參考文獻 |
黃清勇、李志昕,2009:西北向侵臺颱風中心路徑打轉之模擬研究。大氣科學, 37(2),121-154。
謝佳宏,2017:地形作用對西行熱帶氣旋之影響:理想個案數值模擬。國立中央大學,大氣物理研究所,碩士論文,共103頁。
簡國基,2011:海棠颱風登陸臺灣前內核結構演變之研究。大氣科學,39(1),83-93。
Bender, M.A., R.E. Tuleya and Y. Kurihara, 1985: A numerical study of the effect of island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130-155.
Bender, M. A., R. E. Tuleya, and Y. Kurihara, 1987: A numerical study of the effect of an island terrain on tropical cyclones. Mon. Wea. Rev., 115, 130–155.
Carr, L. E., and R. T. Williams, 1989: Barotropic vortex stability to perturbations from axisymmetry. J. Atmos. Sci., 46, 3177-3191.
Chan, J. C., F. M. Ko, and Y. M. Lei, 2002: Relationship between potential vorticity tendency and tropical cyclone motion, J. Atmos. Sci., 59, 1317-1336.
Chang, S. W.-J., 1982: The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea. Rev., 110, 1255–1270.
Chen, T.-C., and C.-C. Wu, 2016: The remote effect of Typhoon Megi (2010) on the heavy rainfall over northeastern Taiwan. Mon. Wea. Rev., 144(9), 3109-3131.
Davis, C. A., and S. Low-Nam, 2001: The NCAR-AFWA tropical cyclone bogussing scheme. Report for the Air Force Weather Agency (AFWA), 12 pp.
Du, Q., V. Faber, and M. Gunzburger, 1999: “CentroidalVoronoi Tessellations: Applications and Algorithms”. SIAM Review, 41, 637 –676.
Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022.
Fiorino, M., and R. L. Elsberry, 1989: Some aspects of vortex structure related to tropical cyclone motion. J. Atmos. Sci., 46, 975-990.
Fujiwhara, S., 1923: On the growth and decay of vertical systems. Quart. J. Roy. Meteor. Soc., 49, 75-104.
Fujiwhara, S., 1931: Short note on the behavior of two vortices. Proc. Phys. Math. Soc. Japan., Ser. 3, 13, 106-110.
Gill, A. E., 1980. Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106(449), 447-462.
Grell, G. A. and S. R. Freitas, 2014: A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling, Atmos. Chem. Phys., 14, 5233-5250, doi:10.5194/acp-14-5233-2014.
Hagos, S., R. Leung, S. A. Rauscher, and T. Ringler, 2013: Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Mon. Wea. Rev., 141, 3022-3036.
Harris, L. M., and D. R. Durran, 2010: An idealized comparison of one-way and two-way grid nesting. Mon. Wea. Rev., 138, 2174-2187.
Holland, G. J., 1983: Tropical cyclone motion: Environmental interaction plus a beta effect. J. Atmos. Sci., 40, 328-342.
Hong, S.–Y., and J.–O. J. Lim, 2006: The WRF single–moment 6–class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
Hong, S.–Y., Y. Noh, J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341. doi:10.1175/MWR3199.1.
Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the use and signi?cance of isentropic potential vorticity maps. Q. J. R. M. Soc., 111, 877-946.
Hsu, L.-H., H.-C. Kuo, and R. G. Fovell, 2013: On the geographic asymmetry of typhoon translation speed across the mountainous island of Taiwan, J. Atmos. Sci., 70, 1006-1022.
Hsu, L.-H., S.-H. Su, R. G. Fovell, and H.-C. Kuo, 2018: On typhoon track deflections near the east coast of Taiwan. Mon. Wea. Rev., 146, 1495–1510.
Huang, C.-Y., and Y.-L. Lin, 2008: The influence of mesoscale mountains on vortex tracks: shallow-water modeling study. Meteor. Atmos. Phys.,101, 1-20.
Huang, Y.-H., C.-C. Wu, and Y. Wang, 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 1708–1727.
Huang, C.-Y., I.-H. Wu, and L. Feng, 2016(a): A numerical investigation of the convective systems in the vicinity of southern Taiwan associated with Typhoon Fanapi (2010): Formation mechanism of double rainfall peaks, J. Geophys. Res. Atmos., 121, doi:10.1002/ 2016JD025589.
Huang, C.-Y., C. A. Chen, S. H. Chen, & D. S. Nolan, 2016(b): On the upstream track deflection of tropical cyclones past a mountain range: Idealized experiments. Journal of the Atmospheric Sciences, 73(8), 3157-3180.
Huang, C.-Y., Y. Zhang, W. C. Skamarock, and L.-H. Hsu, 2017: In?uences of large-scale flow variations on the track evolution of typhoons Morakot (2009) and Megi (2010): simulations with a global variable-resolution model. Mon. Wea. Rev., 145, 1691-1716.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103.
Jian, G.-J., and Wu, C.-C., 2008: A numerical study of the track deflection of Supertyphoon Haitang (2005) prior to its landfall in Taiwan. Mon. Wea. Rev., 136(2), 598-615.
Klemp, J. B., 2011: A terrain-following coordinate with smoothed coordinate surfaces. Mon. Wea. Rev., 139(7), 2163-2169.
Kuo, H.-C., R. T. Williams, J.-H. Chen, and Y.-L. Chen, 2001: Topographic effects on barotropic vortex motion: No mean flow. J. Atmos. Sci., 58, 1310-1327.
Liang, J., L. Wu, and, C.-C. Wu, 2011: Monsoonal influence on typhoon Morakot (2009). Part II: Numerical study. J. Atmos. Sci., 68(10), 2222-2235.
Lin, Y.-L., J. Han, D. W. Hamilton, and C.-Y. Huang, 1999: Orographic influence on a drifting cyclone. J. Atmos. Sci., 56, 534–562.
Lin, Y.-L., S.-Y., Chen, C. M., Hill, and C.-Y. Huang, 2005: Control parameters for the influence of a mesoscale mountain range on cyclone track continuity and deflection, J. Atmos. Sci., 62, 1849–1866.
Lin, Y.-L., and L. C. Savage, 2011: Effects of landfall location and the approach angle of a cyclone vortex encountering a mesoscale mountain range, J. Atmos. Sci., 68, 2095–2106.
Lin, A.-L., D.-J. Gu, C.-H. Li, et al. 2016. Impact of equatorial MJO activity on summer monsoon onset in the South China Sea. Chinese J. Geophysics, 59(1), 28-44.
Monin A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151, 163–187.
Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level 3 model: its numerical stability and application to a regional prediction of advecting fog. Bound. Layer Meteor. 119, 397–407. doi:10.1007/s10546-005-9030-8.
——, and ——, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895–912. doi:10.2151/jmsj.87.895.
Nguyen, H. V., and Y.-L. Chen, 2011: High-resolution initialization and simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139, 1463-1491.
——, and ——, 2014: Improvements to a tropical cyclone initialization scheme and impacts on forecasts. Mon. Wea. Rev., 142, 4340-4356.
Park, S. H., W. C. Skamarock, J. B. Klemp, L. D. Fowler, & M. G. Duda, 2013: Evaluation of global atmospheric solvers using extensions of the Jablonowski and Williamson baroclinic wave test case. Mon. Wea. Rev., 141(9), 3116-3129.
Park, S. H., J. B. Klemp, and W. C. Skamarock, 2014: A comparison of mesh refinement in the global MPAS-A and WRF models using an idealized normal-mode baroclinic wave simulation. Mon. Wea. Rev., 142, 3614-3634.
Ringler, T. D., D. Jacobsen, M. Gunzburger, L. Ju, M. Duda, and W. Skamarock, 2011: “Exploring a MultiresolutionModeling Approach within the Shallow-Water Equations”. Mon. Wea. Rev., 139, 3348 –3368.
Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. Tech. Note, 1-96.
Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Mon. Wea. Rev., 140, 3090-3105.
Tang, C. K., and J. C. L. Chan, 2014: Idealized simulations of the effect of Taiwan and Philippines topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 140, 1578–1589, https://doi.org/10.1002/qj.2240.
——, and——, 2015: Idealized simulations of the effect of local and remote topographies on tropical cyclone tracks. Quart. J. Roy. Meteor. Soc., 141, 2045–2056, https://doi.org/10.1002/qj.2498.
——, and ——, 2016: Idealized simulations of the effect of Taiwan topography on the tracks of tropical cyclones with differentsteering flow strengths. Quart. J. Roy. Meteor. Soc., 142, 3211–3221, https://doi.org/10.1002/qj.2902.
Tewari, M., F. Chen, W. Wang, J. Dudhia, M. A. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, and R. H. Cuenca, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15.
Thompson, G., P. R. Field, R. M. Rasmussen, W. D. Hall, 2008: Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Wea. Rev., 136, 5095–5115. doi:10.1175/2008MWR2387.1.
Tiedtke, M. I. C. H. A. E. L., 1989: A comprehensive mass flux scheme for cumulus parameterization in large–scale models. Mon. Wea. Rev., 117, 1779–1800.
Wang, C.-C., Y.-H. Chen, H.-C. Kuo, and S.-Y. Huang, 2013: Sensitivity of typhoon track to asymmetric latent heating/rainfall induced by Taiwan topography: A numerical study of Typhoon Fanapi (2010), J. Geophys. Res. Atmos., 118, 3292-3308, doi:10.1002/jgrd.50351.
Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 2599-2617.
Wu, L., and B. Wang, 2000: A potential vorticity tendency diagnostic approach for tropical cyclone motion. Mon. Wea. Rev., 128, 1899-1911.
Wu, L., and B. Wang, 2001a: Movement and vertical coupling of adiabatic baroclinic tropical cyclones. J. Atmos. Sci., 58, 1801-1814.
Wu, L., and B. Wang, 2001b: Effects of convective heating on movement and vertical coupling of tropical cyclones: A numerical study. J. Atmos. Sci., 58, 3639-3649.
Wu, L., J. L., and C.-C. Wu, 2011: Monsoonal Influence on Typhoon Morakot (2009). Part I: Observational Analysis, 2011, J. Atmos. Sci., 68, 2208-2221.
Wu, C.-C., T.-H. Li, and Y.-H. Huang, 2015: Influence of mesoscale topography on tropical cyclone tracks: Further examination of the channeling effect. J. Atmos. Sci., 72, 3032–3050.
Xu, K.-M., and D. A. Randall, 1996: A Semi-empirical Cloudiness Parametrization for use in Climate Models. J. Atmos. Sci., 53, 3084-3102.
Xu, H., X. Zhang, and X. Xu, 2013: Impact of tropical storm Bopha on the intensity change of super Typhoon Saomai in the 2006 typhoon season. Advances in Meteorology.
Yeh, T.-C., and R. L. Elsberry, 1993a: Interaction of typhoons with the Taiwan topography. Part I: Upstream track deflections. Mon. Wea. Rev., 121, 3193-3212.
——, and ——, 1993b: Interaction of typhoons with the Taiwan topography. Part
II: Continuous and discontinuous tracks across the island. Mon. Wea. Rev., 121, 3213–3233.
Zehnder, J. A., 1993: The influence of large-scale topography on barotropic vortex motion. J. Atmos. Sci., 50, 2519–2532.
Zehnder, J. A., and M. J. Reeder, 1997: A numerical study of barotropic vortex motion near a large-scale mountain range with application to the motion of tropical cyclones approaching the Sierra Madre. Meteor. Atmos. Phys., 64, 1–19.
Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast pacific in ARW–WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 3489–3513. |