![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:5 、訪客IP:3.141.40.242
姓名 石豐維(Feng-Wei Shih) 查詢紙本館藏 畢業系所 資訊工程學系 論文名稱 快速5G下行傳輸方法
(Agile MAC scheduler for 5G downlink transmission)檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 5G 系統希望能支持更高的傳輸速率及更大量及多樣化的行動裝置,為此採用了載波聚合(Carrier Aggregation)、混和波束賦型(Hybrid Beamforming) 等技術,為了在採用以上技術的同時滿足5G 的延遲要求,我們提出了一套快速有效的方法來進行5G 的下行資源分配。5G系統採用部分頻寬(Bandwidth Part) 的特殊技術來縮減使用者設備需要支援的頻寬大小,我們利用此特性在每一個載波上的每一個部分頻寬來平行化進行資源分配。本論文針對5G 系統的各項限制建立一套整數線性規劃的數學模型,並且驗證平行化後能有效的降低模型大小及其運算時間,同時在系統總和輸出上超越一般的起發式演算法。 摘要(英) The 5G system is expected for supporting higher data rate, much more User Equipments (UEs) and diverse applications. 5G system adopt many techniques, such as Carrier Aggregation (CA) and Hybrid Beamforming. Bandwidth Part (BWP) is a new concept adopted to reduce the bandwidth which UEs are required to support. With the constraints corresponding to those techniques, we proposed an efficient method for 5G downlink transmission. We adopt this characteristic to parallel schedule on each BWP of each carrier. In this paper, we model the 5G scheduling problem into an Integer Linear Programming problem, and analyse the performance of our parallel architecture can outperform the general heuristic method. 關鍵字(中) ★ 5G
★ 資源管理
★ 排程關鍵字(英) ★ 5G
★ Resource management
★ Scheduling論文目次 中文摘要 i
Abstract ii
Contents iii
List of Figures v
1 Introduction 1
2 Background 7
2.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Carrier aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Numerology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Bandwidth part . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Massive MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 Overview of scheduling problem in 5G 16
3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.1 Channel Condition . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.2 UE fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Constraints of 5G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.1 Constraints corresponding to CA . . . . . . . . . . . . . . . . . . 20
3.2.2 Constraints corresponding to MIMO . . . . . . . . . . . . . . . . 20
3.2.3 Constraints corresponding to BWP . . . . . . . . . . . . . . . . . 21
3.2.4 Constraints corresponding to RA type . . . . . . . . . . . . . . . 21
4 Proposed method 23
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 CC assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 UE grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 BWP selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Intra BWP Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.1 problem formulation . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5.3 Optimal RA type for special BWP size . . . . . . . . . . . . . . 30
5 Performance analysis and evaluation 34
5.1 Performance of intra-BWP Scheduling . . . . . . . . . . . . . . . . . . . 36
5.2 Comparison between joint scheduling and independent scheduling . . . . 41
5.3 Comparison of related works . . . . . . . . . . . . . . . . . . . . . . . . 45
6 Conclusion 51
Bibliography 52參考文獻 [1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What Will 5G Be?,” IEEE Journal on Selected Areas in Communications, vol. 32, pp. 1065–1082, 2014.
[2] M.-S. Alouini and A. J. Goldsmith, “Area Spectral Efficiency of Cellular Mobile Radio Systems,” IEEE Transactions on Vehicular Technology, vol. 48, pp. 1047–1066, 1999.
[3] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); ElectroMagnetic Compatibility (EMC) requirements for mobile terminals and ancillary equipment,” Technical Specification (TS) 36.124, 3rd Generation Partnership Project (3GPP), March 2018. Version 15.2.0.
[4] H.-S. Liao, P.-Y. Chen, and W.-T. Chen, “An Efficient Downlink Radio Resource Allocation with Carrier Aggregation in LTE-Advanced Networks,” IEEE Transactions
on mobile computing, vol. 13, pp. 2229–2239, 2014.
[5] A. Abdelhadi and C. Clancy, “An Optimal Resource allocation with Joint Carrier Aggregation in 4G-LTE,” International Conference on Computing Networking and Communications, 2015.
[6] S. A. Ashraf, I. Aktas, E. Eriksson, K. W. Helmersson, and J. Ansari, “Ultra-Reliable and Low-Latency Communication for Wireless Factory Automation: From LTE to 5G,” 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation, 2016.
[7] V. Ratnam, A. Molisch, O. T. Bursalioglu, and H. C. Papadopoulos, “Hybrid Beamforming with Selection for ulti-user Massive MIMO Systems,” IEEE Transactions on Signal Processing, 2018.
[8] A. Adhikary, E. A. Safadi, M. K. Samimi, R. Wang, G. Caire, T. S. Rappaport, and A. F. Molisch, “Joint Spatial Division and Multiplexing for mm-Wave Channels,” IEEE Journal on Selected Areas in Communications, vol. 32, pp. 1239–1255, 2014.
[9] 3GPP, “Summary of Bandwidth Part Remaining Issues,” Discussion R1-1805693, 3rd Generation Partnership Project (3GPP), April 2018. Meeting RAN1 # 92-Bis.
[10] A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and K. Haneda, “Hybrid Beamforming for Massive MIMO: A Survey,” IEEE Communications Magazine,
vol. 55, pp. 134–141, 2017.
[11] T. Farncombe and K. Iniewski, eds., Medical Imaging: Technology and Applications. CRC Press, 2013.
[12] Y. Wang, K. I. Pedersen, T. B. Sorensen, and P. E. Mogensen, “Carrier Load Balancing and Packet Scheduling for Multi-Carrier Systems,” IEEE Transactions on wireless communications, vol. 9, pp. 1780–1789, 2010.
[13] S.-B. Lee, S. Choudhury, A. Khoshnevis, S. Xu, and S. Lu, “Downlink MIMO with Frequency-Domain Packet Scheduling for 3GPP LTE,” IEEE INFOCOM, 2009.
[14] S. Niafar, Z. Huang, and D. H. K. Tsang, “An Optimal Standard-Compliant MIMO Scheduler for LTE Downlink,” IEEE Transactions on Wireless Communications, vol. 13, pp. 2412–2421, 2014.
[15] S. Kumagai, T. Kobayashi, D. Jitsukawa, T. Seyama, T. Dateki, H. Seki, K. Matsuyama, and M. Minowa, “Scheduler Reducing CSI Feedback Overhead and Computational Complexity for 5G Ultra HighDensity Distributed Antenna Systems with Hybrid BF,” 2017 IEEE 86th Vehicular Technology Conference, 2017.
[16] 3GPP, “Technical Specification Group Radio Access Network; Study on New Radio (NR) access technology,” Technical Report (TR) 38.912, 3rd Generation Partnership Project (3GPP), June 2017. Version 14.1.0.
[17] 3GPP, “Technical Specification Group Radio Access Network; NR; Physical layer procedures for data,” Technical Specification (TS) 38.214, 3rd Generation Partnership Project (3GPP), March 2018. Version 15.1.0.
[18] A. Jalali, R. Padovani, and R. Pankaj, “Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system,” 2000 IEEE 51st
Vehicular Technology Conference Proceedings, 2000.
[19] “http://www.gurobi.com/.” Gurobi.指導教授 張貴雲 何錦文(Guey-Yun Chang Chin-Wen Ho) 審核日期 2018-8-22 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare