Itoh, “Compact and tunable slot-loop antenna,” IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1394–1397, Apr. 2011. C.-T.
[5] H. Jiang, M. Patterson, D. Brown, C. Zhang, K. Pan, G. Subramanyam, D. Kuhl, K. Leedy, and C. Cerny, “Miniaturized and reconfigurable CPW square ring slot antenna loaded with ferroelectric BST thin film varactors,” IEEE Trans. Antennas Propag., vol. 60, no. 7, pp. 3111–3119, 2012.
[6] H.-Y. Li, H.-P. Chen, S.-C. Chen, C.-H. Tai, and J.-S. Fu, “A tunable slot loop antenna using interdigitated ferroelectric varactors,” in Proc. IEEE AP-S Int. Symp., Jul. 2012, pp. 1–2.
[7] H.-Y. Li, H.-P. Chen, S.-C. Chen, C.-H. Tai, and J.-S. Fu, “A tunable slot loop antenna using interdigitated ferroelectric varactors,” in Proc. IEEE AP-S Int. Symp., Jul. 2012, pp. 1–2.
[8] H.-Y. Li, S.-C. Chen, H.-P. Chen, W.-C. Ran, and J.-S. Fua, “A frequency-reconfigurable slot loop antenna using ferroelectric MIM capacitors,” IEICE Electronics Express, vol. 10, no. 16, Article ID 20130521, 2013.
[9] Hsiao-Yun Li, Che-Ting Yeh, Jun-Jie Huang, Che-Wei Chang, Chen-Tsung Yu, and Jia-Shiang Fu, “CPW-fed frequency-reconfigurable slot-loop antenna with a tunable matching network based on ferroelectric varactors,” IEEE antenna and Wireless Propagation Letters, vol. 14, pp. 614–617, 2015.
[10] C.-T. Yeh, “Frequency-reconfigurable antenna using ferroelectric varactors and PIN diodes,” Master dissertation, National Central University, 2015.
[11] T.-Y. Chen, “Frequency reconfigurable microstrip patch antennas using ferroelectric varactors,” Master dissertation, National Central University, 2017.
[12] H.-Y. Li, “Analog and digital phase shifters based on all-pass networks,” Master dissertation, National Central University, 2014.
[13] C.-T. Yu, “An integrated passive device process featuring ferroelectric varactors and its application in the fabrication of a microwave phase shifter,” Master dissertation, National Central University, 2015.
[14] F. Yang, X. X. Zhang, X. Ye, and Y. Rahmat-Samii, “Wide-band E-shaped patch antennas for wireless communications,” Trans. Antennas Propagat., vol. 49, pp. 1094–1100, July 2001.
[15] Z.-C. Peng, “A Tuneable Microstrip Patch Antenna Using Ferroelectric Varactors and Through Substrate Vias on Silicon,” Master dissertation, National Central University, 2018.
[16] T. Riekkinen, J. Molarius, and M. Ylilammi, “Electrode metallization for high permittivity oxide RF thin film capacitors,” J. Eur. Ceram. Soc., vol. 27, pp. 2983–2987, 2007.
[17] H. Gamble, B. M. Armstrong, S. J. N. Mitchell, Y. Wu, V. F. Fusco, and J. A. C. Stewart, “Low-loss CPW lines on surface stabilized high resistivity silicon,” IEEE Microw. uided Wave Lett., vol. 9, no. 10, pp. 395–397, Oct. 1999.
[18] 蕭宏,半導體製程技術導論,第三版,全華圖書股份有限公司,2014.
[19] C. R. White and G. M. Rebeiz, “Single- and dual-polarized tunable slot-ring antennas,” IEEE Trans. Antennas Propag., vol. 57, no. 1, pp. 19–26, Jan. 2009.
[20] P.-L. Chi, R. Waterhouse, and T. Itoh, “Compact and tunable slot-loop antenna,” IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1394–1397, Apr. 2011.
[21] H.-Y. Li, S.-C. Chen, H.-P. Chen, W.-C. Ran, and J.-S. Fu, “A frequency-reconfigurable slot loop antenna using ferroelectric MIM capacitors,” IEICE Electron. Exp., vol. 10, no. 16, p. 20130521, Aug. 2013.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2019-8-20 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare