博碩士論文 105621016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:138 、訪客IP:3.135.182.13
姓名 施正澎(Cheng-Peng Shih)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 MPAS-GSI Hybrid同化GPS掩星資料對2016年尼伯特颱風預報的影響
(The Impact of GPS RO Data on 2016 Typhoon Nepartak Prediction by the MPAS-GSI Hybrid Model)
相關論文
★ Prediction of Tropical Cyclogenesis with GNSS RO Data Assimilation through the WRF Hybrid 3DEnVar
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 一套全新的MPAS-GSI系統結合美國國家大氣研究中心(NCAR)所發展的全球跨尺度天氣預報模式(MPAS),與中央氣象局(CWB)和NCAR開發調整的兩種不同系集變分混成資料同化系統(CWB-GSI、DTC-GSI)用來改善颱風預報的初始場。由於熱帶氣旋的生命週期以海洋上為主,但海洋上經常缺乏傳統觀測資料,而模式同化的觀測資料通常仰賴傳統觀測。因此近年發展新的全球定位系統無線電掩星資料(GPSRO),利用無線電掩星觀測的技術,可以得到高解析的大氣垂直剖面線資料,在缺少觀測的海洋上是一大幫助。
本研究將以此新穎的方法(MPAS-GSI)並加入GPSRO觀測,來探討對2016年的強烈颱風尼伯特(Nepartak)進行個案模擬並探討RO觀測對於MPAS模式的影響。實驗分為兩大部分,第一部分使用CWB的DMS key來構成GFS/GSI及MPAS系統的架構,共分高低解析度兩組進行,一組使用60-15公里,另一組使用60-15-3公里的模擬,並加入渦漩初始化(bogus)的過程。從實驗中得知無論高低解析度的實驗有同化RO資料的實驗均能改善MPAS模式的預報路徑,也與ECMWF分析場的區域校驗較為接近。以上本實驗達成了GSI往MPAS單向的效果,在後期建置雙向系統時遇到了技術上的困難,因此引進第二套系統企圖解決問題。
第二部分使用NCAR提供的MPAS-GSI的全新架構,成功地解決技術問題並達成MPAS-GSI雙向溝通的系統,這部分的實驗同樣探討RO觀測對於MPAS模式的影響。實驗分為變分資料同化系統(3DVar)與系集混合變分資料同化系統(Hybrid),並比較兩者差異。五天的預報路徑結果顯示兩者方法均在沒有bogus的狀況下都能成功登陸台灣,且有同化RO資料的個案仍有改善颱風的預報路徑,但誤差不如第一部分準確。由於這套全新的雙向系統還在調整與測試階段,還有不少的改善空間,未來能期待更多的發展。
摘要(英) Model for Prediction Across Scales-Atmosphere (MPAS-A) is a new global non-hydrostatic atmospheric model, which uses unstructured variable resolution meshes with smoothly varying mesh transitions, well suited for a higher-resolution mesoscale atmosphere simulation. For typhoon prediction, observations over ocean are important for a numerical model to better represent the real atmosphere. Global Positioning System (GPS) radio occultation (RO) data have characteristics of global coverage, high vertical resolution, and high accuracy, so they can provide useful information for the data-sparse region.
In this study, GPSRO data are assimilated with GSI, and the analysis is provided as the initial condition for the MPAS-A model using a new technique. The impact of RO observations to the track forecast of Typhoon Nepartak (2016) is investigated. The study consists of two parts: In the first part, the Central Weather Bureau Grid-point Statistical Interpolation (GFS/GSI) hybrid system is used for the assimilation, and the MPAS model forecasts are conducted with 60-15 and 60-15-3 km resolutions. The typhoon bogus is employed during the assimilation process. The experiments with RO data show better track forecast in both high- and low-resolution configurations, and the analysis fields are comparable with the ECMWF analysis. However, these results are obtained using one-way connection from GSI to MPAS; i.e., the data assimilation cycles are not conducted using the MPAS model itself. We tried to build the two-way assimilation system, but we encountered some serious technical problems.
To solve the two-way issue, in the second part, we successfully set up a brand new MPAS-GSI framework developed by NCAR. The impact of the GPSRO data to the typhoon forecasts are thus studied in both 3DVar and Hybrid methods using the MPAS/GSI system. The five-day forecast results show that the typhoon still makes landfall at Taiwan without the bogus process and that the cases with RO data exhibit better track forecasts. However, the track errors in these experiments are not as accurate as those in the first part. As this new two-way system is still at the testing stage, there is still a lot of room for improvement, and more developments can be expected in the future.
關鍵字(中) ★ 全球跨尺度天氣預報模式
★ 全球資料同化格點統計內插系統
★ 全球無線電掩星
關鍵字(英) ★ MPAS
★ GSI
★ GPSRO
論文目次 摘要 iii
Abstract iv
致謝 vi
目錄 vii
表目錄 viii
圖目錄 viii
一、前言 1
二、掩星觀測及模式介紹 5
2-1、GPS掩星觀測技術 5
2-2、資料同化技術 6
2-3、全球資料同化模擬系統簡介 9
2-3-1、GSI系統 9
2-3-2、MPAS模式 9
2-3-3、GFS/GSI及MPAS系統 11
2-3-4、MPAS/GSI系統 12
三、實驗設計與模擬結果 14
3-1、資料來源 14
3-2、GFS/GSI及MPAS系統的實驗結果 14
3-3、MPAS/GSI系統的實驗結果 16
3-4、敏感性實驗 21
3-4-1 GFS/GSI及MPAS系統的敏感性實驗 21
3-4-2 MPAS/GSI系統的敏感性實驗 23
四、結論與未來展望 25
五、參考文獻 27
六、圖表 32
附表 32
附圖 39
參考文獻 江秉儒,2016年:利用以GSI-3DVar為基礎的系集變分混合同化系統探討GPS掩星觀測對熱帶氣旋模擬之影響。國立中央大學,大氣物理研究所,碩士論文,49頁。
陳舒雅,2008年:GPS 掩星觀測資料同化及對區域天氣預報模擬之影響。國立中央大學,大氣物理研究所,博士論文,154頁。
曾忠一,2006:大氣科學中的反問題。國立編譯館主編及出版,1288頁。
黃建翔,2018:侵臺颱風之高解析度全球模式模擬研究。國立中央大學,大氣物理研究所,碩士論文,114頁。
黃清勇、楊明仁,2014年:交通部中央氣象局委託辦理研究計畫期末報告系集變分混合資料同化系統之發展,計畫編號: MOTC-CWB-103-M-08。
董承錡,2016年:同化GPS RO資料之初始場對於MPAS颱風模擬的影響。國立中央大學,大氣物理研究所,碩士論文,53頁。
Anisetty, S. K. A. V. P. R., C.-Y. Huang, and S.-Y. Chen, 2014: Impact of FORMOSAT-3/COSMIC radio occultation data on the prediction of super cyclone Gonu (2007): A case study. Nat. Hazards, 70, 1209–1230.
Bresch, J., C. S. Schwartz, H. Winterbottom, J. Whitaker, C. M. Snyder, and Z. Liu, 2015: Three-dimensional variational and hybrid data assimilation for the MPAS-Atmosphere system [poster]. 16th WRF Users′ Workshop, Boulder, CO, US.
Chen, S.-Y., C.-Y. Huang, Y.-H. Kuo, Y.-R. Guo, and S. Sokolovskiy, 2009: Assimilation of GPS refractivity from FORMOSAT-3/ COSMIC using a nonlocal operator with WRF 3DVAR and its impact on the prediction of a typhoon event. Terr. Atmos. Oceanic Sci., 20, 133–154.
Chen, S.-Y., Wee, T.-K., Kuo, Y.-H., & Bromwich, D. H., 2014: An Impact Assessment of GPS Radio Occultation Data on Prediction of a Rapidly Developing Cyclone over the Southern ocean, Mon. Wea. Rev., 142, 4187-4206.
Chien, F.-C., and Y.-H. Kuo, 2010: Impact of FORMOSAT-3/ COSMIC GPS radio occultation and dropwindsonde data on regional model predictions during the 2007 Mei-yu season. GPS Solutions, 14, 51–63.
Cucurull, L., 2010: Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting. Wea. Forecasting, 25, 749–767.
Cucurull, L., J. C. Derber, and R. J. Purser, 2013: A bending angle forward operator for global positioning system radio occultation measurements. J. Geophys. Res. Atmos., 118, 14–28.
Cucurull, L., R. A. Anthes, and L.-L. Tsao, 2014: Radio occultation observations as anchor observations in numerical weather prediction models and associated reduction of bias corrections in microwave and infrared satellite observations. J. Atmos. Oceanic Technol., 31, 20–32, doi:10.1175/JTECH-D-13-00059.1
Cucurull, L., Y.-H. Kuo, D. Barker, and S. R. H. Rizvi, 2006: Assessing theimpact of simulated COSMIC GPS radio occultation data on weather analysis over the Antarctic: A case study. Mon. Wea. Rev., 134, 3283-3296.
Hagos, S., R. Leung, S. A. Rauscher, and T. Ringler, 2013: Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Mon. Wea. Rev., 141, 3022-3036.
Hamill, T. M., C. Snyder, 2000: A Hybrid Ensemble Kalman Filter-3D Variational Analysis Scheme. Mon. Wea. Rev., 128, 2905-2919.
Healy, S. B., 2008: Forecast impact experiment with a constellation of GPS radio occultation receivers. Atmos. Sci. Lett., 9, 111– 118.
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151
Hong, Song–You, Yign Noh, Jimy Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
Hsiao, L.-F., C.-S. Liou, T.-C. Yeh, Y.-R. Guo, D.-S. Chen, K.-N. Huang, C.-T. Terng, and J.-H. Chen, 2010: A vortex relocation scheme for tropical cyclone initialization in Advanced Research WRF. Mon. Wea. Rev., 138, 3298–3315.
Huang, C.-Y., and Coauthors, 2010: Impact of GPS radio occultation data assimilation on regional weather predictions. GPS Solutions, 14, 35–49.
Huang, C.-Y., I.-H. Wu, and L. Feng, 2016(a): A numerical investigation of the convective systems in the vicinity of southern Taiwan associated with Typhoon Fanapi (2010): Formation mechanism of double rainfall peaks, J. Geophys. Res. Atmos., 121.
Huang, C.-Y., S.-Y. Chen, S. K. A. V. P. R, Anisetty, S.-C. Chen, and L.-F. Hsiao, 2016: An Impact Study of GPS Radio Occultation Observations on Frontal Rainfall Prediction with a Local Bending Angle Operator. Amer. Meteor. Soc., 31, 129–151.
Huang, C.-Y., Y. Zhang, W. C. Skamarock, and L.-H. Hsu, 2017: Influences of large-scale flow variations on the track evolution of typhoons Morakot (2009) and Megi (2010): simulations with a global variable-resolution model. Mon. Wea. Rev., 145, 1691-1716.
Huang, C.-Y., Y.-H. Kuo, S.-H. Chen, and F. Vandenberghe, 2005: Improvements on typhoon forecast with assimilated GPS occultation refractivity. Wea. Forecasting, 20, 931–953.
Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, W.-S. Wu, and S. Lord, 2009b: Introduction of the GSI into the NCEPs Global Data Assimilation System. Wea. Forecasting, 24, 1691–1705.
Kleist, D. T., D. F. Parrish, J.C. Derber, R. Treadon, R.M. Errico, and R. Yang, 2009a: Improving incremental balance in the GSI 3DVar analysis system. Mon. Wea. Rev., 137, 1046–1060.
Klemp, J. B., 2011: A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139, 2163–2169
Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt,and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507-531.
Kuo, Y.-H., W. S. Schreiner, J. Wang, D. L. Rossiter, Y. Zhang, 2005: Comparison of GPS radio occultation soundings with radiosondes. Geophys. Res. Lett., 32, L05817.
Kuo, Y.-H., X. Zou, S.-J. Chen, Y.-R. Guo, W. Huang, R. Anthes, D. Hunt,M. Exner, C. Rocken, S. Sokilovskiy, 1998: A GPS/MET sounding through an intense upper-level front, Bull. Amer. Met. Soc., 79,617-626.
Kursinski, E. R., G. A. Hajj, K. R. Hardy, L. J. Romans, and J. T. Schofield,1995: Observing tropospheric water vapor by radio occultation using the global positioning system, Geophs. Res. Letter, 22, 2365-2368.
Kursinski, E. R., G. A. Hajj, J. T. Schofield, R. P. Linfield, K. R. Hardy,1997: Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res., 102, D23429–23465.
Park, S. H., J. B. Klemp, and W. C. Skamarock, 2014: A comparison of mesh refinement in the global MPAS-A and WRF models using an idealized normal-mode baroclinic wave simulation. Mon. Wea. Rev., 142, 3614-3634.
Parrish, D. F., and J. Derber, 1992: The National Meteorological Center’s spectral and statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763.
Poli P., Healy S.B., Dee D. P., 2010: Assimilation of Global Positioning System radio occultation data in the ECMWF ERA–Interim reanalysis. Q. J. R. Meteorol, Soc. 136,1972-1990.
Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090-3105.
Skarmarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. Tech. Note, 1-96.
Smith, E. K., and S. Weintraub, 1953: The constants in the equation of atmospheric refractive index at radio frequencies. Proc. IRE (Inst. Radio. Eng.), 41, No. 8, 1035-1037.
Tewari, M., F. Chen, W. Wang, J. Dudhia, M. A. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, and R. H. Cuenca, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15.
Wang, X., 2010: Incorporating ensemble covariance in the Gridpoint Statistical Interpolation (GSI) variational minimization: A mathematical framework. Mon. Wea. Rev., 138, 2990–2995.
Wang, X., D. Parrish, D. Kleist, and J. Whitaker, 2013: GSI 3DVarbased ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 4098–4117.
Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 2599-2617.
Yang, S.-C., Chen, S.-H., Chen, S.-Y., Huang, C.-Y., and Chen, C.-S., 2014: Evaluating the Impact of the COSMIC RO Bending Angle Data on Predicting the Heavy Precipitation Episode on 16 June 2008 during SoWMEX-IOP8. Mon. Wea. Rev., 142, 4139-4163.
Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARQ-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 3489–3513.
指導教授 黃清勇 陳舒雅(Ching-Yuang Huang Shu-Ya Chen) 審核日期 2019-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明