以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:31 、訪客IP:3.145.36.252
姓名 徐曉婷(Hsiao-Ting Hsu) 查詢紙本館藏 畢業系所 通訊工程學系在職專班 論文名稱 藍牙網路中基於節點角色適合度之路由演算法
(Routing with Node′s Role Suitability Metric in Bluetooth Networks)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 隨著物聯網(Internet of Things;IoT)技術的快速發展,而衍生出了工業 4.0、智慧醫療、智慧居家等的智慧化服務,為了輕鬆部署物聯網裝置,使得這些智慧化的服務可以有效的實行在我們生活之中,目前已經有非常多種低耗能無線鏈結層協定,如:ZigBee、Thread 等,都支援網狀網路,雖然藍牙 5.0 也支援網狀網路,不過藍牙 5.0是採用泛洪式架構,利用簡單的廣播性質來達到裝置與裝置之間的溝通,如果網狀網路
的拓樸範圍越來越大就容易造成網路壅塞,加速能源的消耗,縮短網路的生命週期。
本論文研究的目的是建置一個分散式網路,並將裝置特徵值作最小值最大值正規化(Min-Max Normalization),再計算角色適合度量(Role Suitability Metric;RSM),RSM 值作為分散式網路形成的指標,分散式網路分為三個程序形成,第一個程序是節點發現程序,第二個程序是微網的形成,並根據 RSM 值挑選主節點(Master),最大值成為主節點,第三個程序則是分散式網路的形成,挑選中繼節點(Relay),結合兩個微網構成分散式網路,而分散式網路中只有主節點和中繼節點可以傳遞訊息,主要是改善泛洪式架構中重覆傳輸封包的特性,藉由減少裝置之間訊息的傳遞和網路壅塞的機率,延長網路生命週期,讓整個網路更穩定。
實驗結果顯示先將裝置特徵值作最小值最大值正規化,可以更精準地挑選合適的主節點與中繼節點,數值不受單位的影響而出現高低水平,可以藉由調整權重比例已符合實際的應用,例如:降低功耗的權重,以減少電量的消耗,增加電池的使用期限,讓網路生命週期延長。摘要(英) With the rapid development of Internet of Things (IoT) technology, smart services such as Industry 4.0, smart health and smart home have been derived. In order to easily deploy IoT devices, these smart services can be effectively
applied in our lives. Currently, there are already many kinds of low-energy wireless protocols, such as ZigBee and Thread, which support mesh networks. Although Bluetooth 5.0 also supports mesh networks, Bluetooth 5.0 uses a flood-based architecture that uses simple broadcast properties to communicate between devices. If the topology of the mesh network is larger, it will easily cause network congestion, accelerate energy consumption and shorten the life cycle of the network.
This study in thesis intends to build a scatternet network and the device feature value is normalized to the minimum value (Min-Max Normalization), and then the Role Suitability Metric (RSM) is calculated. The RSM value is used as an indicator of the formation of a distributed network. The scatternet network is divided into three procedures. The first procedure is a node discovery
procedure, the second procedure is the formation of the piconet that selects the master node according to the RSM value, and so the node with the maximum value becomes the master node, and the third procedure is the formation of a
scatternet network that selects relay nodes and combines two piconets to form a scatternet network. Only the master node and the relay node can transmit messages in the scatternet network, this design which can mainly improve the characteristics of repeated transmission packets in the flooded architecture, extend the network life cycle and reduce the overall network stability by reducing the transmission of messages between devices and the probability of network congestion.
The experimental results show that the device feature value is first normalized to the minimum value (Min-Max Normalization), which can be used to select the appropriate master node and relay node more accurately. The value
is not affected by the unit and the level is high or low. Adjusting the weight ratio can be consistent with practical applications, such as: reducing the weight of power consumption to reduce power consumption, increase battery life, and extend the network life cycle.關鍵字(中) ★ 藍牙低功耗
★ 角色適合度量
★ 網狀拓樸網路關鍵字(英) 論文目次 中文摘要................................................ i
Abstract .............................................. ii 致謝 .................................................. iv 目錄 .................................................. v
圖目錄 List of Figures ................................ vii 表目錄 List of Tables ................................ viii
第一章簡介 ............................................ 1
1-1 背景 ............................................ 1 1-2 研究動機 ........................................ 2
1-3 過去研究 .......................................... 2
1-4 方法改善 .......................................... 3
第二章背景知識及文獻回顧 ................................ 5
2-1 背景知識 .......................................... 5 2-1-1 藍牙 4.0 ........................................ 7 2-1-2 藍牙 4.1 ....................................... 10 2-1-3 藍牙 4.2 ....................................... 10 2-1-4 藍牙 5.0 ....................................... 11 2-2 文獻回顧 ....................................... 11
第三章前置研究 ........................................ 17
3-1 角色適合度量 .................................... 17
3-2 拓樸管理 ........................................ 22 3-2-1 節點發現程序 .................................... 22 3-2-2 微網的形成 ...................................... 25 3-2-3 分散式網路的形成 ................................ 26 3-2-4 拓撲恢復 ........................................ 28 3-3 路由協定 ........................................ 28 第四章正規化裝置特徵值 .................................. 31 4-1 正規化方法 ......................................... 31 4-2 特徵值正規化 ....................................... 32 第五章模擬環境 ......................................... 36
5-1 實驗環境 ........................................ 36
5-1-1 評估指標 ........................................ 36
5-2 對照組比較 ...................................... 38
5-3 模擬實驗 ........................................ 38 5-3-1 環境設定 ........................................ 39 5-3-2 實驗一 .......................................... 41
5-3-3 實驗二 .......................................... 46
第六章結論 ............................................ 53 參考文獻 .............................................. 54參考文獻 [1] Kuor-Hsin Chang,”Bluetooth: a viable solution for IoT?”, IEEE Wireless Communications, vol. 21,no. 6, pp. 6-7, December 2014.
[2] Bluetooth Core Specification, Version 4.0, Bluetooth Special Interest
Group, Kirkland, WA, USA, 2010. [Online]. Available:
https://www.bluetooth.com/specifications/bluetooth-core-specification/
[3] Bluetooth Core Specification, Version 4.1, Bluetooth Special Interest
Group, Kirkland, WA, USA, 2013. [Online]. Available: https://www.bluetooth.com/specifications/bluetooth-core-specification/
[4] Bluetooth Core Specification, Version 5.0, Bluetooth Special Interest
Group, Kirkland, WA, USA, 2016. [Online]. Available: https://www.bluetooth.com/specifications/bluetooth-core-specification/
[5] Thread Usage of 6LoWPAN 2.0. Thread Group, 2015. [Online]. Available: https://www.threadgroup.org/Portals/0/documents/support/6LoWPANUsage_632_2.pdf
[6] ZigBee Alliance, ZigBee PRO, August 2015. [Online]. Available: https://zigbee.org/zigbee-for-developers/zigbee-pro/#
[7] Mathias Baert, Jen Rossey, Adnan Shahid, Jeroen Hoebeke,”The Bluetooth Mesh Standard: An Overview and Experimental Evaluation,”Sensors, vol. 18, no. 8, pp. 2409, 2018.
[8] Seyed Mahdi Darroudi, Carles Gomez,”Bluetooth Low Energy Mesh Networks: A Survey,”Sensors, vol. 17, no. 7, pp. 1467, 2017.
[9] Chih-Min Yu, Yih-Bin Yu,” Joint Layer-Based Formation and Self-Routing Algorithm for Bluetooth Multihop Networks,”IEEE Systems Journal, vol. 12, no. 1, pp.41–51, April 2016.
[10] Sanaa Sharafeddine, Ibrahim Al-Kassem, Zaher Dawy,”A scatternet formation algorithm for Bluetooth networks with a non-uniform distribution of devices,”Journal of Network and Computer Applications, vol. 35, pp. 644–656, March 2012.
[11] C. M. Yu and J. H. Lin” Enhanced Bluetree: a mesh topology approach forming Bluetooth scatternet,”IET Wireless Sensor Systems, vol. 2, no. 4, pp. 409 – 415, December 2012.
[12] Zonglin Guo, Ian G. Harris, Lih-feng Tsaur, Xianbo Chen,”An On-Demand Scatternet Formation and Multi-Hop Routing Protocol for BLE-Based Wireless Sensor Networks,”in Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), New Orleans, LA, USA, March 2015, pp. 1-6.
[13] Changsu Jung, Kyungjun Kim, Jihun Seo, Bhagya Nathali Silva, Kijun Han,”Topology Configuration and Multihop Routing Protocol for Bluetooth Low Energy Networks,”IEEE Access, vol. 5, pp. 9587-9598, May 2017.
[14] Changsu Jung ,Kijun Han,”Maximum Power Plus RSSI Based Routing Protocol for Bluetooth Low Energy Ad Hoc Networks,”in Wireless Communications and Mobile Computing, vol. 2017, December 2017, pp. 13.
[15] Hyun-Soo Kim, Jungyub Lee, Ju Wook Jang,”BLEmesh: A Wireless Mesh Network Protocol for Bluetooth Low Energy Devices,”in Proceedings of the 3rd International Conference on Future Internet of Things and Cloud, Rome, Italy, August 2015, pp. 1-6.
[16] Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic,”Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction,”International Journal of Computer and Information Engineering, Vol.10, No.6, pp.1075–1081,2016.
[17] Philipp Zenker, Silvia Krug, Michael Binhack, Jochen Seitz,”Evaluation of BLE Mesh Capabilities: A Case Study Based on CSRMesh,”in Proceedings of Eighth International Conference on Ubiquitous and Future Networks (ICUFN), Vienna, Austria , August 2016, pp.5–8.
[18] Nordic, Mesh Networking Platform Uses Nordic Semiconductor. Web site: https://www.nordicsemi.com/News.
[19] Silvair, Silvair Bluetooth Mesh Stack Dedicated for Lighting. Web site: https://silvair.com/.
[20] Mohit Agnihotri, Roman Chirikov, Francesco Militano, Cicek Cavdar, “Topology formation in mesh networks considering role suitability,”in Proceedings of IEEE Wireless Communications and Networking Conference, Doha, Qatar , September 2016, pp.421–427.
[21] NS3 BLE web site: https://gitlab.com/Stijng/ns3-ble-module.
[22] Texas Instruments, CC2640 Bluetooth Low Energy datasheet. July 2016. [Online]. Available: http://www.ti.com/lit/ds/symlink/cc2640.pdf
[23] Angela M. Lonzetta, Peter Cope, Joseph Campbell, Bassam J. Mohd, “Security Vulnerabilities in Bluetooth Technology as Used in IoT,” Sensors, vol. 7, no. 3, pp. 28, April 2018.
[24] Nateq Be-Nazir Ibn Minar, Mohammed Tarique, “Bluetooth Security Threats and Solutions: A Survey,”in Proceedings of International Journal of Distributed and Parallel Systems (IJDPS), Vol.3, No.1, January 2012
指導教授 胡誌麟 審核日期 2019-8-21 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare